

Column-Action Methods in Image Reconstruction

Per Christian Hansen

joint work with Tommy Elfving Touraj Nikazad

DTU Compute

Department of Applied Mathematics and Computer Science

Overview of Talk

Part 1: the classical row-action method = ART

- The advantage of algebraic formulations
- Advantages of the optimization view of ART

Part 2: the column-action method

- Motivtion
- Derivation
- Block version
- Convergence results

Part 3: saving computational work

- Loping and flagging update only when necessary
- A few examples

T. Elfving, P. C. Hansen, and T. Nikazad, *Convergence analysis for column-action methods in image reconstruction*, Numerical Algorithms, to appear.

ART = Algebraic Reconstruction Technique = A Classical Algorithm

Perspective:

Listen to Grateful Dead (1965–1995) \rightarrow old fashioned. Listen to Mozart (1756–91) or Bach (1685–28) \rightarrow the classics!

Talk about total variation (1992) \rightarrow old stuff. Talk about ART (1937) \rightarrow classical algorithm.

Our motivation: solve linear systems of equations Ax = b derived from discretization of an underlying tomography problem.

In this talk we do not pay attention to the discretization method.

ART is a simple iterative method for solving A x = b where each iteration updates x via sweeps over the rows a_i^T of the matrix $A \in \mathbb{R}^{m \times n}$.

- FBP: low memory, works really well with many data.
- But artifacts appear with limited data, or nonuniform distribution of projection angles or ray.
- Difficult to incorporate constraints (e.g., nonnegativity) in FBP
- ART and other algebraic methods are more flexible and adaptive.

Example with 3% noise and projection angles $15^{\circ}, 30^{\circ}, \dots, 180^{\circ}$.

Irregularly spaced angles / "missing" angles also cause difficulties for FBP

Data = sinogram

50
100
150
200
250
50 100 150

ART w/ box constr.

ART History

Kaczmarz (1937): orthogonally project x on the hyperplane defined by the ith row a_i^T and the corresponding element b_i of the right-hand side:

$$x \leftarrow \mathcal{P}_i x = x + \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i , \qquad i = 1, 2, \dots, m .$$

Satisfynone equation of A x = 7b at a time: he term "ART" and also introduced a

Today AR1 merados soun ω_{κ} and a projection , convex set:

$$x \leftarrow \mathcal{P}_{\mathcal{C}}\left(x + \omega_k \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i\right), \qquad i = 1, 2, \dots, m.$$

The Optimization Viewpoint

ART is usually considered as a solver for Ax = b; but it is often more convenient to consider it as an **optimization method**.

- We can introduce a *relaxation parameter* or step length parameter in the algorithm which controls the "size" of the updating and, as a consequence, the convergence of the method:
 - a constant ω , or
 - a parameter ω_k that changes with the iterations.
- In each updating step we can incorporate a projection $\mathcal{P}_{\mathcal{C}}$ on a suitably chosen convex set \mathcal{C} that reflects prior knowledge.
- We can view it as a projected incremental gradient optimization method, which opens for further extensions and careful convergence analysis.

Iteration-Dependent Relax. Parameter

For inconsistent systems, basic ART with a fixed relaxation parameter ω gives cyclic and non-convergent behavior.

With the diminishing relaxation parameter $\omega_k = 1/\sqrt{k} \to 0$ as $k \to \infty$ the iterates converge to a weighted least squares solution.

There is also a *column version* of ART which always converges to the standard least squares solution.

