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Overview of my Talk

Algebraic iterative reconstruction methods (Kaczmarz, Cimmino, etc.):

@ Very flexible — no assumptions about the CT scanning geometry.

@ Easy to incorporate convex constraints (e.g., nonneg./box constraints).

Both these statements about these methods are true:

We know a lot about the convergence — for exact data.

e We know so little about the convergence — for noisy data.

This talk tells the tale of how convergence theory is being established.

All proofs: see the papers.
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.

&

&1

X-ray

f(€) = 2D object/image, &= [ 2 }

g(0,s) = R f = Radon transform of f

0 e
:/ f<s[c?se}-l-7'[ smﬂ])dT
oo sin 6 cos 0/

R~! = Filtered Back Projection (FBP)
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Filtered Back Projection Versus Algebraic Reconstruction

FBP: fast, low memory, good results with sufficiently many good data.
But artifacts appear with noisy and/or limited data.

Difficult to incorporate constraints (e.g., nonnegativity).

Algebraic reconstruction methods are more flexible and adaptive — but
require more computational work.

Example with 3% noise and projection angles 15°,30°,...,180°:

Data ('sinogram') FBP ART w/ box constr.

0° 90° 180°
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Setting Up the Algebraic Model

Damping of the ith X-ray through the domain is a line integral:
b; = / f(&)de, f(&) = attenuation coef.
ray;

Assume f(&) is a constant x; in pixel j, leading to:

bi=) ajx, aj=

X=X, [xg= X, xﬂ=x/(xm=xm «=x,|  Thisleads to a linear system of.equatlons with
a LARGE and s p a r s e coefficient matrix:
Xy =Ky | X=Xy ’%xza Xi7 =Koy [ % = Xog

X3=X31 XE=xy |3=x33 X1S=X3A >$3=x35

A~ m remen metr
X, =Xy X%( K1y = Ky [Xig = Ky [ Xy = Xy casure e. t geo et y’
X ~ reconstruction,
= Xgg [Xg = Xy %5 = Xgg b ~ data.
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ART: Algebraic Reconstruction Technique = Kaczmarz

Kaczmarz (1937): x « P; x = orthogonal projection on the hyperplane H;
defined by the ith row a] of A and the corresp. element b; of the rhs.

Repeat accessing the rows sequentially, e.g., in a cyclic fashion:

b,-—a,-Tx

X< Pix=x+ 5
laill2

a, i=1,2....m1,2,....,m1.2,...

Initial guess

\

Can also access the rows in a randomized fashion.
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From Sequential to Simultaneous Updates

Cimmino (1938): accesses all rows simultaneously and compute next iterate
as the average of the all the projections of the previous iterates:

1 & 1 & b; — a x
A= SR = LY (e )

k1= bi—alxk k | AT k
= X4 => T —h—a=xk+ ATM (b AxN),
m— ajllz
where we introduced the diagonal matrix M = diag(m|]a,-||§)_1.

k
s P1x

H1 772Xk
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SIRT: Simultaneous lterative Reconstruction Technique

A general of methods:

XKL =xk L wDATM (b — Ax¥), k=0,1,2,...

] D M
Landweber / /
Projected gradient descent
. 1 1
Cimmino / - d'ag(lla;H%)
Landweber with row normalization
CAV I diag(ﬁ)
ills
Component Averaging S = diag(nnz(column j))
DROP 51 M = diag(ﬁ)
ill2
Diagonally relaxed orthogonal projection
SART diag(row sums)~! M = diag(column sums)~1
Simultaneous algebraic reconstruction technique
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Asymptotic Convergence for Kaczmarz's Method

Galantai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

k
I =13 < (1 det(A)?) [x® - %I

1 k B B b B ]
1— — 0_ g2
(1= p2) 10 =03

where £(+) = expected value, X = A~1b and k = ||Al|2 [| A~

This is linear convergence.

IN

E(lIx* = z13)

When « is large we have

K
1
L DS B
n k2 n k2

After k = n updates, i.e., one “sweep,” the reduction factor is 1 — 1//{2.
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Asymptotic Convergence for Cimmino (a SIRT Method)

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ||Al|3 = m.

k
2
k = -
sl < (1- 1) 10 503

where X = A71b and k = ||A||2 || A~Y||o. Again: linear convergence.

When « is large then we have the approximate upper bound
Ix* = %113 < (1= 2/8)" |Ix° = x]3,

showing that in each iteration the error is reduced by a factor 1 —2/x2.

