
Edge-Preserving Computed Tomography (CT)
with Uncertain View Angles

Per Christian Hansen

DTU Compute, Technical University of Denmark

Joint work with

Johnathan M. Bardsley � Univ. of Montana, USA

Yiqiu Dong & Nicolai A. B. Riis � DTU, Denmark

Felipe Uribe � LUT Univ., Finland

F. Uribe, J.M. Bardsley, Y. Dong, P.C. Hansen, & N.A.B. Riis, A hybrid Gibbs

sampler for edge-preserving tomographic reconstruction with uncertain angles,

SIAM/ASA J. UQ, 10 (2022), pp. 1293�1320, doi 10.1137/21M1412268.

MATH4UQ Seminar, Feb. 7, 2023 CT with Uncertain View Angles 1 / 27

https://epubs.siam.org/doi/10.1137/21M1412268


sites.dtu.dk/cuqi � cuqi-dtu.github.io/CUQIpy

This work is part of the project Computational Uncertainty Quanti�cation
for Inverse problems, which is funded by The Villum Foundation.

A collaborative e�ort to develop a mathematical, statistical and
computational framework for UQ.

We released the �rst version of our software package:

Some applications

X-ray computed tomography: industrial inspection, materials science.
Electrical impedance tomography (EIT) and hybrid EIT.
Inverse problems in tokamak plasma physics.
Dynamical models in drug kinetics.
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Applications of X-Ray Computed Tomography (CT)

Lab scanner Medical scanner

Synchrotron Industrial inspection
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The Principles of X-Ray CT

The Principle

Send X-rays through the object at
di�erent view angles, and measure
their attenuation.

Inverse problem: reconstruct an
image of the object from the data.

Lambert�Beer law → attenuation
of an X-ray through the object f
is a line integral:

bi =

∫
rayi

f (x , y) dℓ ,

f = attenuation coef.

A discrete version:

Ax = b

A ∼ measurement geometry,
x ∼ reconstruction, b ∼ data.
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Uncertain View Angles

Each position of the X-ray
source is de�ned by a cor-
responding view angle θi .

The true view angles θtrui

may di�er from the as-
sumed nominal view an-

gles θnomi .

The model for the measured data is b = A(θtru) x + e, where e is the
measurement noise, x represents the image, and A(θtru) is the forward
model de�ned for the unknown true angles.

A �naive� (and potentially inferior) reconstruction uses the matrix
A(θnom) based on the nominal angles.
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The Need for Handling Uncertain Angles

A simple example generated with the AIR Tools II MATLAB package:

N = 200;

theta_nom = 3:3:180;

theta_true = theta_nom + 0.1*randn(size(theta_nom));

A_nom = paralleltomo(N,theta_nom );

A_true = paralleltomo(N,theta_true);

X = phantomgallery('threephases',N); x = X(:); b = A_true*x;

options.lbound = 0; options.ubound = 1;

x_nom = kaczmarz(A_nom, b,200,[],options);

x_true = kaczmarz(A_true,b,200,[],options);
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Dealing with Uncertain Angles, No UQ (references in our papers)

Two-stage methods � �rst estimate the angles (�angle recovery,� �align-
ment reconstitution�), then reconstruct with potential error propagation.

Cross-correlation of projections of simple objects/phantoms, e.g., with
few particles or spheres.

Obtain information about the object's apparent movement through
the use of markers.

Use methods from computer vision.

Joint methods � estimate the true angles and the reconstruction via a
single non-convex optimization problem.

Solve the joint problem via an alternating variable-projection scheme.

Solve the joint optimization problem in a Bayesian setting.

Use a Bayesian approach based on a mixture framework.

Our method uses a Bayesian approach that solves the joint problem and
provides UQ for both the reconstruction and the view angles.
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Formulation of the Joint Problem

Notation:

The vector b holds the measured data.

The vectors x and θ hold the image pixels and the view angles.

The matrix A(θ) represents the CT forward model for view angles θ.

The inverse problem is linear in x and nonlinar in θ:

�nd (x ,θ) such that b = A(θ) x + e

Here e represents additive measurement noise. The noise is log-Poisson; we
approximate it with a Gaussian

e ∼ N (0, λI ) .