Simple Constraints

Non-negativity constraints. The set $\mathcal{C} = \mathbb{R}^n_+$ corresponds to

$$x_i \geq 0, \qquad i = 1, 2, \dots, n.$$

Box constraints. The set $\mathcal{C} = [0,1]^n$ corresponds to

$$0 \square x_i \square 1, \qquad i = 1, 2, \ldots, n.$$

Consider the constrained weighted least squares problem

$$\min_{x} \frac{1}{2} ||M^{-1/2} (b - Ax)||_{2}^{2}$$
 subject to $x \in \mathcal{C}$

with $M = \operatorname{diag}(\|a_i\|_2^2)$, and then write the objective function as

$$|f_i(x)| = \frac{1}{2} ||M^{-1/2} (b - Ax)||_2^2 = \sum_{i=1}^n f_i(x)$$

$$|f_i(x)| = \frac{1}{2} \frac{(b_i - a_i^T x)^2}{||a_i||_2^2} \Rightarrow \nabla f_i(x) = -\frac{b_i - a_i^T x}{||a_i||_2^2}$$

Incremental gradient methods use only the gradient of a singe term $f_i(x)$ in each iteration, leading to the ART update:

$$x \leftarrow \mathcal{P}_{\mathcal{C}}\left(x + \omega_k \frac{b_i - a_i^T x}{\|a_i\|_2^2} a_i\right), \qquad i = 1, 2, \dots, m.$$

Software for ART

- SNARK09: C++ package from NYU; 2D reconstructions. www.dig.cs.gc.cuny.edu/software/snark09
- ASTRA: MATLAB package with GPU accelleration and interfact to Python from Univ. of Antwerp + CWI, Amsterdam; 2D and 3D reconstructions. sourceforge.net/p/astra-toolbox/wiki/Home
- Image reconstruction toolbox: MATLAB package from Univ. of Michigan; 2D reconstructions. web.eecs.umich.edu/~fessler/code
- AIR Tools: MATLAB package from DTU; 2D reconstructions. www.compute.dtu.dk/ pcha/AIRtools
- **Xmipp**: C++ package from the Spanish National Biotechnology Centre; 3D electron microscopy. xmipp.cnb.csic.es/twiki/bin/view/Xmipp/WebHome

And Now: A Column-Action Method

This algorith operates on the columns a_i of A, instead of the rows.

It has the advantage that it always – even with a fixed relaxation parameter – converges to a least squares solution; if $m \ge n$ it converges to the (minimum-norm) least squares solution (see paper for proof).

Moreover, in some applications the column-action strategy may also have an advantage from an implementation point of view.

The column-action method takes its basis in the simple coordinate descent optimization algorithm, in which each step is performed cyclically in the direction of the unit vectors

$$e_j = (\underbrace{0 \ 0 \cdots 0}_{j-1} \ 1 \ \underbrace{0 \ 0 \cdots 0}_{n-j-1}), \qquad j = 1, 2, \dots, n.$$

Derivation

The least-squares objective function is $f(x) = 1/2 ||Ax - b||_2^2$.

At iteration k we consider the update $x^{(k)} + \alpha_k e_j$ with $j = k \pmod{n}$, and the goal is to find the step length α_k that gives maximum reduction in the objective function:

$$\alpha_{k} = \operatorname{argmin}_{\alpha} \frac{1}{2} \|A(x^{(k)} + \alpha e_{j}) - b\|_{2}^{2}$$

$$= \operatorname{argmin}_{\alpha} \frac{1}{2} \|\alpha(A e_{j}) - (b - A x^{(k)})\|_{2}^{2}$$

$$= \operatorname{argmin}_{\alpha} \frac{1}{2} \|\alpha a_{j} - (b - A x^{(k)})\|_{2}^{2}.$$

The minimizer is

$$\alpha_k = (a_j)^{\dagger} (b - A x^{(k)}) = \frac{a_j^T (b - A x^{(k)})}{\|a_j\|_2^2}.$$

Hence we obtain the following overall algorithm (where again we have introduced a relaxation parameter and a projection):

$$x^{(0)} = \text{initial vector}$$
 for $k = 0, 1, 2, \dots$
$$j = k \pmod{n}$$

$$x^{(k+1)} = \mathcal{P}_{\mathcal{C}}\left(x^{(k)} + \omega_k \frac{a_j^T(b - A x^{(k)})}{\|a_j\|_2^2} e_j\right) .$$
 end

