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ART = Algebraic Reconstruction Technique z
= A Classical Algorithm

Perspective:

Listen to Grateful Dead (1965-1995) — old fashioned.
Listen to Mozart (1756-91) or Bach (1685—28) — the classics!

Talk about total variation (1992) — old stuff.
Talk about ART (1937) — classical algorithm.

Our motivation: solve linear systems of equations | Ax = b | derived
from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each itera-
tion updates x via sweeps over the rows a’ of the matrix A € R™*™,
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Filtered Back Projection (FBP) versus ART
e F'BP: low memory, works really well with many data.

e But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

e Difficult to incorporate constraints (e.g., nonnegativity) in FBP
e ART and other algebraic methods are more flexible and adaptive.

Example with 3% noise and projection angles 15°,30°,...,180°.

Phantom FBP (iradon) ART w/ box constraints
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DTU
FBP versus ART — Limited Data =

Irregularly spaced angles / “missing” angles also cause difficulties for FBP

Phantom

ART w/ box constr.
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Data = sinogram
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ART History

Kaczmarz (1937): orthogonally project x on the hyperplane defined by
the ith row a! and the corresponding element b; of the right-hand side:

T
bi —a; x

lai3

Grarelone RResqantioa st A £ 978 it sttt he form “ART” and also in-
troduced a

r+P,x=x+

a; , 1=1,2,....m .

I n .

Herman, L ters wg < 2:

Initial guess

b; —alx
/L .
a:%Pc(a:—l—wk EAIE a; | , 1 =1,2,...,m .
t]12
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The Optimization Viewpoint

ART is usually considered as a solver for A x = b; but it is often more
convenient to consider it as an optimization method.

e We can introduce a relaxation parameter — or step length param-
eter — in the algorithm which controls the “size” of the updating
and, as a consequence, the convergence of the method:

— a constant w, or
— a parameter wy that changes with the iterations.

e In each updating step we can incorporate a projection Pc on a
suitably chosen convex set C that reflects prior knowledge.

e We can view it as a projected incremental gradient optimization
method, which opens for further extensions and careful conver-
gence analysis.
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Iteration-Dependent Relax. Parameter

For inconsistent systems, basic ART with a fixed relaxation parameter
w gives cyclic and non-convergent behavior.

With the diminishing relazation parameter wy = 1/vVk — 0 as k — 00
the iterates converge to a weighted least squares solution.

w=1 w=0.8 Diminishing
1.2 [~ 1.2 ] 1.2 ]
1 1 1
0.8 0.8 - 0.8
06 08 1 1.2 06 08 1 12 06 08 1 12

There is also a column version of ART which always converges to the
standard least squares solution.
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Simple Constraints

Non-negativity constraints. The set C = R’} corresponds to

ZE,LZO, i:1,2,...,n.

Box constraints. The set C = [0, 1]" corresponds to

00x; 01, i=12,....,n

Ground truth Box constraints No constraints
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A Projected Incremental Gradient Method

Consider the constrained least squares problem
min 1/2||b — A z||3 subject to reC
xr

and write the objective function as /2||b — Az||3 =Y., fi(z) with

b; —alx

(b’b B a’sz)z 1

lai 3

filw) = 1/2

las 13

Incremental gradient methods use only the gradient of a singe term
fi(x) in each iteration, leading to the ART update:

T
bi —a; x

a:%Pc(x—l—wk ai) : 1=1,2,...,m .

lai]2
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Software for ART
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SNARKO09: C++ package from NYU; 2D reconstructions.
www.dig.cs.gc.cuny.edu/software/snark09

ASTRA: MATLAB package with GPU accelleration and inter-
fact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D
and 3D reconstructions.
sourceforge.net/p/astra-toolbox/wiki/Home

Image reconstruction toolbox: MATLAB package from Univ.
of Michigan; 2D reconstructions.
web.eecs.umich.edu/ "fessler/code

AIR Tools: MATLAB package from DTU; 2D reconstructions.
www.compute.dtu.dk/“pcha/AIRtools

Xmipp: C++ package from the Spanish National Biotechnology
Centre; 3D electron microscopy.
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome
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ART Academy

ART is a rich source for research problems!

This list is quite biased towards my own work with AIR TooOLS.

e Convergence and semi-convergence. "

| This presentation:

e Block algorithms.
ART performance

e Efficient implementation.

e Choice of relaxation parameter.
e Stopping rules.

e Variations and extensions ART, e.g., for Poisson noise.

e Column version of ART.
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Convergence Issues =

The convergence of ART is quite obvious from the graph on slide 5
— but can we say more?

