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Overview of my Talk

Algebraic iterative reconstruction methods (Kaczmarz, Cimmino, etc.):

Very flexible – no assumptions about the CT scanning geometry.
Easy to incorporate convex constraints (e.g., nonneg./box constraints).

Both these statements about these methods are true:

• We know a lot about the convergence
• We know so little about the convergence
• – for exact data.
• – for noisy data.

This talk tells the tale of how convergence theory is being established.

All proofs: see the papers.
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.
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R−1 = Filtered Back Projection (FBP)
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Filtered Back Projection Versus Algebraic Reconstruction

• FBP: fast, low memory, good results with sufficiently many good data.
• But artifacts appear with noisy and/or limited data.
• Difficult to incorporate constraints (e.g., nonnegativity).
• Algebraic reconstruction methods are more flexible and adaptive – but

require more computational work.

Example with 3% noise and projection angles 15◦, 30◦, . . . , 180◦:
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Setting Up the Algebraic Model

Damping of the ith X-ray through the domain is a line integral:

bi =

∫
rayi

f (ξ) d`, f (ξ) = attenuation coef.

Assume f (ξ) is a constant xj in pixel j , leading to:

bi =
∑
j

aij xj , aij =

{
length of ray i in pixel j

0 otherwise.

This leads to a linear system of equations with
a LARGE and s p a r s e coefficient matrix:

Ax = b

A ∼ measurement geometry,
x ∼ reconstruction,
b ∼ data.
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ART: Algebraic Reconstruction Technique = Kaczmarz

Kaczmarz (1937): x ← Pi x = orthogonal projection on the hyperplane Hi

defined by the ith row aTi of A and the corresp. element bi of the rhs.
Repeat accessing the rows sequentially, e.g., in a cyclic fashion:

x ← Pi x = x +
bi − aTi x

‖ai‖22
ai , i = 1, 2, . . . ,m, 1, 2, . . . ,m, 1, 2, . . .
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Can also access the rows in a randomized fashion.
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From Sequential to Simultaneous Updates

Cimmino (1938): accesses all rows simultaneously and compute next iterate
as the average of the all the projections of the previous iterates:

xk+1 =
1
m

m∑
i=1

Pixk =
1
m

m∑
i=1

(
xk +

bi − aTi x
k

‖ai‖22
ai

)
= xk +

1
m

m∑
i=1

bi − aTi x
k

‖ai‖22
ai = xk + ATM

(
b − Axk

)
,

where we introduced the diagonal matrix M = diag
(
m‖ai‖22

)−1.
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SIRT: Simultaneous Iterative Reconstruction Technique

A general of methods:

xk+1 = xk + ωD ATM (b − Axk), k = 0, 1, 2, . . .

D M

Landweber I I
Projected gradient descent

Cimmino I 1
m diag

(
1
‖ai‖22

)
Landweber with row normalization

CAV I diag
(

1
‖ai‖2S

)
Component Averaging S = diag(nnz(column j))

DROP S−1 M = diag
(

1
‖ai‖22

)
Diagonally relaxed orthogonal projection
SART diag(row sums)−1 M = diag(column sums)−1

Simultaneous algebraic reconstruction technique
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Asymptotic Convergence for Kaczmarz’s Method

Galántai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

‖xk − x̄‖22 ≤
(
1− det(A)2

)k
‖x0 − x̄‖22

E
(
‖xk − x̄‖22

)
≤

(
1− 1

n κ2

)k
‖x0 − x̄‖22

 k = 1, 2, . . . ,

where E(·) = expected value, x̄ = A−1b and κ = ‖A‖2 ‖A−1‖2.
This is linear convergence.

When κ is large we have(
1− 1

n κ2

)k
≈ 1− k

n κ2 .

After k = n updates, i.e., one “sweep,” the reduction factor is 1− 1/κ2.
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Asymptotic Convergence for Cimmino (a SIRT Method)

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ‖A‖22 = m.

‖xk − x̄‖22 ≤
(
1− 2

1 + κ2

)k
‖x0 − x̄‖22

where x̄ = A−1b and κ = ‖A‖2 ‖A−1‖2. Again: linear convergence.

When κ is large then we have the approximate upper bound

‖xk − x̄‖22 <∼ (1− 2/κ2)k ‖x0 − x̄‖22,

showing that in each iteration the error is reduced by a factor 1− 2/κ2.

