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Intro to Semi-Convergence

The term �semi-convergence� was coined by Frank Natterer (1986) who

writes about an iterative method applied to a noisy inverse problem:

�even if it provides a satisfactory solution after a certain number

of steps, it deteriorates if the iteration goes on.�

▷ Initially the iterates approach the desired exact solution.

▷ Eventually the iterates converge to a very noisy and undesired solution.
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How to Study Semi-Convergence

Split the reconstruction error into 2 parts.

Iteration error

associated with noise-free data;

Noise error

associated with the data noise.

Good understanding of the iteration error.

Re. the noise error:

we can derive an upper bound 1 (sometimes pessimistic);

no lower bound, to verify that it actually grows.

We take a statistical approach and demonstrate that

the noise error is very likely to increase with the number of iterations;

hence semi-convergence is very likely to happen.

1T. Elfving, Noise propagation in linear stationary iterations, Numer. Algo., 2025.
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Notation

A ∈ Rm×n with m ≥ n and rank(A) = n .

b = b̄ + e , b̄ = A x̄ , e ∼ N (0, η2I ) .

Given the SVD

A = U ΣV⊤ =
n∑

i=1

ui σi v
T
i , U ∈ Rm×n , Σ,V ∈ Rn×n ,

we can write the least squares solution as

xLS =
n∑

i=1

uTi b

σi
vi = x̄ +

n∑
i=1

uTi e

σi
vi .

For inverse problems, where the σi decay towards zero, the second term

(the �inverted noise�) typically dominates over x̄ .
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SVD Filtering to Suppress Noise

SVD �ltering:

xreg =
n∑

i=1

ϕi
u⊤i b

σi
vi =

n∑
i=1

ϕi
u⊤i b̄

σi
vi +

n∑
i=1

ϕi
u⊤i e

σi
vi .

The �lter factors ϕ1, . . . , ϕn �lter or dampen the SVD components

corresponding to small σi .

Examples: Tikhonov �lters ϕi = σ2
i /(σ

2
i + λ2), TSVD �lters ϕi = 1 or 0.

If Φreg = diag(ϕ1, . . . , ϕn) then

xreg = A#
regb with A#

reg = V Φreg Σ
†U⊤ .

The regularized inverse A#
reg allows us to study how information and noise

propagate from the right-hand side to the regularized solution.
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Split the Reconstruction Error (lots of notation)

xreg − x̄ = xreg − x̄reg︸ ︷︷ ︸
noise error

+ x̄reg − x̄︸ ︷︷ ︸
reg. error

x̄ =
∑n

i=1 ξ̄i vi , ξ̄i = v⊤i x̄

e =
∑m

i=1 εi vi , εi = u⊤i e

xreg = A#
regb =

n∑
i=1

ϕi
u⊤i b

σi
vi =

n∑
i=1

ϕi ξ̄i vi +
r∑

i=1

ϕi
εi
σi

vi ,

x̄reg = A#
regb̄ =

n∑
i=1

ϕi
u⊤i b̄

σi
vi =

r∑
i=1

ϕi ξ̄i vi .

The regularization error reveals the in�uence of the regularization:

x̄reg − x̄ = A#
regb̄ − x̄ =

n∑
i=1

(ϕi − 1) ξ̄i vi .

The noise error reveals how the noise propagates:

xreg − x̄reg = A#
reg b − A#

reg b̄ = A#
reg e =

n∑
i=1

ϕi
εi
σi

vi .
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Statistical Aspects of the Regularization Error

Using the previous relations, we get

∥xreg − x̄∥22 =
n∑

i=1

(1− ϕ)2ξ̄2i +
n∑

i=1

ϕ2
i

σ2
i

ε2i + 2

n∑
i=1

(ϕi − 1)ϕi
ξ̄i
σi

εi

and the expected value is

E(∥xreg − x̄∥22) =
n∑

i=1

(1− ϕ)2ξ̄2i +
n∑

i=1

ϕ2
i

σ2
i

E(ε2i ) + 2

n∑
i=1

(ϕi − 1)ϕi
ξ̄i
σi

E(εi )

1st term: squared norm of the regularization error x̄reg − x̄ caused by

applying regularization to the noise-free data b̄.

2nd term: expected value of the squared norm of the noise error xreg − x̄reg.

3rd term: is zero because E(εi ) = 0.

E(∥xreg − x̄∥22) =
n∑

i=1

(1− ϕ)2ξ̄2i +
n∑

i=1

ϕ2
i

σ2
i

E(ε2i ) +
������������XXXXXXXXXXXX
2

n∑
i=1

(ϕi − 1)ϕi
ξ̄i
σi

E(εi )
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Continuing From the Previous Relations

Expected value of reconstruction error:

E(∥xreg − x̄∥22) = ∥x̄reg − x̄∥22 + E(∥xreg − x̄reg∥22) ,

where

∥x̄reg − x̄∥22 =
n∑

i=1

(1− ϕi )
2 ξ̄2i ,

E(∥xreg − x̄reg∥22) = E(∥A#
rege∥22) = η2

n∑
i=1

ϕ2
i

σ2
i

.

