Edge-Preserving Computed Tomography (CT) with Uncertain View Angles

Per Christian Hansen

DTU Compute, Technical University of Denmark

Joint work with
Johnathan M. Bardsley - Univ. of Montana, USA
Yiqiu Dong \& Nicolai A. B. Riis - DTU, Denmark
Felipe Uribe - LUT Univ., Finland
F. Uribe, J.M. Bardsley, Y. Dong, P.C. Hansen, \& N.A.B. Riis, A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain angles, SIAM/ASA J. UQ, 10 (2022), pp. 1293-1320, doi $10.1137 / 21 \mathrm{M} 1412268$.
sites.dtu.dk/cuqi - cuqi-dtu.github.io/CUQIpy

CUQI

VILLUM FONDEN

*

This work is part of the project Computational Uncertainty Quantification for Inverse problems, which is funded by The Villum Foundation.

- A collaborative effort to develop a mathematical, statistical and computational framework for UQ.
- We released the first version of our software package:

CUQlpy

- Some applications
- X-ray computed tomography: industrial inspection, materials science.
- Electrical impedance tomography (EIT) and hybrid EIT.
- Inverse problems in tokamak plasma physics.
- Dynamical models in drug kinetics.

Overview of This Talk

Prelude

- X-ray CT model
- Uncertain view angles

Fugue

- The joint problem of image reconstruction and view angle estimation
- A Bayesian framework
- A hybrid Gibbs sampler
- Some implementation details
- Numerical results

Coda

- Conclusions

Applications of X-Ray Computed Tomography (CT)

Lab scanner

Synchrotron

Medical scanner

Industrial inspection

The Principles of X-Ray CT

The Principle

Send X-rays through the object at different view angles, and measure their attenuation.

Inverse problem: reconstruct an image of the object from the data.

Lambert-Beer law \rightarrow attenuation of an X-ray through the object f is a line integral:

$$
\begin{aligned}
b_{i} & =\int_{\text {ray }_{i}} f(x, y) d \ell \\
f & =\text { attenuation coef. }
\end{aligned}
$$

A discrete version:

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

$\boldsymbol{A} \sim$ measurement geometry,
$\boldsymbol{x} \sim$ reconstruction, $\quad \boldsymbol{b} \sim$ data.

$$
\begin{array}{|c|c}
\begin{array}{|l|l}
x_{1} & x_{3} \\
\hline \mathrm{x}_{2} & x_{4}
\end{array} \Rightarrow 3 \\
\hdashline & 7 \\
4 & 6
\end{array} \quad\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
3 \\
7 \\
4 \\
6
\end{array}\right)
$$

Uncertain View Angles

Each position of the X-ray source is defined by a corresponding view angle θ_{i}.

The true view angles $\theta_{i}^{\text {tru }}$ may differ from the assumed nominal view angles $\theta_{i}^{\text {nom }}$.

- The model for the measured data is $\boldsymbol{b}=\boldsymbol{A}\left(\theta^{\text {tru }}\right) \boldsymbol{x}+\boldsymbol{e}$, where \boldsymbol{e} is the measurement noise, \boldsymbol{x} represents the image, and $\boldsymbol{A}\left(\theta^{\text {tru }}\right)$ is the forward model defined for the unknown true angles.
- A "naive" (and potentially inferior) reconstruction uses the matrix $\boldsymbol{A}\left(\boldsymbol{\theta}^{\text {nom }}\right)$ based on the nominal angles.

The Need for Handling Uncertain Angles

A simple example generated with the AIR Tools II MATLAB package:

```
N = 200;
theta_nom = 3:3:180;
theta_true = theta_nom + 0.1*randn(size(theta_nom));
A_nom = paralleltomo(N,theta_nom );
A_true = paralleltomo(N,theta_true);
X = phantomgallery('threephases',N); x = X(:); b = A_true*x;
options.lbound = 0; options.ubound = 1;
x_nom = kaczmarz(A_nom, b,200,[],options);
x_true = kaczmarz(A_true,b,200,[],options);
```

Reconstr. with true angles

Reconstr. with nominal angles

Dealing with Uncertain Angles, No UQ (references in our papers)

Two-stage methods - first estimate the angles ("angle recovery," "alignment reconstitution"), then reconstruct with potential error propagation.