Almost the same factor as in one “sweep” in Kaczmarz's method.
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Real-Life Problems Have Noisy Data
A standard topic of linear algebra conferences: solve Ax = b.
Don't do this for inverse problems with noisy data!

The right-hand side b (the data) is a sum of noise-free data b = Ax from
the ground-truth image X plus a noise component e:

b=AX+e, X = ground truth, e = noise.

The naive solution x™¢ = A=1p is undesired, because it has a large
component coming from the noise in the data:

xmive — A7 p = AT (AR 4 e) =x+ A e
The component A~!e dominates over X, because A is ill conditioned.
But something interesting happens during the iterations ...
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The Reconstruction Error for Kaczmarz's Method

I — |2
0.5F ]
0.4}
0.3f
0 ,_,10 20 ,_g 30

/

k=1 k=20

\O’
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Semi-Convergence

[[x* = %]|2
05F ' ' ' ' 1
0.4} 1
0.3F _//
0 10 20 30 40 50

e In the initial iterations x* approaches the unknown ground truth x.

e During later iterations x¥ converges to the undesired x™" = A=1p.
° when the convergence behavior changes.
Then we achieve a . an approximation to the noise-free

solution which is not too perturbed by the noise in the data.

o Today we explain why we have semi-convergence for noisy data.

@ How to stop the iterations at the right time is a different story.
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Analysis of Semi-Convergence for SIRT

Consider SIRT with D = / and the SVD | M3A = ST uioiv

Van der Sluis & Van der Vorst (1990)

The iterate x¥ is a filtered SVD solution:

kaZSOEk] 4u (/\/I2b)7 SOE-k] =1- (1—wa,-2)k
i=1

Recall that we solve noisy systems Ax = b with b= AX + e. Then:

n

(M
zw]“ M)y 3 AT R

i=1

noise error iteration error

J

Fact: the iteration error decreases.  Aim: show that noise error increases.
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The Spectral Behavior

Recall: the noise error =
[k] 1
T =
u' (Mze)v;

(p.
2o,

and v; is a spectral basis:

> large o; ~ low-freq. v;

> small o; ~ high-freq. v;

of the Noise Error

k .
o/ jor = (1— (1 —wod)) /i, w=1
10" T,
,/‘/, \‘\
L N
ol L ~N
10 e k=10
e -- k=30
R k=90
—eme k=270
------ 1/o;
¢ max
107 :
102 107 10°
o

. /T
@ Each curve has a maximum for o; ~ 1.12// k w.

@ As k increases, more noise is included and the SVD-spectrum changes.

@ As k increases, the noise error gets dominated by higher frequencies.
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Constrained Problems

In many applications we can improved the reconstruction by including
simple constraints:

‘ miny [[Ax — bll2  sit. x€C

) No constr. Box constr.
where C is a convex set, e.g.,

e C=R" - nonnegativity constraints.

e C =10,1]" - box constraints.

Kaczmarz (ART) with projection:

b~ al
x<—77c<x+wa’2xa,->, i=1,2,3,...
aill3
SIRT with projection:
xk+1:Pc<xk+wDATM(b—Axk)>, k=0,1,2,...
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Analysis of Semi-Convergence for Projected SIRT

For constrained problems we cannot perform an SVD analysis.
Let X be the solution to the noise-free problem:

X = argmin,cc||Ax — b||m, b= Ax = pure data
and let X¥ denote the iterates when applying SIRT to b. Then

Ix* = xll2 < | X = 2F[2+ |I%* = %2

noise error  iteration error

We already considered the decreasing iteration error:
X5 = xll2 < (1 = 2/8%)*[Ix° = XI5 -
Now we must consider the noise error (which we expect to grow with k).
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The Noise Error for Projected SIRT

Elfving, H, Nikazad (2012)

The noise error in Projected SIRT is bounded by

1-(1-wo?)*
2 L0299 e,

2

2\ x~ kwo, and thus

As long as wo2 < 1 we have 1 — (1 —wo

— 1
X = K2 Swkar|Mze]2

showing again that k and w play the same role in the error bound.
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Analysis of Semi-Convergence for ART — Setting the Stage

Elfving, Nikazad (2009)

An ART “sweep” can be written in a form that resembles SIRT:
Xk+1:Xk+wATM(b—AXk), I\7I:(A—|—wL)_1.
where the nonsymmetric M comes from the splitting:

AAT =L+ A+ LT, A =diag(||a3),

where L is strictly lower triangular.
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Analysis of Semi-Convergence for ART — Setting the Stage

Elfving, Nikazad (2009)

An ART “sweep” can be written in a form that resembles SIRT:
Xk+lzxk+wATM(b—Axk), I\7I:(A—|—wL)_1.
where the nonsymmetric M comes from the splitting:

AAT =L+ A+ LT, A =diag(||a3),

where L is strictly lower triangular.

