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The Tokamak Reactor

A tokamak uses a magnetic field to con-
fine plasma, with a temperature of several

million °C, in the shape of a torus.

The plasma typically consists of deuterium

(D, a hydrogen isotope).

The energy produced through fusion is
absorbed as heat in the walls. This heat
produces electricity by way of turbines and

generators.

To reach fusion conditions the plasma is heated:
« by launching radio waves into the plasma,
« by Ohmic heating (the plasma behaves as

a current),

* by injecting neutral particles (i.e., particles
with no electric charge) into the plasma.
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Inner poloidal field coils
(Primary transformer circuit)
Poloidal magnetic field Outer poloidal field coils
(for plasma positioning and shaping)

Resulting helical magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)
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International Thermonuclear
Experimental Reactor

Planned for late 2025 (?)

China, EU, India, Japan, Russia,
South Korea, USA

PARIS

china eu india japan korea russia usa
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Neutral-Beam Injector (NBI)

i

Scientist

ITER’s external heating system consists of gigantic
neutral beam injectors.

They shoot high-energy electrically neutral atoms,
“neutrals,” into the plasma - thus transferring
energy to the plasma particles.
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Distribution of Plasma Velocities
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Locally, the magnetic field is uniform and each deuterium ion @ in the
plasma moves in a helix along the magnetic field B:

e v denotes the velocity along the field.

e v, denotes the tangential speed (the radial speed is zero).

We want to know the probability distribution f(v),v).
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DTU
Towards the Inverse Problem =

When fast plasma ions pass through the neutral beam, they undergo a reaction
that creates a newly-born fast neutral and a photon.

Vp % o
Q K\O

U,.
% A
U=

- newly-born fast neutral

¥ Fast deuterium ion

,qobser'ver

Image: Birgitte Madsen

The photons are Doppler-shifted depending on the velocity of the fast ion.

The inverse problem:
By measuring the Doppler-shift, we can infer about the wvelocity of the fast ion.
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The Inverse Problem, Part1 =

On a spectral detector, we measure the intensity per wavelength I(X, ) of the
photons, as a function of their wavelength A.

This intensity also depends on the angle ¢ between the magnetic field B and
the line-of-sight u to the photon detector.

The measurements are related to the velocity distribution f(vy,v1) via the
integral

I(A7¢) — /() /_ k()‘7¢;v||7vJ_)f(vHaUJ-)dUH dvy ,

in which the kernel is given by

kA, o5 vp,v1) = Ry, v) m(A | o, v, v1)
R(v),v1) = total intensity for any wavelength

m(A| @,v),v1) = probability density function for A
For simplicity, we consider R a constant — leading to a simpler “proxi model.”
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The Inverse Problem, Part 11
Recall there is a Dopple shift, which we can write

A A— A
)\—)\D:u = & u=c ;) =
C D

i

where A\p = 656.1 nm, ¢ = speed of light, and u = the ion’s velocity component
along the line-of-sight u to the detector. We now switch to the formulation

I(u, o) :/0 / k(u, d;v),v1) f(y,ve) dyydo

with

k(u,gb;’U”,UJ_) ZR(U||,UJ_)7T(U|¢,U||,UJ_) .

Again we assume R(v), v ) is a constant, and

I u=y coso\*\ "
7T(U|¢7U||7UL)Z7TUJ_ 1_( v, Sin ¢ ) |

See, e.g., Salewski et al. (2014) for a derivation of this.
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The Inverse Problem, Part III =

Note that each measurement, for a given pair of velocity u; and measurement
angle ¢y, can be written as

1 oe)
I<uk7¢€) — /_1/0 K<uk7¢€;v||7UJ_) f(/UH7@J_)d,U|| va— .

Here, K (uy, ¢o;v),v1) is called the weight function for measurement (k, ).
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9 P. C. Hansen - Tomoraphy in Tokamak Plasmas IMA IP Edinburgh, May 2022



HE

Discretization

The discretized problem takes the usual form | Ax = b|.

o We discretize the unknown function f(v),f1) on a grid, and stack the
values in the vector x of unknowns.

e For each measurement angle ¢ we measure I(u, ¢) for discrete values of u,
and we stack all these measurements of I in the vector b.

e The coefficient matrix (system or weight matrix) A contains discrete values
of the kernel k(u, ¢;v),v1) — each row represents one weight function.

Typical sizes of the ingredients:
e 100 values of u and 5 detectors (each with its own ¢) — 500 data elements.
o (v,vy) discretised, say, in a 20 x 20 grid — 400 unknowns.
e The matrix A is therefore m x n with m =~ 500 and n = 400.