Note that the operation in the inner loop simply overwrites the jth element of the iteration vector with an updated value:

$$x_j \leftarrow \mathcal{P}_{\mathcal{C}}\left(x_j + \omega_k \frac{a_j^T(b - A x^{(k)})}{\|a_j\|_2^2}\right).$$

Partition A into q block columns and partition x accordingly,

$$A = (A_1 \ A_2 \ \cdots \ A_q), \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_q \end{pmatrix},$$

and let $M_i \in \mathbb{R}^{n_i \times n_i}$, $i = 1, 2, \ldots, q$ be a set of given spd matrices.

```
Initialization: x^0 \in \mathbb{R}^n is arbitrary; r^{0,1} = b - A x^0.
For k = 0, 1, 2, \dots (cycles or outer iterations)
      For i = 1, 2, \dots, q (inner iterations)
           x_i^{k+1} = x_i^k + \omega_i M_i A_i^T r^{k,i}
           r^{k,i+1} = r^{k,i} - A_i(x_i^{k+1} - x_i^k)
      End
      r^{k+1,1} = r^{k,q+1}
End
```


Let a_i^j denote the jth column of block A_i and define the matrices

$$M_i = \frac{1}{n_i} \left(\operatorname{diag}(A_i^T A_i) \right)^{-1}$$

The condition for convergence is

$$\rho(A_i M_i A_i^T) = \|A_i M_i A_i^T\|_2 \square 1 \quad \Rightarrow \quad \omega_i \in (0, 2).$$

The upper bound 2 is only a sufficient condition and it may lead to slow rate of convergence.

A Numerical Example

Test problem: parallel-beam CT; no noise in the data. Image is 50×50 Shepp-Logan phantom, detector has 71 pixels, and projection angles are $5^{\circ}, 10^{\circ}, \dots, 180^{\circ}$; thus A is 2556×2500 . All blocks have the same size $n_i = n_b$ and $\omega_i = \omega$.

DTU

Loping in the Block Column Method

Haltmeier (2009) introduced a *loping* strategy for ART, which omits the updating step associated with block i if $|b_i - a_i^T x^{i-1}|$ is small.

We introduce a similar strategy where we don't update the solution block x_i^k if $d_i^k = \omega_i M_i A_i^T r^{k,i}$ has a small norm. This will save computational work for blocks that are not updated.

```
For k=1,2,3,\ldots (cycles or outer iterations)

For i=1,2,\ldots,q (inner iterations)

d_i^k = \omega_i M_i A_i^T r^{k,i}

If \|d_i^k\|_2 > \tau
x_i^{k+1} = x_i^k + d_i^k
r^{k,i+1} = r^{k,i} - A_i (x_i^{k+1} - x_i^k)

End

End

End

End

End
```


Flagging in the Block Column Method

The situation $||d_i^k||_2 < \tau$ occurs when x_i has (almost) converged. Hence, we **flag** the *i*th block and don't update it in the next N_{flag} cycles – without computing $||d_i^k||_2$ thus saving more work.

```
For k = 1, 2, 3, \dots (cycles or outer iterations)
     For i = 1, 2, \dots, q (inner iterations)
          If block-i is not flagged
                d_i^k = \omega_i M_i A_i^T r^{k,i}
                If ||d_i^k||_2 > \tau
                     x_i^{k+1} = x_i^k + d_i^k r^{k,i+1} = r^{k,i} - A_i(x_i^{k+1} - x_i^k)
                Else
                     Flag block-i
                End
          Else
                If block-i has been flagged for N_{\rm flag} outer iterations
                     Unflag block-i
                End
           End
     End
     r^{k+1,1} = r^{k,q+1}
End
```


Conclusions

- Block column-action methods are interesting alternatives to the row-action methods.
- Convergence to a least-squares solution is always guaranteed.
- □ Flagging can be used to save computational work, with only a minor effect on the convergence rate.
- Next step: efficient implementation!

