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ART = Algebraic Reconstruction Technique 
         = A Classical Algorithm 

Our motivation: solve linear systems of equations A x = b derived
from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each itera-
tion updates x via sweeps over the rows aTi of the matrix A 2 Rm£n.

Perspective:

Listen to Grateful Dead (1965{1995) ! old fashioned.
Listen to Mozart (1756{91) or Bach (1685{28) ! the classics!

Talk about total variation (1992) ! old stu®.
Talk about ART (1937) ! classical algorithm.
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Filtered Back Projection (FBP) versus ART 
² FBP: low memory, works really well with many data.

² But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

² Di±cult to incorporate constraints (e.g., nonnegativity) in FBP

² ART and other algebraic methods are more °exible and adaptive.

Example with 3% noise and projection angles 15±; 30±; : : : ; 180±.
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FBP versus ART – Limited Data 

Irregularly spaced angles / \missing" angles also cause di±culties for FBP
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Gordon, Bender, Herman (1970): coined the term \ART" and also in-
troduced a nonnegativity projection:

x Ã PRn+

µ
x +

bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

Herman, Lent, Lutz (1978): introduced relaxation parameters !k < 2:

x Ã x + !k
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Today ART includes both !k and a projection PC on a convex set:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

ART History 
Kaczmarz (1937): orthogonally project x on the hyperplane de¯ned by
the ith row aTi and the corresponding element bi of the right-hand side:

x Ã Pi x = x +
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Satisfy one equation of A x = b at a time:
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The Optimization Viewpoint 

ART is usually considered as a solver for A x = b; but it is often more
convenient to consider it as an optimization method.

² We can introduce a relaxation parameter { or step length param-
eter { in the algorithm which controls the \size" of the updating
and, as a consequence, the convergence of the method:

{ a constant !, or

{ a parameter !k that changes with the iterations.

² In each updating step we can incorporate a projection PC on a
suitably chosen convex set C that re°ects prior knowledge.

² We can view it as a projected incremental gradient optimization
method, which opens for further extensions and careful conver-
gence analysis.
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Iteration-Dependent Relax. Parameter 

For inconsistent systems, basic ART with a ¯xed relaxation parameter
! gives cyclic and non-convergent behavior.

With the diminishing relaxation parameter !k = 1=
p

k ! 0 as k !1
the iterates converge to a weighted least squares solution.

There is also a column version of ART which always converges to the
standard least squares solution.
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Simple Constraints 

Non-negativity constraints. The set C = Rn
+ corresponds to

xi ¸ 0; i = 1; 2; : : : ; n:

Box constraints. The set C = [0; 1]n corresponds to

0 · xi · 1; i = 1; 2; : : : ; n:
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A Projected Incremental Gradient Method 

Consider the constrained least squares problem

min
x

1=2kb¡A xk22 subject to x 2 C

and write the objective function as 1=2kb¡A xk22 =
Pn

i=1 fi(x) with

fi(x) = 1=2
(bi ¡ aTi x)2

kaik22
) rfi(x) = ¡bi ¡ aTi x

kaik22

Incremental gradient methods use only the gradient of a singe term
fi(x) in each iteration, leading to the ART update:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :
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Software for ART 

² SNARK09: C++ package from NYU; 2D reconstructions.
www.dig.cs.gc.cuny.edu/software/snark09

² ASTRA: MATLAB package with GPU accelleration and inter-
fact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D
and 3D reconstructions.
sourceforge.net/p/astra-toolbox/wiki/Home

² Image reconstruction toolbox: MATLAB package from Univ.
of Michigan; 2D reconstructions.
web.eecs.umich.edu/~fessler/code

² AIR Tools: MATLAB package from DTU; 2D reconstructions.
www.compute.dtu.dk/~pcha/AIRtools

² Xmipp: C++ package from the Spanish National Biotechnology
Centre; 3D electron microscopy.
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome
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ART is a rich source for research problems!

This list is quite biased towards my own work with AIR Tools.