- Cross-correlation of projections of simple objects/phantoms, e.g., with few particles or spheres.
- Obtain information about the object's apparent movement through the use of markers.
- Use methods from computer vision.

Joint methods - estimate the true angles and the reconstruction via a single non-convex optimization problem.

- Solve the joint problem via an alternating variable-projection scheme.
- Solve the joint optimization problem in a Bayesian setting.
- Use a Bayesian approach based on a mixture framework.

Our method uses a Bayesian approach that solves the joint problem and provides $U Q$ for both the reconstruction and the view angles.

Formulation of the Joint Problem

Notation:

- The vector \boldsymbol{b} holds the measured data.
- The vectors \boldsymbol{x} and $\boldsymbol{\theta}$ hold the image pixels and the view angles.
- The matrix $\boldsymbol{A}(\boldsymbol{\theta})$ represents the CT forward model for view angles $\boldsymbol{\theta}$.

The inverse problem is linear in \boldsymbol{x} and nonlinar in $\boldsymbol{\theta}$:

$$
\text { find }(\boldsymbol{x}, \boldsymbol{\theta}) \text { such that } \boldsymbol{b}=\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}+\boldsymbol{e}
$$

Here \boldsymbol{e} represents additive measurement noise. The noise is log-Poisson; we approximate it with a Gaussian

$$
\boldsymbol{e} \sim \mathcal{N}(0, \lambda \boldsymbol{I}) .
$$

We want to be able to reconstruct edges in the image, since edges often carry the most important information, e.g., about defects or tumors.

The Bayesian Inverse Problem

We formulate a Bayesian inverse problem with a likelihood that involves both \boldsymbol{x} and $\boldsymbol{\theta}$:

$$
\pi_{\mathrm{pos}}(\boldsymbol{x}, \boldsymbol{\theta}) \propto \pi_{\mathrm{lik}}(\boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{\theta}) \pi_{\mathrm{pri}}(\boldsymbol{x}) \pi_{\mathrm{pri}}(\boldsymbol{\theta})
$$

- As mentioned, $\pi_{\text {lik }}(\boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{\theta})$ is a Gaussian.
- For $\pi_{\text {pri }}(\boldsymbol{x})$ we use a Laplace distribution of the differences of neighbour pixels. This enables the desired sharp edges in the image; it has connections to total variation (TV) regularization.
- For $\pi_{\mathrm{pri}}(\boldsymbol{\theta})$ we use the von Mises distribution, i.e., a periodic normal distribution $\propto \exp (\kappa \cos (x))$.

Hyperparameters ("uninformative"):

- λ in the Gaussian likelihood,

- δ in the Laplace-difference prior for \boldsymbol{x},
- κ in the von Mises prior for $\boldsymbol{\theta}$,
- exponential distributions $\pi_{\text {hyp }}(\cdot)=\beta \exp (-\beta \cdot)$ with $\beta=10^{-4}$.

The Posterior

$$
\begin{aligned}
& \pi_{\mathrm{pos}}(\boldsymbol{x}, \boldsymbol{\theta}, \lambda, \delta, \kappa) \propto \pi_{\mathrm{lik}}(\boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{\theta}, \lambda) \times \pi_{\mathrm{pri}}(\boldsymbol{x} \mid \delta) \times \pi_{\mathrm{pri}}(\boldsymbol{\theta} \mid \kappa) \\
& \times \pi_{\mathrm{hyp}}(\lambda) \times \pi_{\mathrm{hyp}}(\delta) \times \pi_{\mathrm{hyp}}(\kappa) \\
& \hline
\end{aligned}
$$

with $\boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{\theta} \in \mathbb{R}^{p}$ and