Almost the same factor as in one “sweep” in Kaczmarz’s method.
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Real-Life Problems Have Noisy Data

A standard topic of linear algebra conferences: solve Ax = b.

Don’t do this for inverse problems with noisy data!

The right-hand side b (the data) is a sum of noise-free data b̄ = A x̄ from
the ground-truth image x̄ plus a noise component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

The naïve solution xnaïve = A−1b is undesired, because it has a large
component coming from the noise in the data:

xnaïve = A−1b = A−1(A x̄ + e) = x̄ + A−1e.

The component A−1e dominates over x̄ , because A is ill conditioned.

But something interesting happens during the iterations . . .
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The Reconstruction Error for Kaczmarz’s Method

‖xk − x̄‖2
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Semi-Convergence

‖xk − x̄‖2

In the initial iterations xk approaches the unknown ground truth x̄ .
During later iterations xk converges to the undesired xnaïve = A−1b.
Stop the iterations when the convergence behavior changes.

Then we achieve a regularized solution: an approximation to the noise-free
solution which is not too perturbed by the noise in the data.

Today we explain why we have semi-convergence for noisy data.
How to stop the iterations at the right time is a different story.
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Analysis of Semi-Convergence for SIRT

Consider SIRT with D = I and the SVD M
1
2A =

∑n
i=1 ui σi v

T
i

Van der Sluis & Van der Vorst (1990)

The iterate xk is a filtered SVD solution:

xk =
n∑

i=1

ϕ
[k]
i

uTi (M
1
2 b)

σi
vi , ϕ

[k]
i = 1−

(
1− ω σ2

i

)k
.

Recall that we solve noisy systems Ax = b with b = A x̄ + e. Then:

xk − x̄ =
n∑

i=1

ϕ
[k]
i

uTi (M
1
2 e)

σi
vi︸ ︷︷ ︸

noise error

−
n∑

i=1

(1− ϕ[k]
i ) vTi x̄ vi︸ ︷︷ ︸

iteration error

.

Fact: the iteration error decreases. Aim: show that noise error increases.
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The Spectral Behavior of the Noise Error

Recall: the noise error =∑n
i=1

ϕ
[k]
i
σi

uTi (M
1
2 e) vi

and vi is a spectral basis:

. large σi ∼ low-freq. vi

. small σi ∼ high-freq. vi

Each curve has a maximum for σi ≈ 1.12/
√
k ω.

As k increases, more noise is included and the SVD-spectrum changes.
As k increases, the noise error gets dominated by higher frequencies.

Chemnitz 2018 Hansen: Convergence Stories 15 / 26



Constrained Problems

In many applications we can improved the reconstruction by including
simple constraints:

minx ‖Ax − b‖2 s.t. x ∈ C

where C is a convex set, e.g.,
C = Rn – nonnegativity constraints.
C = [0, 1]n – box constraints.

No constr. Box constr.

Kaczmarz (ART) with projection:

x ← PC
(
x + ω

bi − aTi x

‖ai‖22
ai

)
, i = 1, 2, 3, . . .

SIRT with projection:

xk+1 = PC
(
xk + ωD ATM (b − Axk)

)
, k = 0, 1, 2, . . .
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Analysis of Semi-Convergence for Projected SIRT

For constrained problems we cannot perform an SVD analysis.

Let x̄ be the solution to the noise-free problem:

x̄ = argminx∈C‖Ax − b̄‖M , b̄ = A x̄ = pure data

and let x̄k denote the iterates when applying SIRT to b̄. Then

‖xk − x̄‖2 ≤ ‖xk − x̄k‖2︸ ︷︷ ︸
noise error

+ ‖x̄k − x̄‖2︸ ︷︷ ︸
iteration error

.

We already considered the decreasing iteration error:

‖x̄k − x̄‖2 <∼ (1− 2/κ2)k ‖x0 − x̄‖22 .

Now we must consider the noise error (which we expect to grow with k).
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The Noise Error for Projected SIRT

Elfving, H, Nikazad (2012)

The noise error in Projected SIRT is bounded by

‖xk − x̄k‖2 ≤
σ1

σn

1− (1− ω σ2
n)k

σn
‖M

1
2 e‖2 .

