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ART = Algebraic Reconstruction Technique 
         = A Classical Algorithm 

Our motivation: solve linear systems of equations A x = b derived
from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each itera-
tion updates x via sweeps over the rows aTi of the matrix A 2 Rm£n.

Perspective:

Listen to Grateful Dead (1965{1995) ! old fashioned.
Listen to Mozart (1756{91) or Bach (1685{28) ! the classics!

Talk about total variation (1992) ! old stu®.
Talk about ART (1937) ! classical algorithm.
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Filtered Back Projection (FBP) versus ART 
² FBP: low memory, works really well with many data.

² But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

² Di±cult to incorporate constraints (e.g., nonnegativity) in FBP

² ART and other algebraic methods are more °exible and adaptive.

Example with 3% noise and projection angles 15±; 30±; : : : ; 180±.
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FBP versus ART – Limited Data 

Irregularly spaced angles / \missing" angles also cause di±culties for FBP
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Gordon, Bender, Herman (1970): coined the term \ART" and also in-
troduced a nonnegativity projection:

x Ã PRn+

µ
x +

bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

Herman, Lent, Lutz (1978): introduced relaxation parameters !k < 2:

x Ã x + !k
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Today ART includes both !k and a projection PC on a convex set:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

ART History 
Kaczmarz (1937): orthogonally project x on the hyperplane de¯ned by
the ith row aTi and the corresponding element bi of the right-hand side:

x Ã Pi x = x +
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Satisfy one equation of A x = b at a time:
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The Optimization Viewpoint 

ART is usually considered as a solver for A x = b; but it is often more
convenient to consider it as an optimization method.

² We can introduce a relaxation parameter { or step length param-
eter { in the algorithm which controls the \size" of the updating
and, as a consequence, the convergence of the method:

{ a constant !, or

{ a parameter !k that changes with the iterations.

² In each updating step we can incorporate a projection PC on a
suitably chosen convex set C that re°ects prior knowledge.

² We can view it as a projected incremental gradient optimization
method, which opens for further extensions and careful conver-
gence analysis.
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Iteration-Dependent Relax. Parameter 

For inconsistent systems, basic ART with a ¯xed relaxation parameter
! gives cyclic and non-convergent behavior.

With the diminishing relaxation parameter !k = 1=
p

k ! 0 as k !1
the iterates converge to a weighted least squares solution.

There is also a column version of ART which always converges to the
standard least squares solution.
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Simple Constraints 

Non-negativity constraints. The set C = Rn
+ corresponds to

xi ¸ 0; i = 1; 2; : : : ; n:

Box constraints. The set C = [0; 1]n corresponds to

0 · xi · 1; i = 1; 2; : : : ; n:
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A Projected Incremental Gradient Method 

Consider the constrained least squares problem

min
x

1=2kb¡A xk22 subject to x 2 C

and write the objective function as 1=2kb¡A xk22 =
Pn

i=1 fi(x) with

fi(x) = 1=2
(bi ¡ aTi x)2

kaik22
) rfi(x) = ¡bi ¡ aTi x

kaik22

Incremental gradient methods use only the gradient of a singe term
fi(x) in each iteration, leading to the ART update:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :
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Software for ART 

² SNARK09: C++ package from NYU; 2D reconstructions.
www.dig.cs.gc.cuny.edu/software/snark09

² ASTRA: MATLAB package with GPU accelleration and inter-
fact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D
and 3D reconstructions.
sourceforge.net/p/astra-toolbox/wiki/Home

² Image reconstruction toolbox: MATLAB package from Univ.
of Michigan; 2D reconstructions.
web.eecs.umich.edu/~fessler/code

² AIR Tools: MATLAB package from DTU; 2D reconstructions.
www.compute.dtu.dk/~pcha/AIRtools

² Xmipp: C++ package from the Spanish National Biotechnology
Centre; 3D electron microscopy.
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome
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ART is a rich source for research problems!

This list is quite biased towards my own work with AIR Tools.

² Convergence and semi-convergence.

² Block algorithms.

² E±cient implementation.

² Choice of relaxation parameter.