$$
\begin{aligned}
& \pi_{\mathrm{lik}}(\boldsymbol{b} \mid \boldsymbol{x}, \boldsymbol{\theta}, \lambda)=\left(\frac{\lambda}{2 \pi}\right)^{m / 2} \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}\right) \quad \text { (Gaussian) } \\
& \pi_{\mathrm{pri}}(\boldsymbol{x} \mid \delta)=\left(\frac{\delta}{2}\right)^{n} \exp \left(-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)\right) \\
& \quad \text { ("Laplace difference") } \\
& \pi_{\mathrm{pri}}(\boldsymbol{\theta} \mid \kappa)=\left(\frac{1}{2 \pi I_{0}(\kappa)}\right)^{p} \exp \left(\kappa \sum_{i=1}^{p} \cos \left(\theta_{i}-\theta_{i}^{\text {nom }}\right)\right) \quad \text { (von Mises) }
\end{aligned}
$$

in which $\boldsymbol{I}=$ identity matrix and $\boldsymbol{D}=\operatorname{bidiag}(-1,1)$.

Conditional Densities for the Posterior

$$
\begin{aligned}
& \pi_{\mathrm{pos}}(\boldsymbol{x}, \boldsymbol{\theta}, \lambda, \delta, \kappa)=\lambda^{m / 2} \delta^{n} I_{0}(\kappa)^{-p} \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}\right. \\
& \left.\quad-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)+\kappa \sum_{i=1}^{p} \cos \left(\theta_{i}-\theta_{i}^{\text {nom }}\right)-\beta \lambda-\beta \delta-\beta \kappa\right)
\end{aligned}
$$

Conditional densities:

$$
\pi_{1}(\boldsymbol{x} \mid \boldsymbol{\theta}, \lambda, \delta) \propto \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)\right)
$$

$$
\pi_{2}(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa) \propto \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\kappa \sum_{i=1}^{p} \cos \left(\theta_{i}-\theta_{i}^{\text {nom }}\right)\right)
$$

$$
\pi_{3}(\lambda \mid \boldsymbol{x}, \boldsymbol{\theta}) \propto \lambda^{m / 2} \exp \left(-\lambda\left(\frac{1}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\beta\right)\right)
$$

$$
\pi_{4}(\delta \mid \boldsymbol{x}) \propto \delta^{n} \exp \left(-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}+\beta\right)\right)
$$

$$
\pi_{5}(\kappa \mid \boldsymbol{\theta}) \propto I_{0}(\kappa)^{-p} \exp \left(-\kappa\left(\sum_{i=1}^{p} \cos \left(\theta_{i}-\theta_{i}^{\text {nom }}\right)+\beta\right)\right)
$$

Hybrid Gibbs Sampler \rightarrow Different Samplers for Each Conditional

Initial states $\boldsymbol{x}^{(0)}, \boldsymbol{\theta}^{(0)}, \lambda^{(0)}, \delta^{(0)}, \kappa^{(0)}$
For $j=1,2, \ldots, N_{\text {samp }}$
Sample image pixels

$$
\boldsymbol{x}^{(j)} \sim \pi_{1}\left(\cdot \mid \boldsymbol{\theta}^{(j-1)}, \lambda^{(j-1)}, \delta^{(j-1)}\right)
$$

Sample view angles

$$
\boldsymbol{\theta}^{(j)} \sim \pi_{2}\left(\cdot \mid \boldsymbol{x}^{(j)}, \lambda^{(j-1)}, \kappa^{(j-1)}\right)
$$

Sample hyperparameters

$$
\begin{aligned}
& \lambda^{(j)} \sim \pi_{3}\left(\cdot \mid \boldsymbol{x}^{(j)}, \boldsymbol{\theta}^{(j)}\right) \\
& \delta^{(j)} \sim \pi_{4}\left(\cdot \mid \boldsymbol{x}^{(j)}\right) \\
& \kappa^{(j)} \sim \pi_{5}\left(\cdot \mid \boldsymbol{\theta}^{(j)}\right)
\end{aligned}
$$

End
Our implementation draws on several existing methods - our contribution is to bring them together and make them work.

The Main Challenge: How to Work With π_{1}

$\pi_{1}(\boldsymbol{x}, \boldsymbol{\theta}, \lambda, \delta, \kappa) \propto \exp \left(-\frac{\lambda}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}-\delta\left(\|(\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x}\|_{1}+\|(\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x}\|_{1}\right)\right)$
Linear and large-scale in \boldsymbol{x}

- Use an iterative solver: CGLS (conjugate gradients for least squares problems)

Non-differentiable due to $\|\cdot\|_{1}$

- Introduce the usual smoothing (known from, say, TV)

Nonlinear in $\boldsymbol{\theta}$.