² Convergence and semi-convergence.

² Block algorithms.

² E±cient implementation.

² Choice of relaxation parameter.

² Stopping rules.

² Variations and extensions ART, e.g., for Poisson noise.

² Column version of ART.

ART Academy 

This presentation: 
ART performance 
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Convergence Issues 

The convergence of ART is quite obvious from the graph on slide 5
{ but can we say more?

Di±culty: the ordering of the rows of A in°uence the convergence:

0

BB@

1:0 1:0
1:0 1:1
1:0 3:0
1:0 3:7

1

CCAx =

0

BB@

2:0
2:1
4:0
4:7

1

CCA

The ordering 1{3{2{4 er preferable and almost twice as fast.
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Convergence of ART – No Noise 
Assume that we select the rows randomly, that A is invertible, and
that all rows of A are scaled to unit 2-norm. Then the expected
value E(¢) of the error norm satis¯es:

E
¡
kxk ¡ ¹xk22

¢
·
µ

1¡ 1

n ·2

¶k
kx0 ¡ ¹xk22; k = 1; 2; : : :

where ¹x = A¡1b and · = kAk2 kA¡1k2. Linear convergence.

When · is large we have
µ

1¡ 1

n ·2

¶k
¼ 1¡ k

n ·2
:

After k = n steps, corresp. to one sweep over all the rows of A, the
factor is 1¡ 1=·2.

Note: there are often orderings for which the convergence is faster!

Strohmer & Vershynin, 2009 
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Semi-Convergence of ART – with Noise 

Notation: b = A ¹x + e, ¹x = exact solution, e = noise.

Initial iterations: the error kxk ¡ ¹xk2 decreases.

Later: the error increases as xk ! A¡1b.

A few references: 
 F. Natterer, The Mathematics of 

Computerized Tomography (1986) 
 A. van der Sluis & H. van der Vorst, 

SIRT- and CG-type methods for the 
iterative solution of sparse linear 
least-squares problems (1990) 

 M. Bertero & P. Boccacci, Inverse 
Problems in Imaging (1998) 

 M. Kilmer & G. W. Stewart, Iterative 
Regularization And Minres (1999) 

 H. W. Engl, M. Hanke & A. Neubauer, 
Regularization of Inverse Problems 
(2000) 

kx
k
¡

¹x
k 2
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Part I: Semi-Convergence for ART 

Recall that ¹x = solution to noise-free problem, and let xk and
¹xk denote the iterates when applying ART to b and ¹b = A ¹x:

kxk ¡ ¹xk2 · kxk ¡ ¹xkk2 + k¹xk ¡ ¹xk2 :

Noise error Iteration error 

Convergence theory for ART for noise-free data is well estab-
lished and ensures that the iteration error ¹xk¡ ¹x goes to zero.

Our concern here is the noise error eN
k = xk ¡ ¹xk. We wish to

establish that it increases, and how fast.

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method, 
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007. 
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Noise Error for ART – No Projection 

We introduce: e = b¡ ¹b = noise in data, Q = I ¡ !ATM A.

ART is equivalent to applying SOR to A AT y = b, x = AT y. Splitting:

AAT = L + D + LT ; M = (D + !L)¡1;

where L is strictly lower triangular and D = diag(kaik22). Then:

xk+1 = xk + !ATM (b¡A xk) :

Then simple manipulations show that the noise error is given by

eN
k = xk ¡ ¹xk = Q eN

k¡1 + !ATM e = !
k¡1X

j=1

QjATM e :

After some work (see the paper) we obtain the bound

keN
k k2 ¼ k ! kATM ek2:

Successive Over-Relaxation 
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Noise Error Analysis – A Tighter Bound 

Further analysis (see the paper) shows that the noise error in ART is
bounded above as:

keN
k k2 · 1¡ (1¡ !¾2

min)k

¾min

kATM ek2
¾min

+O(¾2
min);

¾min = smallest singular value of A:

As long as !¾2
min < 1 we have

1¡ (1¡ !¾2
min)k

¾min
·
p

k
p

!

and thus

keN
k k2 ·

p
k

p
! kATMek2

¾min
+O(¾2

min):

This also holds for projected ART provided that A and PC satisfy

y 2 R(AT ) ) PCy 2 R(AT ):
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Numerical Results (paralleltomo from AIR Tools) 

Test problem: 

• 200×200 phantom, 
• 60 projections at 
• 3°,6°,9°,…,180°, 
 m = 15,232, 
 n = 40,000. 

