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Overview of Talk 

Part 1: the classical row-action method = ART 
• The advantage of algebraic formulations 
• Advantages of the optimization view of ART 

 
Part 2: the column-action method 
• Motivtion 
• Derivation 
• Block version 
• Convergence results 

 
Part 3: saving computational work 
• Loping and flagging – update only when necessary 
• A few examples 

 
T. Elfving, P. C. Hansen, and T. Nikazad, Convergence analysis for column-
action methods in image reconstruction, Numerical Algorithms, to appear. 
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ART = Algebraic Reconstruction Technique 
         = A Classical Algorithm 

Our motivation: solve linear systems of equations A x = b derived
from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each itera-
tion updates x via sweeps over the rows aTi of the matrix A 2 Rm£n.

Perspective:

Listen to Grateful Dead (1965{1995) ! old fashioned.
Listen to Mozart (1756{91) or Bach (1685{28) ! the classics!

Talk about total variation (1992) ! old stu®.
Talk about ART (1937) ! classical algorithm.
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Filtered Back Projection (FBP) versus ART 
² FBP: low memory, works really well with many data.

² But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

² Di±cult to incorporate constraints (e.g., nonnegativity) in FBP

² ART and other algebraic methods are more °exible and adaptive.

Example with 3% noise and projection angles 15±; 30±; : : : ; 180±.
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FBP versus ART – Limited Data 

Irregularly spaced angles / \missing" angles also cause di±culties for FBP
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Gordon, Bender, Herman (1970): coined the term \ART" and also in-
troduced a nonnegativity projection:

x Ã PRn
+

µ
x +

bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

Herman, Lent, Lutz (1978): introduced relaxation parameters !k < 2:

x Ã x + !k
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Today ART includes both !k and a projection PC on a convex set:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :

ART History 
Kaczmarz (1937): orthogonally project x on the hyperplane de¯ned by
the ith row aTi and the corresponding element bi of the right-hand side:

x Ã Pi x = x +
bi ¡ aTi x

kaik22
ai ; i = 1; 2; : : : ; m :

Satisfy one equation of A x = b at a time:
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The Optimization Viewpoint 

ART is usually considered as a solver for A x = b; but it is often more
convenient to consider it as an optimization method.

² We can introduce a relaxation parameter { or step length param-
eter { in the algorithm which controls the \size" of the updating
and, as a consequence, the convergence of the method:

{ a constant !, or

{ a parameter !k that changes with the iterations.

² In each updating step we can incorporate a projection PC on a
suitably chosen convex set C that re°ects prior knowledge.

² We can view it as a projected incremental gradient optimization
method, which opens for further extensions and careful conver-
gence analysis.
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Iteration-Dependent Relax. Parameter 

For inconsistent systems, basic ART with a ¯xed relaxation parameter
! gives cyclic and non-convergent behavior.

With the diminishing relaxation parameter !k = 1=
p

k ! 0 as k !1
the iterates converge to a weighted least squares solution.

There is also a column version of ART which always converges to the
standard least squares solution.
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Simple Constraints 

Non-negativity constraints. The set C = Rn
+ corresponds to

xi ¸ 0; i = 1; 2; : : : ; n:

Box constraints. The set C = [0; 1]n corresponds to

0 · xi · 1; i = 1; 2; : : : ; n:
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= Projected Incremental Gradient Method 

Consider the constrained weighted least squares problem

min
x

1=2kM¡1=2 (b¡A x)k22 subject to x 2 C

with M = diag(kaik22), and then write the objective function as

1=2kM¡1=2 (b¡A x)k22 =

nX

i=1

fi(x)

fi(x) = 1=2
(bi ¡ aTi x)2

kaik22
) rfi(x) = ¡bi ¡ aTi x

kaik22
Incremental gradient methods use only the gradient of a singe term
fi(x) in each iteration, leading to the ART update:

x Ã PC
µ

x + !k
bi ¡ aTi x

kaik22
ai

¶
; i = 1; 2; : : : ; m :
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Software for ART 

² SNARK09: C++ package from NYU; 2D reconstructions.
www.dig.cs.gc.cuny.edu/software/snark09

² ASTRA: MATLAB package with GPU accelleration and inter-
fact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D
and 3D reconstructions.
sourceforge.net/p/astra-toolbox/wiki/Home

² Image reconstruction toolbox: MATLAB package from Univ.
of Michigan; 2D reconstructions.
web.eecs.umich.edu/~fessler/code

² AIR Tools: MATLAB package from DTU; 2D reconstructions.
www.compute.dtu.dk/ pcha/AIRtools

² Xmipp: C++ package from the Spanish National Biotechnology
Centre; 3D electron microscopy.
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome
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This algorith operates on the columns aj of A, instead of the rows.

It has the advantage that it always { even with a ¯xed relaxation
parameter { converges to a least squares solution; if m ¸ n it converges
to the (minimum-norm) least squares solution (see paper for proof).

Moreover, in some applications the column-action strategy may also
have an advantage from an implementation point of view.