- Wikipedia: Laplace's approximation fits an un-normalised Gaussian approximation to a (twice differentiable) un-normalised target density.

More About Laplace's Approximation

Approximate $\pi_{1}(\boldsymbol{x})$ by a Gaussian density $\pi_{\mathrm{G}}(\boldsymbol{x})=\mathcal{N}\left(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{H}^{-1}\right)$ with $\boldsymbol{\mu}=$ MAP estimator of π_{1} and $\boldsymbol{H}=$ approximate Hessian of $-\log \pi_{1}$:

$$
\begin{aligned}
& \boldsymbol{\mu}(\boldsymbol{x})=\lambda \boldsymbol{H}^{-1}(\boldsymbol{x}) \boldsymbol{A}(\boldsymbol{\theta})^{\top} \boldsymbol{b} \\
& \boldsymbol{H}(\boldsymbol{x})=\lambda \boldsymbol{A}(\boldsymbol{\theta})^{\top} \boldsymbol{A}(\boldsymbol{\theta})+\delta\left((\boldsymbol{I} \otimes \boldsymbol{D})^{\top} \boldsymbol{W}_{1}(\boldsymbol{x})(\boldsymbol{I} \otimes \boldsymbol{D})+\right. \\
&\left.\qquad(\boldsymbol{D} \otimes \boldsymbol{I})^{\top} \boldsymbol{W}_{2}(\boldsymbol{x})(\boldsymbol{D} \otimes \boldsymbol{I})\right) \\
& \boldsymbol{W}_{1}(\boldsymbol{x})=\operatorname{diag}\left[\left\{((\boldsymbol{I} \otimes \boldsymbol{D}) \boldsymbol{x})^{2}+\varepsilon^{2}\right\}^{-1 / 2}\right] \\
& \boldsymbol{W}_{2}(\boldsymbol{x})=\operatorname{diag}\left[\left\{((\boldsymbol{D} \otimes \boldsymbol{I}) \boldsymbol{x})^{2}+\varepsilon^{2}\right\}^{-1 / 2}\right]
\end{aligned}
$$

For details see, e.g., (Bardsley, 2018, §4.3.1).
Much easier to work with - but the Gaussian approximation $\pi_{\mathrm{G}}(\boldsymbol{x})$ misses the heavy tails of $\pi_{1}(\boldsymbol{x})$ and hence our uncertainties are imprecise.
We now develop a so-called horseshoe prior (Uribe, Dong, H, 2023), also based on a Gaussian approximation, that can better handle heavy tails.

How To Sample From π_{G} ?

In principle we can use Metropolis-Hastings to sample from π_{G}; but we only produce one proposal which is always accepted. This is conceptually identical to the unadjusted Langevin algorithm (ULA).
We thus obtain $\boldsymbol{x}^{(j)}$ by solving the following linear least squares problem with a random perturbation of the right-hand side:

$$
\min _{\boldsymbol{x}}\left\|\left[\begin{array}{c}
\sqrt{\lambda} \boldsymbol{A}\left(\boldsymbol{\theta}^{(j-1)}\right) \\
\sqrt{\delta} \boldsymbol{W}_{1}\left(\boldsymbol{x}^{(j-1)}\right)^{1 / 2}(\boldsymbol{I} \otimes \boldsymbol{D}) \\
\sqrt{\delta} \boldsymbol{W}_{2}\left(\boldsymbol{x}^{j-1)}\right)^{1 / 2}(\boldsymbol{D} \otimes \boldsymbol{I})
\end{array}\right] \boldsymbol{x}-\left[\begin{array}{c}
\sqrt{\lambda} \boldsymbol{b}+\boldsymbol{\xi}_{0} \\
\boldsymbol{\xi}_{1} \\
\boldsymbol{\xi}_{2}
\end{array}\right]\right\|_{2}
$$

where $\boldsymbol{\xi}_{i} \sim \mathcal{N}(0, \boldsymbol{I})$ for $i=0,1,2$.
This done by means of the CGLS iterative method.