We estimate
p

!kATMek2
¾min

¼ 107:

Hence our bound is a
wild over-estimate but
it correctly tracks the
noise error.

The point of semi-convergence arises when noise error ≈ iteration error. 

1% noise 

5% noise 

1% noise 

5% noise 
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Conclusion so Far 

We derived an upper bound for the noise error that supports the 
observed semi-convergence of ART. 
 
The bound includes a crazy large factor – how to get rid of it? 
 
We would also like to have a lower bound – statisticial analysis? 
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Part II: Performance Issues 

SIRT: slow convergence. 

ART can converge a 
lot faster than SIRT. 

kx
k
¡

¹x
k 2

=
k¹x
k 2

SIRT (Cimmino): x Ã PC
¡
x + ! ATD¡2(b¡A x)

¢
, D = diag(kaik2)

!opt gives fastest
semi-convergence.

!
!
!opt
!opt

In these numerical experiments we compute and store A explicitly!
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Iterations k 

Re
la

tiv
e 

er
ro

r 

Test Problem: 
• Parallel-beam tomography. 
• 13 projections. 
• 3D Shepp-Logan phantom, Schabel (2006). 

kxk ¡ ¹xk2=k¹xk2

ART 

Intel Xeon E5620 
2.40 GHz (1 core) 

Performance 
1 core 
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Performance 
1 core 

Intel Xeon E5620 
2.40 GHz (1 core) 

Same number of flops! 
The difference is due to 
the cache: ART uses 
row ai twice once it is 
loaded. 

ART SIRT 
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Intel Xeon E5620 
2.40 GHz (4 cores) 

Performance 
4 cores 

ART 
SIRT 

Four cores are better 
suited for block matrix-
vector operations. 

ART 
SIRT 
1 core 4 cores 
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Conclusion so Far 

Our dilemma: 
 

ART has faster convergence than SIRT – i.e., more reduction of the 
error per iteration. 
 

SIRT can better take advantage of multi-core architecture than ART. 

How to achieve the ”best of both worlds?” → Block methods! 

• Y. Censor, Parallel application of block-iterative methods in medical imaging and 
radiation therapy, Math. Programming, 42 (1988), pp. 307–325. 

• T. Elfving and T. Nikazad, Properties of a class of block-iterative methods, Inverse 
Problems, 25 (2009), 115011. 

• M. Jiang and G. Wang, Convergence studies on iterative algorithms for image 
reconstruction, IEEE Trans. Medical Imaging, 22 (2003), pp. 569–579. 

• H. H. B. Sørensen and P. C. Hansen, Multi-core performance of block algebraic 
iterative reconstruction methods, SIAM J. Sci. Comp., 36 (2014), pp. C524–C546. 
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Part III: Block Methods 

In each iteration we can: 
• Treat all blocks sequentially or simultaneously (i.e., in parallel). 
• Treat each block by an iterative method or by a direct computation. 

We obtain several methods: 
• Sequential processing + ART on each block → classical ART 
• Sequential processing + SIRT on each block 
• Sequential processing + pseudoinverse of Aℓ 
• Parallel processing + ART on each block 
• Parallel processing + SIRT on each block → classical SIRT 
• Parallel processing + pseudoinverse of Aℓ 
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The convergence depends on the number of blocks p: 
 If p = 1, we recover SIRT 
 If p = m, we recover ART 

Block-Sequential Methods 

SART: Andersen, Kak (1984) 
Block-Iteration: Censor (1988) 

