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Overview of Talk

i

Part 1: the classical row-action method = ART
« The advantage of algebraic formulations
 Advantages of the optimization view of ART

Part 2: the column-action method
e Motivtion

e Derivation

 Block version

e Convergence results

Part 3: saving computational work
 Loping and flagging — update only when necessary
A few examples

T. Elfving, P. C. Hansen, and T. Nikazad, Convergence analysis for column-
action methods in image reconstruction, Numerical Algorithms, to appear.
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ART = Algebraic Reconstruction Technique z
= A Classical Algorithm

Perspective:

Listen to Grateful Dead (1965-1995) — old fashioned.
Listen to Mozart (1756-91) or Bach (1685—28) — the classics!

Talk about total variation (1992) — old stuff.
Talk about ART (1937) — classical algorithm.

Our motivation: solve linear systems of equations | Ax = b | derived
from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each itera-
tion updates x via sweeps over the rows a’ of the matrix A € R™*™,
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Filtered Back Projection (FBP) versus ART
e F'BP: low memory, works really well with many data.

e But artifacts appear with limited data, or nonuniform distribu-
tion of projection angles or ray.

e Difficult to incorporate constraints (e.g., nonnegativity) in FBP
e ART and other algebraic methods are more flexible and adaptive.

Example with 3% noise and projection angles 15°,30°,...,180°.

Phantom FBP (iradon) ART w/ box constraints
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DTU
FBP versus ART — Limited Data =

Irregularly spaced angles / “missing” angles also cause difficulties for FBP

Phantom Data = sinogram
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et LLUCLEE o
100 T H||H||||
150 Il ’ H
H\ll'l
250
50 100 150
ART w/ box constr. Filtered back projection
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ART History

Kaczmarz (1937): orthogonally project x on the hyperplane defined by
the ith row a! and the corresponding element b; of the right-hand side:

T
bi —a; x

lai3

Grarelone RResqantioa st A £ 978 it sttt he form “ART” and also in-
troduced a

r+P,x=x+

a; , 1=1,2,....m .

I n .

Herman, L ters wg < 2:

Initial guess

b; —alx
/L .
a:%Pc(a:—l—wk EAIE a; | , 1 =1,2,...,m .
t]12
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The Optimization Viewpoint

ART is usually considered as a solver for A x = b; but it is often more
convenient to consider it as an optimization method.

e We can introduce a relaxation parameter — or step length param-
eter — in the algorithm which controls the “size” of the updating
and, as a consequence, the convergence of the method:

— a constant w, or
— a parameter wy that changes with the iterations.

e In each updating step we can incorporate a projection Pc on a
suitably chosen convex set C that reflects prior knowledge.

e We can view it as a projected incremental gradient optimization
method, which opens for further extensions and careful conver-
gence analysis.
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Iteration-Dependent Relax. Parameter

For inconsistent systems, basic ART with a fixed relaxation parameter
w gives cyclic and non-convergent behavior.

With the diminishing relazation parameter wy = 1/vVk — 0 as k — 00
the iterates converge to a weighted least squares solution.

w=1 w=0.8 Diminishing
1.2 [~ 1.2 ] 1.2 ]
1 1 1
0.8 0.8 - 0.8
06 08 1 1.2 06 08 1 12 06 08 1 12

There is also a column version of ART which always converges to the
standard least squares solution.
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Simple Constraints

Non-negativity constraints. The set C = R’} corresponds to

ZE,LZO, i:1,2,...,n.

Box constraints. The set C = [0, 1]" corresponds to

00x; 01, i=12,....,n

Ground truth Box constraints No constraints

'a!--l"--. --!"-ﬁln.
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= Projected Incremental Gradient Method

Consider the constrained weighted least squares problem
min 12| M Y2 (b— Ax)|2 subject to xeC

with M = diag(||a;||3), and then write the objective function as

2| M2 (b — Az)|3 = Z fi(z)

b; — alx)? b; —alx
o) = > VA =~
1112 112

Incremental gradient methods use only the gradient of a singe term
fi(x) in each iteration, leading to the ART update:

T
bi —a; x

a3

x%735<x+wk ai) : 1=1,2,....,m.
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Software for ART
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SNARKO09: C++ package from NYU; 2D reconstructions.
www.dig.cs.gc.cuny.edu/software/snark09

ASTRA: MATLAB package with GPU accelleration and inter-
fact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D
and 3D reconstructions.
sourceforge.net/p/astra-toolbox/wiki/Home

Image reconstruction toolbox: MATLAB package from Univ.
of Michigan; 2D reconstructions.
web.eecs.umich.edu/ "fessler/code

AIR Tools: MATLAB package from DTU; 2D reconstructions.
www.compute.dtu.dk/ pcha/AIRtools

Xmipp: C++ package from the Spanish National Biotechnology
Centre; 3D electron microscopy.
xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome
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And Now: A Column-Action Method

This algorith operates on the columns a; of A, instead of the rows.