Variance of ditto:

V(∥xreg − x̄∥22) = V(∥xreg − x̄reg∥22)

=
∑(

ϕ2
i

σ2
i

)2

V(ε2i ) =
∑ ϕ4

i

σ4
i

2V(εi )
2 = 2 η4

∑ ϕ4
i

σ4
i

.
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TSVD Example with Test Problem gravity

Note:

log axis →

The dashed lines illustrate the standard deviation ±V1/2.

The TSVD regularization error dominates for small k while the noise error

dominates for large k where there is little �ltering.

Test problems: see appendix.
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Prelude to Regularizing Iterations

To set the notation, we write the noisy and the noise-free iterates as

xk = A#
k b , x̄k = A#

k b̄ .

The regularized inverse A#
k is de�ned by the iterative method,

x̄k are the iterates that we compute if there were no noise.

We split the reconstruction error as:

xk − x̄ = xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
it. error

and we refer to x̄k − x̄ as the iteration error.

In classical convergence analysis we analyze the decay of ∥x̄k − x̄∥2.

For regularizing iterations we study the growth of the noise error

xk − x̄k = A#
k e as a function of k .
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Illustration: Landweber's Method

xk,L = xk−1,L + ω AT (b − Axk−1,L) , k = 1, 2, . . .

Example: heat with large and small noise levels.

The expected value E(·) � and the standard deviation V(·)1/2 - - are

computed with the expressions from slide 8.
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CGLS Regularizing Iterations

For CGLS (and other Krylov subspace methods) the �lter factors depend

on both A and b. The kth CGLS iterates can be written as

xk = argmin
x

∥Ax − b∥2 s.t. x ∈ Kk(A
⊤A,A⊤

↓
b)

with the Krylov subspace

Kk(A
⊤A,A⊤b) = span{A⊤b,A⊤AA⊤b, . . . , (A⊤A)k−1A⊤b} .

The CGLS �lter factors are given by

ϕ
(k)
i = 1−

k∏
j=1

θ
(k)
j − σ2

i

θ
(k)
j

, i = 1, . . . , n

where the Ritz values θ
(k)
j are the eigenvalues of the k × k symmetric

tridiagonal matrix associated with applying CG to A⊤Ax = A⊤b.

(Also, they are the squares of the singular values of the bidiagonal matrix

generated by the Golub-Kahan algorithm underlying the LSQR method.)
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The Important Role of the Ritz Values (ex. gravity)

Consider the residual norm (assuming that Ax = b is consistent)

∥rk∥22 =
n∑

i=1

(
Rk(σ

2
i ) βi

)2
, Rk(θ) =

k∏
j=1

θ
(k)
j − θ

θ
(k)
j

= Ritz polynomial.

CGLS places the roots of Rk such that Rk(σ
2
i ) is small where β2

i is large.

Can not guarantee monotonicity.

Plot shows Ritz pol. Rk(θ) for k = 1, . . . , 6 and the largest σ2
i (black dots).

In general, the �lter factors satsify ϕ
(k)
i = 1− Rk(σ

2
i ) ≈ 1 for i = 1, . . . , k .
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Two Di�erent CGLS Iterates xk and x̄k

Write the kth CGLS iterates xk ∈ Kk as

xk = A#
k b , A#

k =
(
I − Rk(A

⊤A)
)
A⊤ .

The noise-free CGLS iterates x̄k correspond to the noise-free data b̄.

Hence, x̄k lies in a di�erent Krylov subspace associated with b̄:

Kk(A
⊤A,A⊤

↓
b̄) = span{A⊤b̄,A⊤AA⊤b̄, . . . , (A⊤A)k−1A⊤b̄} .

Hence, we write x̄k ∈ Kk as

x̄k = Ā#
k b̄ , Ā#

k =
(
I − Rk(A

⊤A)
)
A⊤ ,

where Rk is the Ritz polynomial associated with Kk .
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And Now: Split the CGLS Reconstruction Error

Now we can express the reconstruction error as follows:

xk − x̄ = A#
k b − x̄ = A#

k (b̄ + e)− x̄ + (x̄k − x̄k)

= A#
k b̄ + A#

k e +−x̄ + x̄k − Ā#
k b̄

= (A#
k − Ā#

k )b̄ + A#
k e︸ ︷︷ ︸

noise error

+ x̄k − x̄︸ ︷︷ ︸
it. error

.

The iteration error involves the noise-free iterations lying in Kk .