Parallelism within each block of 

Algorithm: Block-Sequential

Initialization: choose an arbitrary x0 2 Rn

Iteration: for k = 0; 1; 2; : : :

x0
k = xk¡1

x`k = P
¡

xk;`¡1 + ! AT
` M` (b` ¡ A` x`¡1

k )
¢

; ` = 1; 2; : : : ; p

xk = xpk¡1

M` = (A`A
T
` )y ) AT

` M` = Ay
`Variant by Elfving (1980): 
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The convergence depends on p: 
 If p = 1, we recover ART 

 If p = m, we recover SIRT  

Block-Parallel Methods 

Algorithm: Block-Parallel

Initialization: choose an arbitrary x0 2 Rn

Iteration: for k = 0; 1; 2; : : :

for ` = 1; : : : ; p execute in parallel

x`
k = ART-sweep(!; A`; b`; xk¡1)

xk = 1=p
Pp

`=1 x`k.

Variants: 
 Elfving (1980) – inner step:  

 CARP algorithm, Gordon & Gordon (2005):   
x`k = P

¡
x`k¡1 + ! Ay

`(b` ¡A` x`k¡)
¢

xk =
Pp

`=1 D` xellk ; D` depends on sparsity structure

String-Averaging: 
Censor, Elfving, Herman (2001) 

Parallelism over the 
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Blocks of Structurally Orthogonal Rows 

When a block has structurally orthogonal rows then ART, SIRT, 
and ”Elfving” are equivalent. It is worthwhile to utilize this! 

 PART algorithm, Gordon (2006) 

Especially in 3D problems, it is easy to find sets of rows that are 
orthogonal due to the structure of zeros/nonzeros. 

Thus, a re-ordering of the rows can produce blocks with mutually 
orthogonal rows (= the traces of rays are non-overlapping). 
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Block Sequential 

4 blocks 

• The ”building blocks” are 
SIRT iterations, suited 
for multicore. 

• The error reduction per 
iteration is close to that 
of ART. 

ART 

Intel Xeon 
E5620 

2.40 GHz 
(4 cores) 

Block 
Seq. SIRT 
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Block Parallel 

ART SIRT 
Block 
Seq. 

Block 
Par. 

Intel Xeon 
E5620 

2.40 GHz 
(4 cores) 

4 blocks 

• The ”building blocks” are 
ART iterations, not suited 
for multicore. 

• The error reduction per 
iteration is close to that 
of SIRT. 
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Multi-Core Results – 32 Cores 

4 socket AMD Opteron 6282 SE 
2.60 GHz (32 cores) With many cores, and A 

stored explicitly, PART is 
a clear winner. 

Block-Seq: block-sequential-SIRT 
Block-Par: block-parallel-ART (Censor, Elfving, Herman) 
CARP: block-parallel-ART (Gordon, Gordon) 
PART – utilizes struct. orthog. 
ART (1 thread) 

2563 voxels 
133 projections of 
  256×256 pixels 
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Conclusions so Far 

 Block algorithms achieve semi-convergence rate similar to 
that of ART, 

 with the smaller computing time of SIRT, because we can 
utilize the multicore architecture. 

 With a suitable row ordering and choice of blocks, we can 
produce blocks of structurally orthogonal rows. 

 PART has identical convergence to ART and very good scaling 
properties in practice. 
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Matrix-Free GPU Implementation 

Size of 3D solution: N×N×N.  Projections: 400×N×N. 

Domain decomposition (example with N = 512): 

One domain for each GPU. 
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GPU Results 

Multi-GPU – K80 

GPU Cluster – K40 

Computing times in seconds 

Solution: N×N×N. Projections: 400×N×N. 

2 switches 
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Final Conclusions 

 We have some theory for ART that supports the observed 
performance for noisy systems: semi-convergence. 
 

 Block-sequential methods – preferably with structurally 
orthogonal rows in each block – have very fast performance. 
 

 Block algorithms targeting GPUs (joint work with ASTRA 
group at CWI, Amsterdam) are under development. 
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