² Stopping rules.

² Variations and extensions ART, e.g., for Poisson noise.

² Column version of ART.

ART Academy 

This presentation: 
ART performance 
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Convergence Issues 

The convergence of ART is quite obvious from the graph on slide 5
{ but can we say more?

Di±culty: the ordering of the rows of A in°uence the convergence:

0

BB@

1:0 1:0
1:0 1:1
1:0 3:0
1:0 3:7

1

CCAx =

0

BB@

2:0
2:1
4:0
4:7

1

CCA

The ordering 1{3{2{4 er preferable and almost twice as fast.
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Convergence of ART – No Noise 
Assume that we select the rows randomly, that A is invertible, and
that all rows of A are scaled to unit 2-norm. Then the expected
value E(¢) of the error norm satis¯es:

E
¡
kxk ¡ ¹xk22

¢
·
µ

1¡ 1

n ·2

¶k
kx0 ¡ ¹xk22; k = 1; 2; : : :

where ¹x = A¡1b and · = kAk2 kA¡1k2. Linear convergence.

When · is large we have
µ

1¡ 1

n ·2

¶k
¼ 1¡ k

n ·2
:

After k = n steps, corresp. to one sweep over all the rows of A, the
factor is 1¡ 1=·2.

Note: there are often orderings for which the convergence is faster!

Strohmer & Vershynin, 2009 
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Semi-Convergence of ART – with Noise 

Notation: b = A ¹x + e, ¹x = exact solution, e = noise.

Initial iterations: the error kxk ¡ ¹xk2 decreases.

Later: the error increases as xk ! A¡1b.

A few references: 
 F. Natterer, The Mathematics of 

Computerized Tomography (1986) 
 A. van der Sluis & H. van der Vorst, 

SIRT- and CG-type methods for the 
iterative solution of sparse linear 
least-squares problems (1990) 

 M. Bertero & P. Boccacci, Inverse 
Problems in Imaging (1998) 

 M. Kilmer & G. W. Stewart, Iterative 
Regularization And Minres (1999) 

 H. W. Engl, M. Hanke & A. Neubauer, 
Regularization of Inverse Problems 
(2000) 

kx
k
¡

¹x
k 2
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Part I: Semi-Convergence for ART 

Recall that ¹x = solution to noise-free problem, and let xk and
¹xk denote the iterates when applying ART to b and ¹b = A ¹x:

kxk ¡ ¹xk2 · kxk ¡ ¹xkk2 + k¹xk ¡ ¹xk2 :

Noise error Iteration error 

Convergence theory for ART for noise-free data is well estab-
lished and ensures that the iteration error ¹xk¡ ¹x goes to zero.

Our concern here is the noise error eN
k = xk ¡ ¹xk. We wish to

establish that it increases, and how fast.

Elfving, H, Nikazad, Semi-convergence properties of Kaczmarzs method, 
Inverse Problems, 30 (2014), DOI: 10.1088/0266-5611/30/5/055007. 
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Noise Error for ART – No Projection 

We introduce: e = b¡ ¹b = noise in data, Q = I ¡ !ATM A.

ART is equivalent to applying SOR to A AT y = b, x = AT y. Splitting:

AAT = L + D + LT ; M = (D + !L)¡1;

where L is strictly lower triangular and D = diag(kaik22). Then:

xk+1 = xk + !ATM (b¡A xk) :

Then simple manipulations show that the noise error is given by

eN
k = xk ¡ ¹xk = Q eN

k¡1 + !ATM e = !
k¡1X

j=1

QjATM e :

After some work (see the paper) we obtain the bound

keN
k k2 ¼ k ! kATM ek2:

Successive Over-Relaxation 
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Noise Error Analysis – A Tighter Bound 

Further analysis (see the paper) shows that the noise error in ART is
bounded above as:

keN
k k2 · 1¡ (1¡ !¾2

min)k

¾min

kATM ek2
¾min

+O(¾2
min);

¾min = smallest singular value of A:

As long as !¾2
min < 1 we have

1¡ (1¡ !¾2
min)k

¾min
·
p

k
p

!

and thus

keN
k k2 ·

p
k

p
! kATMek2

¾min
+O(¾2

min):

This also holds for projected ART provided that A and PC satisfy

y 2 R(AT ) ) PCy 2 R(AT ):
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Numerical Results (paralleltomo from AIR Tools) 

Test problem: 

• 200×200 phantom, 
• 60 projections at 
• 3°,6°,9°,…,180°, 
 m = 15,232, 
 n = 40,000. 