Novel Insight. The noise error for CGLS consists of two components:

the propagated noise A#
k e and

the deviation (A#
k − Ā#

k )b̄ caused by the di�erence between the two

Krylov subspaces Kk(A
⊤A,A⊤b) and Kk(A

⊤A,A⊤b̄).

The latter component is unique to Krylov subspace methods, incl. CGLS.
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Ex: gravity (η = 10−4) and paralleltomo (η = 0.1)

In these examples, the norm of the deviation (A#
k − Ā#

k )b̄ is smaller than

the norm of the propagated noise A#
k e.

This is not always true � see the paper.
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Statistics of the Noise Error: Propagated Noise

For the propagated noise A#
k e, we have

E(∥A#
k e∥

2
2) =

n∑
i=1

E
((

ϕ
(k)
i εi

)2) 1

σ2
i

, ϕ
(k)
i = 1− Rk(σ

2
i )σ

2
i

and ϕ
(k)
i are correlated with the noise via the Ritz polynomial Rk that

depends on the �noisy� Krylov subspace Kk .

Numerical experiments show that the correlation between εi and ϕ
(k)
i is

very small, and hence we use the approximation

E(∥A#
k e∥

2
2) ≈

n∑
i=1

E
((

ϕ
(k)
i

)2)
E
(
ε2i
) 1

σ2
i

= η2
n∑

i=1

E
((

ϕ
(k)
i

)2)
σ2
i

.

Cli�hanger: what to do about E
((

ϕ
(k)
i

)2)
? → Next slide.

ENUMATH 2025 Insight into Semi-Convergence P. C. Hansen 17 / 21



A Closer Look at the CGLS Filter Factors

Test problem gravity:

violin plots of E
((

ϕ
(k)
i

)2)
, together with

• the noise-free
(
ϕ̄
(k)
i

)2
� the sample mean of E

((
ϕ
(k)
i

)2)
.

This motivates the approximation for the propagated noise:

E(∥A#
k e∥

2
2) ≈ η2

n∑
i=1

(
ϕ̄
(k)
i

)2
σ2
i

.
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Statistics of the Noise Error: The Deviation

For the deviation (A#
k − Ā#

k )b̄, recall that the �lter factors Φ̄k in

Ā#
k = V Φ̄kΣ

−1U⊤ are di�erent from those Φk of A#
k = VΦkΣ

−1U⊤.

E
(
∥(A#

k − Ā#
k )b̄∥

2
2

)
=

n∑
i=1

E
((

ϕ
(k)
i − ϕ̄

(k)
i

)2) β̄2
i

σ2
i

.

Approximation ϕ
(k)
i ≈ ϕ̄

(k)
k is no good here → numer. exp. (gravity):

violin plots of
(
ϕ
(k)
i − ϕ̄

(k)
i

)2 β̄2i
σ2i

� the sample mean of its expected value.

We can use the sample mean (it is quite small).
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Putting It Together

Fat solid brown lines: expected values.

While the deviation (A#
k − Ā#

k )b̄ is part of the CGLS noise error, we can

often ignore it and consider only the iteration error and the propagated

noise A#
k e. We cannot guarantee that ∥A#

k e∥
2
2 is monotonic.
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Conclusions

New insight from a (simple) statistical analysis:

The noise error is very likely to grow for regularizing iterations.

Semi-convergence is therefore very likely to occur.

For CGLS, we introduce a novel splitting of the noise error into a

propagated noise term A#
k e and deviation term (A#

k − Ā#
k )b̄, the latter

typically being small.

Next steps: GMRES and Kaczmarz.
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Appendix: Our Test Problems

We use these test problems from Regularization Tools:

blur � Gaussian image deblurring with an N × N image. The singular

values have a very slow exponential decay; the cond. number is 31.

gravity � 1D gravity surveying problem; the matrix is 128× 128.

The singular values decay approximately as e−0.7i .

heat � Inverse heat equation problem; the matrix is 128× 128. The

singular values decay exponentially from 0.3 to 10−6.

phillips � Test problem with no origin in applications; the matrix is

128× 128. The singular values decay approximately as i−3.

We also use the X-ray tomography test problem paralleltomotomo from

from AIR Tools II with a 64× 64 phantom, 64 detector pixels, and view

angles 2.5◦, 5◦, . . . , 180◦. The leading singular values decay as i−1/4 while

the trailing ones decay faster; the condition number is 2 392.
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Appendix: When the Singular Values Decay Slowly

For a slow decay of the singular values (e.g., for mildly ill-posed problems)

CGLS does not necessarily make Rk(σ
2
i ) ≈ 0 at the k largest β2

i .

Instead, it will place the k roots such that the polynomial is small for many

more than k pairs of (σ2
i , β

2
i ). This dampens the contributions to ∥rk∥2 for

many SVD components over a large interval.

Example blur: for k = 6 the �rst 80 �lter factors are between 0.8 and 1.2

meaning that we capture about 80 components in the 6th iteration vector.
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