Difficulty: the ordering of the rows of A influence the convergence:

1.6 - 1.6
1 1 1.0 1.0 2.0
m — ol 44 3 10 11| f21
3 2 1.0 3.0 |77 |40
5 —4| 4, —4 1.0 3.7 4.7
11 {1
0.8 0.8 ——

04 06 08 1 1.2 04 06 08 1 1.2

The ordering 1-3-2—4 er preferable and almost twice as fast.
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Convergence of ART — No Noise ==

Assume that we select the rows randomly, that A is invertible, and
that all rows of A are scaled to unit 2-norm. Then the expected

value £(-) of the error norm satisfies:
Strohmer & Vershynin, 2009

k
1
(o ~al) 0 (1- =7 ) hoo -2l k=12..

nkK

where Z = A7'b and k = ||Al|2||A™}||2. Linear convergence.

When « is large we have

LY k
nk2) nK2’

After £k = n steps, corresp. to one sweep over all the rows of A, the
factor is 1 — 1/k2.

Note: there are often orderings for which the convergence is faster!
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Semi-Convergence of ART — with Noise

e

Notation: b= Ax + e, T = exact solution, e = noise.

Initial iterations: the error ||z — Z||o decreases.

Later: the error increases as rr — A~ 1b.

36
3.4

32}

lz — ]2

2.4

2.2]
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Error history for ART

10 20 30 40 50
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A few references:

Q

F. Natterer, The Mathematics of
Computerized Tomography (1986)

A. van der Sluis & H. van der Vorst,
SIRT- and CG-type methods for the
iterative solution of sparse linear
least-squares problems (1990)

M. Bertero & P. Boccacci, Inverse
Problems in Imaging (1998)

M. Kilmer & G. W. Stewart, Iterative
Regularization And Minres (1999)

H. W. Engl, M. Hanke & A. Neubauer,
Regularization of Inverse Problems
(2000)
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Part 1: Semi-Convergence for ART

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method,
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007.

Recall that T = solution to noise-free problem, and let xy and
x, denote the iterates when applying ART to b and b = A Z:

lzk = Zll2 U flze = Zella + (|76 — 2|2 -

Noise error Iteration error

Convergence theory for ART for noise-free data is well estab-
lished and ensures that the iteration error x; — & goes to zero.

Our concern here is the noise error el,j — x — T. We wish to

establish that it increases, and how fast.
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Noise Error for ART — No Projection

Successive Over-Relaxation

ART is equivalent to applying SOR to A ATy = b, x = AT'y. Splitting:
AAY =L+ D+ LY, M=(D+wL)™,
where L is strictly lower triangular and D = diag(||a;||5). Then:

T4+l = Tk + wAT M (b — Aa:k) .

We introduce: e =b—b=noise in data, Q=1—wATM A.

Then simple manipulations show that the noise error is given by
k—1
ey =z — T =Q e | +wAl'Me :wZQjATMe :
j=1

After some work (see the paper) we obtain the bound

lexll2 = kw |A" M e]s.
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Noise Error Analysis — A Tighter Bound

Further analysis (see the paper) shows that the noise error in ART is
bounded above as:

1 - (1—wo?. )F [|[ATMe
el 0 A= “mn)” JA Mellz | 52
O min O min
Omin = Smallest singular value of A.
As long as wo?, <1 we have
1—(1—-wol;,)"
( wo_mm) a \/E\/a
and thus Omin

w lATM
[eN]lp 0 ViYL Mellz |50

min

min

This also holds for projected ART provided that A and Pc satisfy
y € R(AT) = Pey € R(AY).
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Numerical Results (paralleltomo from AIR Tools)

The point of semi-convergence arises when noise error ~ iteration error.

Noise error Iteration error
- I I . ‘ I I I I - - - I I —Slym. Ka‘lzzmarz
TeSt prObIem - 1% noise 1% nOise Kaczmarz
—Sym. Kacz. box

- - -Kaczmarz box

e 200200 phantom, 10'}
e 60 projections at
- 3°,6°,9°,...,180°,
= m = 15,232,

= n = 40,000.