- Each iteration involves one matrix-vector multiplication with $\boldsymbol{A}\left(\boldsymbol{\theta}^{(j-1)}\right)$ and one with its transpose.
- We found experimentally that 10 iterations are sufficient.

How to Sample π_{2} ?

We introduce a partitioning of the matrix and the rhs, where each block $\boldsymbol{A}\left(\theta_{i}\right)$ and $\boldsymbol{b}\left(\theta_{i}\right)$ correspond to the i th view angle.
We use a single-component Metropolis algorithm with componentwise updates applied to

$$
\boldsymbol{A}=\left[\begin{array}{c}
\boldsymbol{A}\left(\theta_{1}\right) \\
\boldsymbol{A}\left(\theta_{2}\right) \\
\vdots \\
\boldsymbol{A}\left(\theta_{p}\right)
\end{array}\right] \boldsymbol{b}=\left[\begin{array}{c}
\boldsymbol{b}\left(\theta_{1}\right) \\
\boldsymbol{b}\left(\theta_{2}\right) \\
\vdots \\
\boldsymbol{b}\left(\theta_{p}\right)
\end{array}\right]
$$

$$
\pi_{2}(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa) \propto \prod_{i=1}^{p} \exp \left(-\frac{\lambda}{2}\left\|\boldsymbol{A}\left(\theta_{i}\right) \boldsymbol{x}-\boldsymbol{b}\left(\theta_{i}\right)\right\|_{2}^{2}+\kappa \cos \left(\theta_{i}-\theta_{i}^{\text {nom }}\right)\right)
$$

Given $\boldsymbol{\theta}^{[0]}=\boldsymbol{\theta}^{(j-1)}$ from the Gibbs sampler, we perform 20 burn-in cycles:

$$
\begin{aligned}
\theta_{1}^{[k+])} \sim & \pi_{2}\left(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa,\left[\theta_{2}^{[k]}, \theta_{3}^{[k]}, \ldots, \theta_{p}^{[k]}\right]\right) \\
\theta_{2}^{[k+1]} \sim & \sim \pi_{2}\left(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa,\left[\theta_{1}^{[k+1]}, \theta_{3}^{[k]}, \ldots, \theta_{p}^{[k]}\right]\right), \\
& \vdots \\
\theta_{p}^{[k+1]} \sim & \pi_{2}\left(\boldsymbol{\theta} \mid \boldsymbol{x}, \lambda, \kappa,\left[\theta_{1}^{[k+1]}, \theta_{2}^{[k+1]}, \ldots, \theta_{p-1}^{[k+])}\right]\right) .
\end{aligned}
$$

This produces the next sample $\boldsymbol{\theta}^{(j)}=\boldsymbol{\theta}^{[20]}$ in our hybrid Gibbs sampler.

Illustration of Working with π_{2}

Left: von Mises prior with the respective component densities.
Right: zoom-in on selected component densities; the true angles are shown as solid green lines.

In this example, the values of \boldsymbol{x}, λ and κ are assumed known.

Sampling the Hyperpriors

\triangleright The conditional density π_{3} can be written in closed form

$$
\pi_{3}(\lambda \mid \boldsymbol{x}, \boldsymbol{\theta})=\frac{\omega^{\tau}}{\Gamma(\tau)} \lambda^{\tau-1} \exp (-\omega \lambda)
$$

with $\tau=\frac{m}{2}+1$ and $\omega=\frac{1}{2}\|\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\beta$
\triangleright We approximate the conditional density π_{4} by a distribution written in closed form

$$
\tilde{\pi}_{4}(\delta \mid \boldsymbol{x}) \approx \frac{\varpi^{\nu}}{\Gamma(\nu)} \delta^{\nu-1} \exp (-\varpi \delta)
$$

with $\nu=n+1$ and
$\varpi=\boldsymbol{x}^{\top}\left((\boldsymbol{I} \otimes \boldsymbol{D})^{\top} \boldsymbol{W}_{1}(\boldsymbol{x})(\boldsymbol{I} \otimes \boldsymbol{D})+(\boldsymbol{D} \otimes \boldsymbol{I})^{\top} \boldsymbol{W}_{2}(\boldsymbol{x})(\boldsymbol{D} \otimes \boldsymbol{I})\right) \boldsymbol{x}+\beta$.
\triangleright Sampling of the conditional density $\pi_{5}(\kappa \mid \theta)$ is done by a standard random-walk Metropolis algorithm.