We estimate
p

!kATMek2
¾min

¼ 107:

Hence our bound is a
wild over-estimate but
it correctly tracks the
noise error.

The point of semi-convergence arises when noise error ≈ iteration error. 

1% noise 

5% noise 

1% noise 

5% noise 
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Conclusion so Far 

We derived an upper bound for the noise error that supports the 
observed semi-convergence of ART. 
 
The bound includes a crazy large factor – how to get rid of it? 
 
We would also like to have a lower bound – statisticial analysis? 
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Part II: Performance Issues 

SIRT: slow convergence. 

ART can converge a 
lot faster than SIRT. 

kx
k
¡

¹x
k 2

=
k¹x
k 2

SIRT (Cimmino): x Ã PC
¡
x + ! ATD¡2(b¡A x)

¢
, D = diag(kaik2)

!opt gives fastest
semi-convergence.

!
!
!opt
!opt

In these numerical experiments we compute and store A explicitly!



MIEM 2016 21/35 P. C. Hansen – ART Performance 

Iterations k 

Re
la

tiv
e 

er
ro

r 

Test Problem: 
• Parallel-beam tomography. 
• 13 projections. 
• 3D Shepp-Logan phantom, Schabel (2006). 

kxk ¡ ¹xk2=k¹xk2

ART 

Intel Xeon E5620 
2.40 GHz (1 core) 

Performance 
1 core 



MIEM 2016 22/35 P. C. Hansen – ART Performance 

Performance 
1 core 

Intel Xeon E5620 
2.40 GHz (1 core) 

Same number of flops! 
The difference is due to 
the cache: ART uses 
row ai twice once it is 
loaded. 

ART SIRT 
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Intel Xeon E5620 
2.40 GHz (4 cores) 

Performance 
4 cores 

ART 
SIRT 

Four cores are better 
suited for block matrix-
vector operations. 

ART 
SIRT 
1 core 4 cores 
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Conclusion so Far 

Our dilemma: 
 

ART has faster convergence than SIRT – i.e., more reduction of the 
error per iteration. 
 

SIRT can better take advantage of multi-core architecture than ART. 

How to achieve the ”best of both worlds?” → Block methods! 

• Y. Censor, Parallel application of block-iterative methods in medical imaging and 
radiation therapy, Math. Programming, 42 (1988), pp. 307–325. 

• T. Elfving and T. Nikazad, Properties of a class of block-iterative methods, Inverse 
Problems, 25 (2009), 115011. 

• M. Jiang and G. Wang, Convergence studies on iterative algorithms for image 
reconstruction, IEEE Trans. Medical Imaging, 22 (2003), pp. 569–579. 

• H. H. B. Sørensen and P. C. Hansen, Multi-core performance of block algebraic 
iterative reconstruction methods, SIAM J. Sci. Comp., 36 (2014), pp. C524–C546. 
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Part III: Block Methods 

In each iteration we can: 
• Treat all blocks sequentially or simultaneously (i.e., in parallel). 
• Treat each block by an iterative method or by a direct computation. 