Simple manipulations show that the noise error is given by
Kz = (I- wATM A) (xF 1 — 2R 4 wATMe
k—1
= w) (I-wATMA)Y ATMe .
j=1
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Analysis of Semi-Convergence for ART — Results

Elfving, H, Nikazad (2014)

Let § = ||[ATMel|> and o, = smallest nonzero singular value of A.

We obtain a bound which resembles that of SIRT:

[x* — %Ko <wké + O(c?)

As long as wo? < 1 we have:

I~ 55l2 < L2V + 0(0?)

These results also hold for constrained problems, provided that
y ER(AT) = 7Pe(y) e R(AT).
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Numerical Results — Parallel-Beam X-Ray Tomography
Test problem

The upper bound. We estimate

> 200 x 200 phantom

w
- Ve §~107.
> 60 projections at oy
> 3°,6°,9°,...,180° o
ur bound =5V k is a huge over-estimate;
> m= 15232 0 5 0Vk g '
> n = 40000 the factor \/k correctly tracks the noise error.
Noise error [|z* — z* |, Tteration error ||Z% — Z||»
102 . . 30
—Kaczmarz
/ ) ----with box constr.
o 10 "‘.‘
e \
L i —Kaczmarz T
;. ——with box constr. | | T TTTmeee——
ll - \/E
100 & : : 3
0 20 40 60 80 0 20 40
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And Now: Matrix Perturbations

Large problems: the matrix A is not stored explicitly. Multiplications with A
and AT are computed “on the fly" using hardware accelerators.

But many software packages implement the backprojector in such a way
that it is not the exact transposed of the forward projector A.
@ Depends on the application and the traditions.

@ Better utilization of hardware: multi-core processors, GPUs, etc.

What is the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations?
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Convergence Analysis for Unmatched Pairs
To study many different cases we consider the generic BA Iteration
k= xkpwB(b—AxN), w>0.

@ Any fixed point x* satisfies BAx* = B b.
o If B A is invertible then x* = (BA)~!B b.
o If N(BA) =N(A) and b € R(A) then Ax* = b.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA lteration converges to a solution of BAx = B b if and only if
2R(A))
A2

Zeng & Gullberg (2000): similar analysis but ignoring complex A;.
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Noise Error for BA lteration

From the definition of the BA lteration it follows that
K- = (I —wBA) (X' —gF N +wBe,

and hence by induction, and assuming x° = X0 =0,

Elfving, H (2018)

Similar to ART and SIRT, with b = AX + e we have

K = 242 < (wesallBll2) k llell2

where we define the constant cga by: sup; [|(/ — wBA)/||2 < cga.
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25w

'.'. - - - Iteration error; B # AT
‘l“ - - - Tteration error; B = AT
Cimmino’'s method. ol Noise error; B # A"
W ——Noise error; B= A
'-‘\\‘ ————— Total error; B # A"j
Test problem W —---- Total error; B = A”
_ 150 W 1
= W]
> 64 x 64 phantom E N R
\\\\ _____
> 180 projections at 1 ]
> 1°,2°,3°,...,180° S
> m = 16380 s |
> n= 4096 TTTee--Iiiiiiiood
0 500 1000 1500 2000 2500 3000

3500 4000
Iteration k
teration error: both versions converge to X; the one with B # AT is slower
Noise error: the one for B # AT increases faster.

Total error: semi-convergence, the iteration with B # AT reaches the min.
error o 1.181 after 1314 iterations. This error is 48% larger than the min.
error o 0.796 for the iterations with AT, achieved after 3225 iterations.
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Conclusions

Did we prove semi-convergence? Not really:
@ we give an upper bound for the noise error;
@ this bound increases with k,

@ and it seems to track the actual noise error in numerical experiments.

Thus we have justified the observed behavior of

total error = iteration error 4+ noise error.

Conclusions

Review of the convergence for noise-free data (iteration error).
[llustration of semi-convergence.

Recent convergence results (upper bounds) for the noise error.

New results for unmatched projector-backprojector pairs.

Fixing non-convergence of BA lteration: stay tuned for new results.
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