It has the advantage that it always — even with a fixed relaxation
parameter — converges to a least squares solution; if m > n it converges
to the (minimum-norm) least squares solution (see paper for proof).

Moreover, in some applications the column-action strategy may also
have an advantage from an implementation point of view.

The column-action method takes its basis in the simple coordinate

descent optimization algorithm, in which each step is performed cycli-

cally in the direction of the unit vectors
e;=(00---0100---0), j=1,2,...,n.

- - -
~”

j—1 n—j—1
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Derivation

The least-squares objective function is f(x) = 1/2||Az — bl|3.

At iteration k we consider the update x(*)+ay e; with j = & (mod n),
and the goal is to find the step length aj that gives maximum reduc-
tion in the objective function:

ar = argmingl/2||A (z® + ae;) —b|2
= argmin,_l2|la(Ade;) — (b— Az®)|2

— argmin,l/2||aa; — (b— Az™)|2.

The minimizer is
a;j (b— A (k)

|ajll3

ar, = (a;)T(b— Az®) =
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Formulation of the Algorithm =

Hence we obtain the following overall algorithm (where again we have
introduced a relaxation parameter and a projection):

2(0) = initial vector

for k=0,1,2,...
j =k (mod n)
T(ph— Axk)
2 — P [ 20 4, a; ( f ) ‘.
lasll3
end

Note that the operation in the inner loop simply overwrites the jth
element of the iteration vector with an updated value:

a; (b— A:U(k))>

la; 3

X < 73(3 <£Ej + Wi
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Block Algorithm
Partition A into g block columns and partition x accordingly,

I
A:(A1A2°"Aq), L = ,

Lq
and let M; € R"*™ 4 =1,2,...,q be a set of given spd matrices.

Initialization: z° € R is arbitrary; r%! =b — A 2.
For k =0,1,2,... (cycles or outer iterations)
For i =1,2,...,q (inner iterations)
xf+1 = o + w; M; AT rks
,rk,i-|—1 _ ,rk,z' . Ai(xi_chl . xic)
End
phHLL kgt

End
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An Important Special Case of the Algorithm

Let ag denote the jth column of block A; and define the matrices

M; = — (diag(AT4;)) "

1

The condition for convergence is

The upper bound 2 is only a sufficient condition and it may lead to
slow rate of convergence.
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A Numerical Example

Test problem: parallel-beam CT'; no noise in the data.
Image is 50 x 50 Shepp-Logan phantom, detector has 71 pixels, and
projection angles are 5°,10°,...,180°; thus A is 2556 x 2500.

All blocks have the same size n; = n}, and w; = w.

Error histories for Algorithm BCI
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Loping in the Block Column Method =

Haltmeier (2009) introduced a loping strategy for ART, which omits
the updating step associated with block ¢ if |b; — a? '~ 1| is small.

We introduce a similar strategy where we don’t update the solu-
tion block x¥ if df = w; M; AFr®* has a small norm. This will save

computational work for blocks that are not updated.

For k =1,2,3,... (cycles or outer iterations)
For i =1,2,...,q (inner iterations)
d,]f = wiMiAiTrk"’;
It Hd,I;HQ > T

;" = af +df
phitl — ki Ai(x§+1 . xic)
End
End
PR+ kgl

End
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Flagging in the Block Column Method

The situation ||d¥||s < T occurs when z; has (almost) converged.
Hence, we flag the ¢th block and don’t update it in the next Nga,
cycles — without computing ||d¥ || thus saving more work.

i

For k = 1,2,3,... (cycles or outer iterations)
For ¢ =1,2,...,q (inner iterations)
If block-7 is not flagged
d¥ = w; M; AT rP>?
If de”g > T
a:erl _ azf’ + df rkitl — ki Az‘(CIJerl . wiﬂ)
Else
Flag block-2
End
Else
If block-7 has been flagged for Ng,, outer iterations
Unflag block-2
End
End
End
P11 kgt
End
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Numerical Results — Loping and Flagging
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BCIl = blok
column iteration

BCI-L = ditto
with loping

BCI-F = ditto
with flagging
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Conclusions

O Block column-action methods are interesting alternatives to
the row-action methods.
O Convergence to a least-squares solution is always guaranteed.

a Flagging can be used to save computational work, with only a
minor effect on the convergence rate.

O Next step: efficient implementation!
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