10|

——Sym. Kaczmarz

Kaczmarz S R
——Sym. Kacz. box -
- - -Kaczmarz box

P e -

We estimate L e T T e K 8

\/EHATM€||2 _ 107 5% noise [ _ 5% noise igiﬁi:%bgfx
Omin . !"C:/_:_'t‘?'_'_'_‘_‘_:'"_

Hence our bound is a 10/ U I

wild over-estimate but _ w”x\

it correctly tracks the | =~ _Ej%wibf Nl

Nnolise error. T R L L S|
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Conclusion so Far

i

We derived an upper bound for the noise error that supports the
observed semi-convergence of ART.

The bound includes a crazy large factor — how to get rid of it?

We would also like to have a lower bound — statisticial analysis?
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Part 11: Performance Issues

EI[{

>
=

In these numerical experiments we compute and store A explicitly!

SIRT (Cimmino): z < Pe(z + w AT D 2(b— Az)), D = diag(||a;||2)

ART vs. SIRT (Cimmino)

-
oo

lzr = Zll2/1[Z ]2
o
(@)

—  ART %= 0.01
SIRT @ — 0.01
— ART Wopt = 1.56

" T e e .

10 20 30 10 50
[teration k
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Wopt gives fastest
semi-convergence.

SIRT: slow convergence.

ART can converge a
lot faster than SIRT.
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Performance 4

1 core

lzr = Zll2/11Zl2

—

HE

Relative error

» |terations k
ART
m X n t/iter
13-128% x 643 | 0.08 s
132562 x 1283 | 0.93 s 210 G (1 e
13-5122 x 2563 | 10.8 s

Test Problem:

Parallel-beam tomography.
13 projections.
3D Shepp-Logan phantom, Schabel (2006).
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Performance
1 core
ART SIRT
m X n t/iter | t/iter
13-128%2 x 642 | 0.08s | 0.08 s
13-2562 x 1283 | 0.93s | 1.02 s
13-5122 x 2563 | 10.8 s | 14.7 s
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Intel Xeon E5620
2.40 GHz (1 core)

Same number of flops!

The difference is due to
the cache: ART uses
row a; twice once it is
loaded.
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Performance
4 cores
SIRT SIRT
ART 1 core 4 cores
m X n t/iter | t/iter | t/iter
13-1282 x 643 | 0.08s | 0.08s | 0.04 s
13-256% x 1283 [ 0.93s | 1.02s | 0.41 s
13-5122 x 2563 | 10.8 s | 14.7s | 4.12 s
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Intel Xeon E5620
2.40 GHz (4 cores)

)

Four cores are better
suited for block matrix-
vector operations.
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Conclusion so Far

Our dilemma:

ART has faster convergence than SIRT — i.e., more reduction of the
error per iteration.

SIRT can better take advantage of multi-core architecture than ART.

How to achieve the "best of both worlds?” — Block methods!

« Y. Censor, Parallel application of block-iterative methods in medical imaging and
radiation therapy, Math. Programming, 42 (1988), pp. 307—-325.

T. Elfving and T. Nikazad, Properties of a class of block-iterative methods, Inverse
Problems, 25 (2009), 115011.

e M. Jiang and G. Wang, Convergence studies on iterative algorithms for image
reconstruction, IEEE Trans. Medical Imaging, 22 (2003), pp. 569-579.

H. H. B. Sgrensen and P. C. Hansen, Multi-core performance of block algebraic
iterative reconstruction methods, SIAM J. Sci. Comp., 36 (2014), pp. C524—-C546.
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Part 111: Block Methods

Ay

2
A= . ) b= . ) AKEngXn7 €:17"'7p7

) by

In each iteration we can:
 Treat all blocks sequentially or simultaneously (i.e., in parallel).

 Treat each block by an iterative method or by a direct computation.

We obtain several methods:
ol . o bloel leasion]
 Sequential processing + SIRT on each block
« Sequential processing + pseudoinverse of A,
« Parallel processing + ART on each block
et : bloel laasiend
« Parallel processing + pseudoinverse of A,
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Block-Sequential Methods

Algorithm: Block-Sequential
e 7. X . 0 SART: Andersen, Kak (1984)
Initialization: choose an arbitrary z% € R" Block-Iteration: Censor (1988)

Iteration: for K =0,1,2,...
0

L — Tk—1
ZCi:P(xk’e_l—I—u}AgMg(bg—Agxi_l)), (=1,2,...,p
Ty =T 4

The convergence depends on the number of blocks p:

» If p =1, we recover SIRT
» If p = m, we recover ART

Parallelism within each block of m/p rows

Variant by Elfving (1980): M, = (4,AT)f = ATM, = A}
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Block-Parallel Methods

Algorithm: Block-Parallel String-Averaging:
Initialization: choose an arbitrary o € R"” Censor, Elfving, Herman (2001)

Iteration: for K =0,1,2,...
for £ =1,...,p execute in parallel
rt = ART-sweep(w, Ag, by, T_1)

Ty = 1/p Z?:l acf;.

