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Intro to Semi-Convergence

The term “semi-convergence” was coined by Frank Natterer (1986) who

writes about an iterative method applied to a noisy inverse problem:
“even if it provides a satisfactory solution after a certain number
of steps, it deteriorates if the iteration goes on.”

> Initially the iterates approach the desired exact solution.
> Eventually the iterates converge to a very noisy and undesired solution.
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How to Study Semi-Convergence

Image deblurring problem

Split the reconstruction error into 2 parts. 014

0.12

—— Reconstruction error
- - - Iteration error
—--=-= Noise error

o lteration error
associated with noise-free data;

Relative error

o Noise error
associated with the data noise.

0.02

Good understanding of the iteration error. 0 » © &0 &

Iterations

Re. the noise error:
d . b d]- . . . . .
@ we can derive an upper boun sometimes pessimistic);

@ no lower bound, to verify that it actually grows.

We take a statistical approach and demonstrate that
@ the noise error is very likely to increase with the number of iterations;

@ hence semi-convergence is very likely to happen.

1T. Elfving, Noise propagation in linear stationary iterations, Numer. Algo., 2025.
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Notation

AeR™"  with m>n and rank(A)=n.
b=b+e, b=Ax, e~ N(0,7%1) .
Given the SVD

n
A=UTV' =) uioiv], UeR™" ¥ VeR™,
i=1

we can write the least squares solution as
n n

u,-Tb _ u,-Te
XLs = E — Vi =X+ E

: gj ; i

=1 i=1

For inverse problems, where the o; decay towards zero, the second term
(the “inverted noise”) typically dominates over X.
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SVD Filtering to Suppress Noise

SVD filtering:

n n T n
‘ u,Tb “ u,-Tb ‘ u,-Te
Xregzg ai—v;zg C:DiiVH-E i Vi .
— oj — o — g
i=1 i=1 i=1

The filter factors ¢1, ..., ¢, filter or dampen the SVD components
corresponding to small o;.

Examples: Tikhonov filters ¢; = 02/(0? + A?), TSVD filters ¢; = 1 or 0.
If &g =diag(¢1,....¢n) then
Xeg = Aftgb  with AL =V O TTUT .

The regularized inverse Aﬁg allows us to study how information and noise
propagate from the right-hand side to the regularized solution.
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Split the Reconstruction Error (lots of notation)

- n = = T =
— — — — X = . i V| i =V, X
Xreg — X = Xreg — Xreg T Xreg — X Z’_l §ivio & !
N——
noise error  reg. error e = 27;1 giVvi, €& = u,-Te

T

n n r
u; b - i
Xieg = Aftgh =Y 0 = vi=> ¢i&ivity d)i;’_Vi,
i=1 ! i=1 i=1 !

T r

u; b -

‘=vi=>"¢i&ivi.
i=1

i
The regularization error reveals the influence of the regularization:
n

Soeg — X = Algb—x = (¢i —1) & vi .
i=1
The noise error reveals how the noise propagates:

n
)?reg = AﬁgE = Z ¢i
i=1

n
- T €j
Xeeg — Xeeg = Albg b— Al b=Al e => ¢ —v; .
i=1

reg reg o
i
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Statistical Aspects of the Regularization Error

Using the previous relations, we get

n

n n _
R : ¢? .
g = %I13 = >_(1 = 0)'G +3 e +23 (61 - 1)<z>f§',.e,-
i=1 7 O =
and the expected value is

n n 2
Ellbve —XIB) = D1 - 0P+ D%

i=1 i=1 i

1%t term: squared norm of the regularization error X.e; — X caused by

applying regularization to the noise-free data b.
2" term: expected value of the squared norm of the noise error Xreg — Xreg-

3" term: is zero because &(e;) = 0.
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Continuing From the Previous Relations

Expected value of reconstruction error:

E([|xreg — x|5) = (| Xreg — x5 + E([|xreg — ’?regH%) )

where

H)_(reg - >_<||% = Z(l - Gf)i)2 512 )

i=1

_ n ¢I2
(e — Feegl3) = E(IATgel3) =2 Y 25

i=1

Variance of ditto:

V(lIxeg = X112) = VlIxreg — Zregl|3)

2\ 2 4
= Z(fé) V(e?) = Z fﬁ; 2V(ei)?