We want to be able to reconstruct edges in the image, since edges often
carry the most important information, e.g., about defects or tumors.
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The Bayesian Inverse Problem

We formulate a Bayesian inverse problem with a likelihood that involves
both x and θ:

πpos(x ,θ) ∝ πlik(b |x ,θ) πpri(x) πpri(θ) .

As mentioned, πlik(b |x ,θ) is a Gaussian.

For πpri(x) we use a Laplace distribution of the di�erences of
neighbour pixels. This enables the desired sharp edges in the image;
it has connections to total variation (TV) regularization.

For πpri(θ) we use the von Mises distribution, i.e., a periodic normal
distribution ∝ exp(κ cos(x)).

Hyperparameters (�uninformative�):

λ in the Gaussian likelihood,

δ in the Laplace-di�erence prior for x ,

κ in the von Mises prior for θ,

exponential distributions πhyp(·) = β exp(−β ·) with β = 10−4.
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The Posterior

πpos(x ,θ, λ, δ, κ) ∝ πlik(b |x ,θ, λ)× πpri(x |δ)× πpri(θ |κ)
× πhyp(λ)× πhyp(δ)× πhyp(κ)

with b ∈ Rm, x ∈ Rn, θ ∈ Rp and

πlik(b |x ,θ, λ) =

(
λ

2π

)m/2

exp

(
−λ

2
∥A(θ) x − b∥22

)
(Gaussian)

πpri(x |δ) =

(
δ

2

)n
exp
(
−δ(∥(I ⊗D) x∥1 + ∥(D ⊗ I ) x∥1)

)
(�Laplace di�erence�)

πpri(θ |κ) =

(
1

2πI0(κ)

)p
exp

(
κ

p∑
i=1

cos(θi − θnomi )

)
(von Mises)

in which I = identity matrix and D = bidiag(−1, 1).
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Conditional Densities for the Posterior

πpos(x ,θ, λ, δ, κ) = λm/2 δn I0(κ)
−p exp

(
− λ

2
∥A(θ)x−b∥22

−δ
(
∥(I⊗D)x∥1+∥(D⊗I )x∥1

)
+κ

p∑
i=1

cos(θi−θnomi )−βλ−βδ−βκ
)

Conditional densities:

π1(x |θ, λ, δ) ∝ exp
(
− λ

2
∥A(θ) x − b∥22 − δ

(
∥(I ⊗D) x∥1 + ∥(D ⊗ I ) x∥1

))
π2(θ |x , λ, κ) ∝ exp

(
−λ

2
∥A(θ) x − b∥22 + κ

p∑
i=1

cos(θi − θnomi )

)
π3(λ |x ,θ) ∝ λm/2 exp

(
−λ

(
1

2
∥A(θ) x − b∥22 + β

))
π4(δ |x) ∝ δn exp

(
−δ
(
∥(I ⊗D) x∥1 + ∥(D ⊗ I ) x∥1 + β

))
π5(κ |θ) ∝ I0(κ)

−p exp

(
−κ

(
p∑

i=1

cos(θi − θnomi ) + β

))
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Hybrid Gibbs Sampler → Di�erent Samplers for Each Conditional

Initial states x (0),θ(0), λ(0), δ(0), κ(0)

For j = 1, 2, . . . ,Nsamp

Sample image pixels

x (j) ∼ π1

(
· |θ(j−1), λ(j−1), δ(j−1)

)
Sample view angles

θ(j) ∼ π2

(
· |x (j), λ(j−1), κ(j−1)

)
Sample hyperparameters

λ(j) ∼ π3

(
· |x (j),θ(j)

)
δ(j) ∼ π4

(
· |x (j)

)
κ(j) ∼ π5

(
· |θ(j)

)
End

Our implementation draws on several existing methods � our contribution
is to bring them together and make them work.
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The Main Challenge: How to Work With π1

π1(x ,θ, λ, δ, κ) ∝ exp
(
− λ

2
∥A(θ) x−b∥22−δ

(
∥(I ⊗D) x∥1+∥(D⊗ I ) x∥1

))
Linear and large-scale in x

Use an iterative solver: CGLS
(conjugate gradients for least
squares problems)

Non-di�erentiable due to ∥ · ∥1
Introduce the usual smoothing
(known from, say, TV) −→

Nonlinear in θ.