The convergence depends on p: _
Parallelism over the p blocks
> If p =1, we recover ART

» If p = m, we recover SIRT

Variants:
» Elfving (1980) — inner step: xﬁ = P(wi_l + w AZ (be — Ay 37;;_))

» CARP algorithm, Gordon & Gordon (2005):
=Y h_; Dexh, D, depends on sparsity structure
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Blocks of Structurally Orthogonal Rows

Especially in 3D problems, it is easy to find sets of rows that are
orthogonal due to the structure of zeros/nonzeros.

Thus, a re-ordering of the rows can produce blocks with mutually
orthogonal rows (= the traces of rays are non-overlapping).

When a block has structurally orthogonal rows then ART, SIRT,
and “Elfving” are equivalent. It is worthwhile to utilize this!

> PART algorithm, Gordon (2006)
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Block Sequential
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Intel Xeon
E5620
2.40 GHz &
(4 cores)
ART SIRT
m X n t/iter | t/iter | t/iter
13-128% x 64 | 0.08s | 0.04s | 0.05 s
13-256% x 1283 | 0.93 s | 041 s | 0.48 s
13-5122 x 2563 | 10.8s | 4.12s | 4.36 s
e The ”building blocks” are
SIRT iterations, suited
for multicore.
e The error reduction per
4 blocks iteration is close to that
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of ART.
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Block Parallel

Intel Xeon
E5620

2.40 GHz
(4 cores)

_

=
=
=

i

4 blocks

Block

ART SIRT Par.
m X n t/iter | t/iter | t/iter | t/iter
13-1282 x64% | 0.08s | 0.04s | 0.05s | 0.10 s
13-2562% x 1283 | 093 s | 041 s | 0.48s | 0.37 s
13-5122 x 2562 | 10.8s | 4.12s | 4.36 s | 5.41 s
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e The ”building blocks” are
ART iterations, not suited

for multicore.

e The error reduction per
iteration is close to that
of SIRT.
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Multi-Core Results — 32 Cores

i

Multi-core: 32 cores

Method Block-Seq Block-Par CARP PART
Blocks 64 2 4 460
[terations 2 2 3 2
Time (s) 4.77 5.98 7.60 2.50

4 socket AMD Opteron 6282 SE
2.60 GHz (32 cores)

Block-Seq: block-sequential-SIRT

Block-Par: block-parallel-ART (Censor, Elfving, Herman) 2563 voxels
CARP: block-parallel-ART (Gordon, Gordon)
PART — utilizes struct. orthog.

ART (1 thread)

31/35 P. C. Hansen — ART Performance

With many cores, and A
stored explicitly, PART is
a clear winner.

133 projections of
256 x 256 pixels
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Conclusions so Far
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Block algorithms achieve semi-convergence rate similar to
that of ART,

with the smaller computing time of SIRT, because we can
utilize the multicore architecture.

With a suitable row ordering and choice of blocks, we can
produce blocks of structurally orthogonal rows.

PART has identical convergence to ART and very good scaling
properties in practice.
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Matrix-Free GPU Implementation

Size of 3D solution: NXNXN. Projections: 400 X N X N.

Domain decomposition (example with N = 512):

One domain for each GPU.

33/35

Domains:

________________________________

128

128

128

—————————————————————————————————
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Detector:

e
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GPU Results

Multi-GPU — K80

GPU Cluster — K40

2 switches

1000+
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o
Computing times In seconds
256 512 1024 2048
1GPU 333 228 181 -
2GPU 2.31 12.6 95.6 798
4GPU 208 7.68 51.1 398
8GPU 2.00 4.65 26.4 211
Solution: NXN X N. Projections: 400 XN X N.
N
3-:-Am§dahl’s law%
MIEM 2016



Final Conclusions

=

O We have some theory for ART that supports the observed
performance for noisy systems: semi-convergence.

O Block-sequential methods — preferably with structurally
orthogonal rows in each block — have very fast performance.

0O Block algorithms targeting GPUs (joint work with ASTRA
group at CWI, Amsterdam) are under development.
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