1
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TSVD Example with Test Problem gravity

TSVD

102

Note:

log axis — 100

1‘5 éO 2‘5 ‘ 30 35
]\,
The dashed lines illustrate the standard deviation =V1/2.

The TSVD regularization error dominates for small k while the noise error
dominates for large k where there is little filtering.

Test problems: see appendix.
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Prelude to Regularizing Iterations
To set the notation, we write the noisy and the noise-free iterates as
xk =Afb, e =Alb.

@ The regularized inverse Af is defined by the iterative method,

@ X, are the iterates that we compute if there were no noise.
We split the reconstruction error as:
X — X = Xk — X +Xe— X
—— N~
noise error  it. error
and we refer to X, — X as the jteration error.
In classical convergence analysis we analyze the decay of ||Xx — X||2.

For regularizing iterations we study the growth of the noise error
Xk — Xje = Afe as a function of k.
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[llustration: Landweber's Method

Xk,L = Xk—1,L +wAT(b—Axk_17|_) , k=1,2,...

Example: heat with large and small noise levels.

—— (= - z[3)] |

0 50 100 15 200 250 300 0 500 2500

1000 1500 2000
k k

The expected value &(-) — and the standard deviation V(-)/? - - are
computed with the expressions from slide 8.
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CGLS Regularizing Iterations

For CGLS (and other Krylov subspace methods) the filter factors depend
on both A and b. The kth CGLS iterates can be written as

T 'I'\L
xx = argmin [[Ax — bl|» s.t. x € K(A'A,A'Db)
with the Krylov subspace
Ki(ATA, ATb) = span{ATb, ATAATb, ..., (ATA)K"1ATh} .

The CGLS filter factors are given by

k 52
o =1-T[ L, i=1...n
j=1
where the are the eigenvalues of the k x k symmetric

tridiagonal matrix associated with applying CG to ATAx = A'h.

(Also, they are the squares of the singular values of the bidiagonal matrix

generated by the Golub-Kahan algorithm underlying the LSQR method.)
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The Important Role of the Ritz Values (ex. gravity)

Consider the residual norm (assuming that Ax = b is consistent)

n (k)
0" —0
Il = Z(iRk(U?) Bi)2 ; Ri(0) = H J()T = Ritz polynomial.

i=1 j=1

CGLS places the roots of 1, such that %, (c?) is small where 3? is large.

100 - —
o2 /
// 1072 10°

'102 100 T Can not guarantee monotonicity.

Plot shows Ritz poI. iRk(G) for k =1,...,6 and the largest o2 (black dots).

In general, the filter factors satsify qbg =1-Ry (o) ~1lfori=1,... k

ENUMATH 2025 Insight into Semi-Convergence P. C. Hansen 13/21



Two Different CGLS Iterates xx and X

Write the kth CGLS iterates x, € K as
xk=Alb,  AF=(1-R(ATA)AT .
The noise-free CGLS iterates X correspond to the noise-free data b.
Hence, i lies in a different Krylov subspace associated with b:
Ki(ATA AT %) —span{A"b,ATAATD,...,(ATA)1ATH} .
Hence, we write X, € Ky as
f=Afb,  Af=(1-R(ATA)AT,

where is the Ritz polynomial associated with Cy.
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And Now: Split the CGLS Reconstruction Error

Now we can express the reconstruction error as follows:
Xk —X=Afb—x=Af(b+e)— X+ (R — %)
= Afb+ Afe+ —x+x — Al'D
= (A7 —A)b+ Affe+ i —x .

noise error it. error

The iteration error involves the noise-free iterations lying in Ky.

Novel Insight. | The noise error for CGLS consists of two components:

@ the propagated noise Afe and
o the deviation (Af - /Z\f)t_) caused by the difference between the two
Krylov subspaces Kx(ATA, ATb) and Kx(ATA, ATb).