Wikipedia: Laplace's approximation �ts an un-normalised Gaussian
approximation to a (twice di�erentiable) un-normalised target density.
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More About Laplace's Approximation

Approximate π1(x) by a Gaussian density πG(x) = N
(
x ;µ,H−1

)
with

µ = MAP estimator of π1 and H = approximate Hessian of − log π1:

µ(x) = λH−1(x)A(θ)⊤b

H(x) = λA(θ)⊤A(θ) + δ
(
(I ⊗D)⊤W 1(x)(I ⊗D) +

(D ⊗ I )⊤W 2(x)(D ⊗ I )
)

W 1(x) = diag
[{

((I ⊗D)x)2 + ε2
}−1/2

]
W 2(x) = diag

[{
((D ⊗ I )x)2 + ε2

}−1/2
]

For details see, e.g., (Bardsley, 2018, �4.3.1).

Much easier to work with � but the Gaussian approximation πG(x) misses
the heavy tails of π1(x) and hence our uncertainties are imprecise.

We now develop a so-called horseshoe prior (Uribe, Dong, H, 2023), also
based on a Gaussian approximation, that can better handle heavy tails.
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How To Sample From πG?

In principle we can use Metropolis-Hastings to sample from πG; but we only
produce one proposal which is always accepted. This is conceptually
identical to the unadjusted Langevin algorithm (ULA).

We thus obtain x (j) by solving the following linear least squares problem
with a random perturbation of the right-hand side:

min
x

∥∥∥∥∥∥∥


√
λA(θ(j−1))√

δW 1(x
(j−1))1/2 (I ⊗D)√

δW 2(x
j−1))1/2 (D ⊗ I )

 x −


√
λb + ξ0

ξ1

ξ2


∥∥∥∥∥∥∥
2

where ξi ∼ N (0, I ) for i = 0, 1, 2.

This done by means of the CGLS iterative method.

Each iteration involves one matrix-vector multiplication with A(θ(j−1))
and one with its transpose.

We found experimentally that 10 iterations are su�cient.
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How to Sample π2?

We introduce a partitioning of the matrix and
the rhs, where each block A(θi ) and b(θi ) cor-
respond to the ith view angle.

We use a single-component Metropolis algo-
rithm with componentwise updates applied to

A =


A(θ1)
A(θ2)

...
A(θp)

 b =


b(θ1)
b(θ2)
...

b(θp)


π2(θ |x , λ, κ) ∝

p∏
i=1

exp
(
−λ

2
∥A(θi ) x − b(θi )∥22 + κ cos(θi − θnomi )

)
.

Given θ[0] = θ(j−1) from the Gibbs sampler, we perform 20 burn-in cycles:

θ
[k+])
1 ∼ π2

(
θ |x , λ, κ,

[
θ
[k]
2 , θ

[k]
3 , . . . , θ

[k]
p

])
,

θ
[k+1]
2 ∼ π2

(
θ |x , λ, κ,

[
θ
[k+1]
1 , θ

[k]
3 , . . . , θ

[k]
p

])
,

...
θ
[k+1]
p ∼ π2

(
θ |x , λ, κ,

[
θ
[k+1]
1 , θ

[k+1]
2 , . . . , θ

[k+])
p−1

])
.

This produces the next sample θ(j) = θ[20] in our hybrid Gibbs sampler.
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Illustration of Working with π2

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

360°Prior

π(θ(i))

46.2◦ 46.3◦ 46.4◦ 46.5◦

θ(12)
163.5◦ 163.6◦ 163.7◦ 163.8◦

θ(42)

277.1◦ 277.2◦ 277.3◦ 277.4◦

θ(70)
313.4◦ 313.5◦ 313.6◦ 313.7◦

θ(80)

Left: von Mises prior with the respective component densities.