As long as ω σ2
n � 1 we have 1− (1− ω σ2

n)k ≈ k ω σn and thus

‖xk − x̄k‖2 <∼ ω k σ1‖M
1
2 e‖2 ,

showing again that k and ω play the same role in the error bound.
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Analysis of Semi-Convergence for ART – Setting the Stage

Elfving, Nikazad (2009)

An ART “sweep” can be written in a form that resembles SIRT:

xk+1 = xk + ω AT M̂ (b − Axk) , M̂ = (∆ + ω L)−1 .

where the nonsymmetric M̂ comes from the splitting:

AAT = L + ∆ + LT , ∆ = diag(‖ai‖22) ,

where L is strictly lower triangular.

Simple manipulations show that the noise error is given by

xk − x̄k = (I − ω AT M̂ A) (xk−1 − x̄k−1) + ω AT M̂ e

= ω

k−1∑
j=1

(I − ω AT M̂ A) j AT M̂ e .
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Analysis of Semi-Convergence for ART – Results

Elfving, H, Nikazad (2014)

Let δ = ‖AT M̂ e‖2 and σr = smallest nonzero singular value of A.

We obtain a bound which resembles that of SIRT:

‖xk − x̄k‖2 ≤ ω k δ + O(σ2
r )

As long as ω σ2
r < 1 we have:

‖xk − x̄k‖2 ≤
√
ω
σr

√
k δ + O(σ2

r )

These results also hold for constrained problems, provided that
y ∈ R(AT ) ⇒ PC(y) ∈ R(AT ) .
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Numerical Results – Parallel-Beam X-Ray Tomography
Test problem

B 200× 200 phantom
B 60 projections at
B 3◦, 6◦, 9◦, . . . , 180◦

B m = 15 232
B n = 40 000

The upper bound. We estimate
√
ω

σr
δ ≈ 107.

Our bound
√
ω
σr
δ
√
k is a huge over-estimate;

the factor
√
k correctly tracks the noise error.
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And Now: Matrix Perturbations

Large problems: the matrix A is not stored explicitly. Multiplications with A
and AT are computed “on the fly” using hardware accelerators.

But many software packages implement the backprojector in such a way
that it is not the exact transposed of the forward projector A.

Depends on the application and the traditions.
Better utilization of hardware: multi-core processors, GPUs, etc.

What is the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations?
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Convergence Analysis for Unmatched Pairs

To study many different cases we consider the generic BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0 .

Any fixed point x∗ satisfies BAx∗ = B b.
If B A is invertible then x∗ = (BA)−1B b.
If N (BA) = N (A) and b ∈ R(A) then Ax∗ = b.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = B b if and only if

0 < ω <
2<(λj)

|λj |2
and <(λj) > 0, {λj} = eig(BA) .

Zeng & Gullberg (2000): similar analysis but ignoring complex λj .
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Noise Error for BA Iteration

From the definition of the BA Iteration it follows that

xk − x̄k = (I − ωBA) (xk−1 − x̄k−1) + ω B e ,

and hence by induction, and assuming x0 = x̄0 = 0,

xk − x̄k = ω

k−1∑
j=0

(I − ωBA) jB e .

Elfving, H (2018)

Similar to ART and SIRT, with b = A x̄ + e we have

‖xk − x̄k‖2 ≤ (ω cBA‖B‖2) k ‖e‖2
where we define the constant cBA by: supj ‖(I − ωBA) j‖2 ≤ cBA.
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Cimmino’s method.

Test problem

B 64× 64 phantom
B 180 projections at
B 1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
Noise error: the one for B 6= AT increases faster.
Total error: semi-convergence, the iteration with B 6= AT reaches the min.
error ◦ 1.181 after 1314 iterations. This error is 48% larger than the min.
error ◦ 0.796 for the iterations with AT , achieved after 3225 iterations.
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Conclusions

Did we prove semi-convergence? Not really:
we give an upper bound for the noise error;
this bound increases with k ,
and it seems to track the actual noise error in numerical experiments.

Thus we have justified the observed behavior of

total error = iteration error + noise error.

Conclusions
Review of the convergence for noise-free data (iteration error).
Illustration of semi-convergence.
Recent convergence results (upper bounds) for the noise error.
New results for unmatched projector-backprojector pairs.
Fixing non-convergence of BA Iteration: stay tuned for new results.
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