Numerical Experiments

Software: our Python package CUQIpy + ASTRA package for CT models.
We compare with the CT-VAE method (Riis et al., 2020) that computes the MAP estimate (no UQ) through

$$
\min _{\boldsymbol{x}} \frac{1}{2}\left\|\boldsymbol{C}_{\nu}\left(\boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{x}-\boldsymbol{b}+\boldsymbol{\mu}_{\boldsymbol{\nu}}\right)\right\|_{2}^{2}+\gamma \operatorname{TV}(\boldsymbol{x})
$$

where $\operatorname{TV}(\boldsymbol{x})$ denotes Total Variation regularization and $\gamma=$ regularization parameter. In this model, $\boldsymbol{\nu}=$ measurement noise + model discrepancy, with mean $\boldsymbol{\mu}_{\nu}$ and covariance matrix $\left(\boldsymbol{C}_{\nu}^{\top} \boldsymbol{C}_{\nu}\right)^{-1}$.

We generate noisy data

$$
\boldsymbol{b}=\boldsymbol{A}\left(\boldsymbol{\theta}^{\text {tru }}\right) \boldsymbol{x}^{\text {tru }}+\boldsymbol{e}, \quad \boldsymbol{e} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}\right)
$$

with noise level $\sigma=0.01\left\|\boldsymbol{A}\left(\boldsymbol{\theta}^{\mathrm{tru}}\right) \boldsymbol{x}^{\mathrm{tru}}\right\|_{2} / \sqrt{m}$.

The Fanbeam CT Problem

Image size $150 \times 150 \rightarrow n=22500$ pixels. Detector with 225 pixels and $p=90$ view angles $0^{\circ}, 4^{\circ}, 8^{\circ}, \ldots, 356^{\circ} \rightarrow m=20250$ measurements.
Phantoms "grains" and "ppower" from AIR Tools II.

Estimated View Angles

Left: posterior mean and true view angles θ_{i}.
Right: zoom-in on component densities for selected θ_{i}. True angles are shown as solid green lines, posterior mean angles as dashed blue lines, and the angles estimated by the CT-VAE method are shown as dotted red lines.

Estimated Reconstruction of Phantom with 50 Grains

Left: MAP estimate from the CT-VAE method.
Middle: posterior mean and standard deviation from our method.
Right: ditto from hybrid Gibbs sampler with fixed nominal angles.

Estimated Reconstruction of Phantom with 100 Grains

Left: MAP estimate from the CT-VAE method.
Middle: posterior mean and standard deviation from our method.
Right: ditto from hybrid Gibbs sampler with fixed nominal angles.

Estimated Reconstruction of Sparse Phantom

Left: MAP estimate from the CT-VAE method.
Middle: posterior mean and standard deviation from our method.
Right: ditto from hybrid Gibbs sampler with fixed nominal angles.

Posterior Hyperparameters - Sparse Phantom

		mean
	std	
λ	1.88	0.02
δ	41.81	0.24
κ	1381.4	280.5

Samples and estimated densities of λ (noise parameter), δ (Laplace-diff. parameter), and κ (von Mises parameter).

Coda - Conclusions

In short

- In many CT problems we need to correct for uncertain view angles.
- The Bayesian framework allows us to solve the joint problem...
- and perform UQ on both the reconstruction and the angles.
- Our numerical results confirm the applicability of our method.

Challenges

- Deriving an efficient sampler is challenging:
- high dimension problem for the image \boldsymbol{x},
- nonlinear problem for the view angles $\boldsymbol{\theta}$.
- The Gaussian approximation misses the heavy tails of the posterior; our new horseshoe prior seeks to circumvent with this issue.
- A framework for other large-scale inverse problems with uncertain parameters - what are good preconditioners for CGLS?
- How to incorporate the framework in our software package CUQIpy?