Right: zoom-in on selected component densities; the true angles are shown
as solid green lines.

In this example, the values of x , λ and κ are assumed known.
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Sampling the Hyperpriors

▷ The conditional density π3 can be written in closed form

π3(λ |x ,θ) =
ωτ

Γ(τ)
λτ−1 exp(−ω λ).

with τ = m
2
+ 1 and ω = 1

2
∥A(θ) x − b∥22 + β

▷ We approximate the conditional density π4 by a distribution written in
closed form

π̃4(δ |x) ≈
ϖν

Γ(ν)
δν−1 exp(−ϖ δ)

with ν = n + 1 and
ϖ = x⊤

(
(I ⊗D)⊤W 1(x)(I ⊗D) + (D ⊗ I )⊤W 2(x)(D ⊗ I )

)
x + β.

▷ Sampling of the conditional density π5(κ |θ) is done by a standard
random-walk Metropolis algorithm.
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Numerical Experiments

Software: our Python package CUQIpy + ASTRA package for CT models.

We compare with the CT-VAE method (Riis et al., 2020) that computes
the MAP estimate (no UQ) through

min
x

1

2
∥Cν

(
A(θ) x − b + µν

)
∥22 + γTV(x),

where TV(x) denotes Total Variation regularization and γ = regularization
parameter. In this model, ν = measurement noise + model discrepancy,
with mean µν and covariance matrix (C⊤

νCν)
−1.

We generate noisy data

b = A(θtru) x tru + e, e ∼ N (0, σ2
I )

with noise level σ = 0.01∥A(θtru) x tru∥2/
√
m.
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The Fanbeam CT Problem

Image size 150× 150 → n = 22 500 pixels. Detector with 225 pixels and
p = 90 view angles 0◦, 4◦, 8◦, . . . , 356◦ → m = 20 250 measurements.

Phantoms �grains� and �ppower� from AIR Tools II.
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Estimated View Angles

46.2◦ 46.3◦ 46.4◦ 46.5◦

θ12

163.5◦ 163.6◦ 163.7◦ 163.8◦

θ42

277.1◦ 277.2◦ 277.3◦ 277.4◦

θ70

313.4◦ 313.5◦ 313.6◦ 313.7◦

θ80

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

360°Posterior mean

True

Left: posterior mean and true view angles θi .

Right: zoom-in on component densities for selected θi . True angles are
shown as solid green lines, posterior mean angles as dashed blue lines, and
the angles estimated by the CT-VAE method are shown as dotted red lines.
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Estimated Reconstruction of Phantom with 50 Grains
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Left: MAP estimate from the CT-VAE method.

Middle: posterior mean and standard deviation from our method.

Right: ditto from hybrid Gibbs sampler with �xed nominal angles.
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Estimated Reconstruction of Phantom with 100 Grains
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Left: MAP estimate from the CT-VAE method.

Middle: posterior mean and standard deviation from our method.

Right: ditto from hybrid Gibbs sampler with �xed nominal angles.
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Estimated Reconstruction of Sparse Phantom
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Left: MAP estimate from the CT-VAE method.

Middle: posterior mean and standard deviation from our method.

Right: ditto from hybrid Gibbs sampler with �xed nominal angles.
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Posterior Hyperparameters � Sparse Phantom

Samples and estimated densities of λ (noise parameter), δ (Laplace-di�.
parameter), and κ (von Mises parameter).
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Coda � Conclusions

In short

In many CT problems we need to correct for uncertain view angles.

The Bayesian framework allows us to solve the joint problem . . .

and perform UQ on both the reconstruction and the angles.

Our numerical results con�rm the applicability of our method.

Challenges

Deriving an e�cient sampler is challenging:

high dimension problem for the image x ,
nonlinear problem for the view angles θ.

The Gaussian approximation misses the heavy tails of the posterior;
our new horseshoe prior seeks to circumvent with this issue.

A framework for other large-scale inverse problems with uncertain
parameters � what are good preconditioners for CGLS?

How to incorporate the framework in our software package CUQIpy?
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