We obtain several methods: 
• Sequential processing + ART on each block → classical ART 
• Sequential processing + SIRT on each block 
• Sequential processing + pseudoinverse of Aℓ 
• Parallel processing + ART on each block 
• Parallel processing + SIRT on each block → classical SIRT 
• Parallel processing + pseudoinverse of Aℓ 
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The convergence depends on the number of blocks p: 
 If p = 1, we recover SIRT 
 If p = m, we recover ART 

Block-Sequential Methods 

SART: Andersen, Kak (1984) 
Block-Iteration: Censor (1988) 

Parallelism within each block of 

Algorithm: Block-Sequential

Initialization: choose an arbitrary x0 2 Rn

Iteration: for k = 0; 1; 2; : : :

x0
k = xk¡1

x`k = P
¡

xk;`¡1 + ! AT
` M` (b` ¡ A` x`¡1

k )
¢

; ` = 1; 2; : : : ; p

xk = xpk¡1

M` = (A`A
T
` )y ) AT

` M` = Ay
`Variant by Elfving (1980): 
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The convergence depends on p: 
 If p = 1, we recover ART 

 If p = m, we recover SIRT  

Block-Parallel Methods 

Algorithm: Block-Parallel

Initialization: choose an arbitrary x0 2 Rn

Iteration: for k = 0; 1; 2; : : :

for ` = 1; : : : ; p execute in parallel

x`
k = ART-sweep(!; A`; b`; xk¡1)

xk = 1=p
Pp

`=1 x`k.

Variants: 
 Elfving (1980) – inner step:  

 CARP algorithm, Gordon & Gordon (2005):   
x`k = P

¡
x`k¡1 + ! Ay

`(b` ¡A` x`k¡)
¢

xk =
Pp

`=1 D` xellk ; D` depends on sparsity structure

String-Averaging: 
Censor, Elfving, Herman (2001) 

Parallelism over the 
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Blocks of Structurally Orthogonal Rows 

When a block has structurally orthogonal rows then ART, SIRT, 
and ”Elfving” are equivalent. It is worthwhile to utilize this! 

 PART algorithm, Gordon (2006) 

Especially in 3D problems, it is easy to find sets of rows that are 
orthogonal due to the structure of zeros/nonzeros. 

Thus, a re-ordering of the rows can produce blocks with mutually 
orthogonal rows (= the traces of rays are non-overlapping). 



MIEM 2016 29/35 P. C. Hansen – ART Performance 

Block Sequential 

4 blocks 

• The ”building blocks” are 
SIRT iterations, suited 
for multicore. 

• The error reduction per 
iteration is close to that 
of ART. 

ART 

Intel Xeon 
E5620 

2.40 GHz 
(4 cores) 

Block 
Seq. SIRT 
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Block Parallel 

ART SIRT 
Block 
Seq. 

Block 
Par. 

Intel Xeon 
E5620 

2.40 GHz 
(4 cores) 

4 blocks 

• The ”building blocks” are 
ART iterations, not suited 
for multicore. 

• The error reduction per 
iteration is close to that 
of SIRT. 
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Multi-Core Results – 32 Cores 

4 socket AMD Opteron 6282 SE 
2.60 GHz (32 cores) With many cores, and A 

stored explicitly, PART is 
a clear winner. 

Block-Seq: block-sequential-SIRT 
Block-Par: block-parallel-ART (Censor, Elfving, Herman) 
CARP: block-parallel-ART (Gordon, Gordon) 
PART – utilizes struct. orthog. 
ART (1 thread) 

2563 voxels 
133 projections of 
  256×256 pixels 
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Conclusions so Far 

 Block algorithms achieve semi-convergence rate similar to 
that of ART, 

 with the smaller computing time of SIRT, because we can 
utilize the multicore architecture. 

 With a suitable row ordering and choice of blocks, we can 
produce blocks of structurally orthogonal rows. 

 PART has identical convergence to ART and very good scaling 
properties in practice. 
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Matrix-Free GPU Implementation 

Size of 3D solution: N×N×N.  Projections: 400×N×N. 

Domain decomposition (example with N = 512): 

One domain for each GPU. 
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GPU Results 

Multi-GPU – K80 

GPU Cluster – K40 

Computing times in seconds 

Solution: N×N×N. Projections: 400×N×N. 

2 switches 
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Final Conclusions 

 We have some theory for ART that supports the observed 
performance for noisy systems: semi-convergence. 
 

 Block-sequential methods – preferably with structurally 
orthogonal rows in each block – have very fast performance. 
 

 Block algorithms targeting GPUs (joint work with ASTRA 
group at CWI, Amsterdam) are under development. 
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