And Now: A Column-Action Method 

The column-action method takes its basis in the simple coordinate
descent optimization algorithm, in which each step is performed cycli-
cally in the direction of the unit vectors

ej = ( 0 0 ¢ ¢ ¢ 0| {z }
j¡1

1 0 0 ¢ ¢ ¢ 0| {z }
n¡j¡1

); j = 1; 2; : : : ; n:
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The least-squares objective function is f(x) = 1=2 kA x¡ bk22.

At iteration k we consider the update x(k)+®k ej with j = k (mod n),
and the goal is to ¯nd the step length ®k that gives maximum reduc-
tion in the objective function:

®k = argmin®1=2kA (x(k) + ® ej)¡ bk22
= argmin®1=2k® (A ej)¡ (b¡A x(k))k22
= argmin®1=2k® aj ¡ (b¡A x(k))k22:

Derivation 

The minimizer is

®k = (aj)
y(b¡A x(k)) =

aTj (b¡A x(k))

kajk22
:
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Hence we obtain the following overall algorithm (where again we have
introduced a relaxation parameter and a projection):

x(0) = initial vector
for k = 0; 1; 2; : : :

j = k (mod n)

x(k+1) = PC

Ã
x(k) + !k

aTj (b¡A x(k))

kajk22
ej

!
.

end

Formulation of the Algorithm 

Note that the operation in the inner loop simply overwrites the jth
element of the iteration vector with an updated value:

xj Ã PC

Ã
xj + !k

aTj (b¡A x(k))

kajk22

!
:
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Partition A into q block columns and partition x accordingly,

A =
¡

A1 A2 ¢ ¢ ¢ Aq

¢
; x =

0

B@
x1

...
xq

1

CA ;

and let Mi 2 Rni£ni , i = 1; 2; : : : ; q be a set of given spd matrices.

Initialization: x0 2 Rn is arbitrary; r0;1 = b¡A x0.
For k = 0; 1; 2; : : : (cycles or outer iterations)

For i = 1; 2; : : : ; q (inner iterations)

xk+1
i = xki + !iMiA

T
i rk;i

rk;i+1 = rk;i ¡Ai(x
k+1
i ¡ xki )

End
rk+1;1 = rk;q+1

End

Block Algorithm 
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Let aji denote the jth column of block Ai and de¯ne the matrices

Mi =
1

ni

¡
diag

¡
AT
i Ai

¢¢¡1

The condition for convergence is

½
¡
AiMiA

T
i

¢
=
°°AiMiA

T
i

°°
2
· 1 ) !i 2 (0; 2):

The upper bound 2 is only a su±cient condition and it may lead to
slow rate of convergence.

An Important Special Case of the Algorithm 
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A Numerical Example 
Test problem: parallel-beam CT; no noise in the data.
Image is 50£ 50 Shepp-Logan phantom, detector has 71 pixels, and
projection angles are 5±; 10±; : : : ; 180±; thus A is 2556£ 2500.
All blocks have the same size ni = nb and !i = !.
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Loping in the Block Column Method 
Haltmeier (2009) introduced a loping strategy for ART, which omits
the updating step associated with block i if jbi ¡ aTi xi¡1j is small.

We introduce a similar strategy where we don't update the solu-
tion block xki if dki = !iMiA

T
i rk;i has a small norm. This will save

computational work for blocks that are not updated.

For k = 1; 2; 3; : : : (cycles or outer iterations)
For i = 1; 2; : : : ; q (inner iterations)

dki = !iMiA
T
i rk;i

If kdki k2 > ¿

xk+1
i = xki + dki

rk;i+1 = rk;i ¡Ai(x
k+1
i ¡ xki )

End
End
rk+1;1 = rk;q+1

End



CWI 2016 19/21 P. C. Hansen – Column-Action Methods 

Flagging in the Block Column Method 
The situation kdki k2 < ¿ occurs when xi has (almost) converged.
Hence, we °ag the ith block and don't update it in the next N°ag

cycles { without computing kdki k2 thus saving more work.

For k = 1; 2; 3; : : : (cycles or outer iterations)
For i = 1; 2; : : : ; q (inner iterations)

If block-i is not °agged
dki = !iMiA

T
i r

k;i

If kdki k2 > ¿

xk+1
i = xki + dki rk;i+1 = rk;i ¡Ai(x

k+1
i ¡ xki )

Else
Flag block-i

End
Else

If block-i has been °agged for N°ag outer iterations
Un°ag block-i

End
End

End
rk+1;1 = rk;q+1

End
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Numerical Results – Loping and Flagging 

BCI = blok 
column iteration 
 
BCI-L = ditto 
with loping 
 
BCI-F = ditto 
with flagging 
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Conclusions 

 Block column-action methods are interesting alternatives to 
the row-action methods. 

 Convergence to a least-squares solution is always guaranteed. 

 Flagging can be used to save computational work, with only a 
minor effect on the convergence rate. 

 Next step: efficient implementation! 
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