The latter component is unique to Krylov subspace methods, incl. CGLS.
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0.1)

Ex: gravity (n = 107*) and paralleltomo (7
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k
In these examples, the norm of the deviation (Af - Af)E is smaller than

the norm of the propagated noise Afe.

This is not always true — see the paper.
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Statistics of the Noise Error: Propagated Noise

For the propagated noise A#e we have
e(IA% e]|2) Ze( ) ;- o) =1 Ru(0?)o?

and gb,(. are correlated with the noise via the Ritz polynomial that
depends on the “noisy” Krylov subspace K.

Numerical experiments show that the correlation between ¢; and gZ),(-k) is
very small, and hence we use the approximation

N (K)\2
e(|Af el3) ~ Ze( ) el %)2:%2‘3(@’2)).

Cliffhanger: what to do about 8(((]55’())2)? — Next slide.
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A Closer Look at the CGLS Filter Factors
Test problem gravity:

& violin plots of 8<(¢Ek))2>, together with

e the noise-free (d:gk))2

— the sample mean of 8((¢(k)) )

k=11 k=12 k=13
10° 10° 10° 10°
10°® 10°® 10} || 10°®
10-10 10-10 10-10 10-10
10 102 10° 10 102 10° 10* 102 10° 10% 102 10°

This motivates the approximation for the propagated noise:
n k)

E(|IAY el3) Z
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Statistics of the Noise Error: The Deviation

For the deviation (Af - Af)l_), recall that the filter factors @, in
Af = VO, X TUT are different from those &, of AT = Vo, X 1uT.

e(I(Af - Af)BI3) Ze( o UDLES

O;

Approximation gb(-k) ~ q_SE(k) is no good here — numer. exp. (gravity):
¢ violin plots of (qb ¢(k))2 5

— the sample mean of its expected value.
k=11 k=12

We can use the sample mean (it is quite small).
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W Putting It Together L

Fat solid brown lines: expected values.
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While the deviation (Ajjé — Af)B is part of the CGLS noise error, we can
often ignore it and consider only the iteration error and the propagated
noise Afe. We cannot guarantee that HAfeH% is monotonic.
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Conclusions

@ New insight from a (simple) statistical analysis:
@ The noise error is very likely to grow for regularizing iterations.

e Semi-convergence is therefore very likely to occur.

For CGLS, we introduce a novel splitting of the noise error into a
propagated noise term Afe and deviation term (Af - Af)b, the latter
typically being small.

Next steps: GMRES and Kaczmarz.
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Appendix: Our Test Problems

We use these test problems from Regularization Tools:

@ blur — Gaussian image deblurring with an N x N image. The singular
values have a very slow exponential decay; the cond. number is 31.

e gravity — 1D gravity surveying problem; the matrix is 128 x 128.
The singular values decay approximately as e %7,

@ heat — Inverse heat equation problem; the matrix is 128 x 128. The
singular values decay exponentially from 0.3 to 107°.

@ phillips — Test problem with no origin in applications; the matrix is

128 x 128. The singular values decay approximately as i—3.

We also use the X-ray tomography test problem paralleltomotomo from
from AIR Tools Il with a 64 x 64 phantom, 64 detector pixels, and view
angles 2.5°,5°,...,180°. The leading singular values decay as i~/* while
the trailing ones decay faster; the condition number is 2 392.
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Appendix: When the Singular Values Decay Slowly

For a slow decay of the singular values (e.g., for mildly ill-posed problems)
CGLS does not necessarily make Rx(0?) ~ 0 at the k largest 2.
Instead, it will place the k roots such that the polynomial is small for many

more than k pairs of (¢, 3?). This dampens the contributions to ||| for
many SVD components over a large interval.

Example blur: for k = 6 the first 80 filter factors are between 0.8 and 1.2

meaning that we capture about 80 components in the 6th iteration vector.
1

0.8
06|
04|l

0.2
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