Hence we deal with a small-scale problem.
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Reconstructions

Plain vanialla Tikhonov regularization with non-negativity constraints:

min |[[Az — bljs + &*|z|3 st. x>0,
X

HE

Simulation Reconstruction Simulation
[ R 8 ISR 8 - ' \ 8
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2 2 2
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v, [10° m/s] v, [10° m/s]
(a) (b)

From Salewski et al. (2017).
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Py = 69°

¢ = 103°

A Convenient Reformulation

DTU

T
R
<

Instead of working with the velocity distribution in the form f(v,vy), the
physicists often prefer a transformation of variables to energy E and pitch p:

= l/2mp v*

,/ +vL,

2

p:v”/v

mp = mass of deuterium ion

and instead work with the distribution function F(FE,p):

12

1 o0
1(u,¢)=/_1/0 K(u,¢; E,p) F(E,p)dEdp .

o

E |‘<.E"a| E fxf"|

‘@l
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The weight functions
' K (ug, ¢r; F, p) for four
different Doppler shifts

a0 40
E [keif]
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‘ Salewski et al. (2018).
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Utilizing Knowledge about the Physics

HE

Tikhonov regularization in general form, with constraint:

min ||Az — b||s + oL z||3 s.t. x>0,
T

where o = a(F, p) may depend on energy and pitch; Salewski et al. (2016).
Prior Benefit Risk

x>0 Improves solution x < 0 could diagnose data error

L ~ 1. deriv  Gives

smooth solutions  Misses spikes and ridges

a(E, p) Accounts for NBI peaks Might introduce spurious peaks.
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Physics Prior via Slowing-Down Functions =

Instead of working with a standard “pixel basis” for F'(E, p), we can use suited
basis functions ¥y, 9, ..., ¥, , and write the reconstruction

F(Eap) — Z?idl Cy ¢3(Eap) y
The discretized and regularized problem for {c;} then takes the basic form

min ||A V¢ — bl|3 + o?||c||5 , U e R?XMsd r=Vc,
(&

1=

T 1
i Ej=21keV | @™
where the columns of W are samples of the 0 %, pf ISR T .
. . . . _ J : _
basis functions 1; = slowing down functions. % o & 5T,
r . B = 43keV
05| ¢ , 05| 7 J 0.3
. . . . . iy =0
Each 1); is a distribution F' excited by a 9- s S ]
function d(u;, ¢,) corresponding to (E;,p;), o o
revealing how the plasma ions “slow down” | Bty -l
- 1 py = —0.77 -
due to collisions. = |y iz,
. . i 2 05 EJ = 63keV
Hence, the basis functions 1); represent the | ) Y|/ py =044
phySiCS of the plasma, o 20 0 e 80 o 20 40 60 80
E [keV] E [keV]
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Interpretation of Basis with Physics Prior

The case ngg = n

U is square and we assume it has full rank. Recall z = V¢ & c= U lg:

min [ATe—bJ3 + a2} o
C

min ||Ax — bH% + a2|]\11_1xH§ :
X

We can interpret the use of U as a regularizer U~! for z in the reg. term.

In the Bayesian framework, the regulariza-
tion term || ¥ ~1z||5 represents a Gaussian
prior for x with covariance matrix

Cp = (2 HTo N = 2007

This C, ensures smoothness by correlating
a given pixel to the pixels in its vicinity.

Rows of C, reshaped to (F,p) domain
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Interpretation, Part 11

And now: the standard-form transformation

min[|Az — b3 +o*|Lz]} & mgn!\(ALZ)i—b|\§+a2l\£H§

where { = Lx & = L;f , and LL = A-weighted pseudoinverse of L.

The case on the previous slide (n = ngq) is a special case in which
L=0"1 and Ly=L"1=0.

The case ngg > n

The matrix ¥ is “obese” and we assume it has full row rank. Then
L=U" because L', =LT= (IO =@

and
Cp = (2(INTIN™L =20 T | similar to before.
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Interpretation, Part III  ongoing work =

The case ngg < n

U is “tall & skinny” and we assume full row rank. How to interpret this case?

1| Can we determine a matrix L such that LZ = U? Nonlinear problem. (%)

|—> Betsur!
2 | Write
R

U=(Q, Qo) <0> =QR, range(Qo) = range(¥)" = null(¥7) .

Let P = Qo Q} = orthogonal projector on null(¥?1). For a general z:
r=Uc+Qow < QRc=z—-Quw < c¢c=R'Qla=0zx.
We want x € range(V) and hence Qo w = Px = 0, and we arrive at

min || Az — b||2 + o?|| T 2|2 s.t. Pr=0.

and
Cp = (@2(UNTINL = o720 UT | similar to before.
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The Covariance Matrix for a "Skinny” Basis §

Recap: the reason for studying the standard-form transformation is not for
computations, but in order to interpret the role of the basis W via

e the regularization term o? ||¥7z||3  (possibly with constraint P x = 0),

e the covariance matrix C, = a 20U U7,

We continue with the case where ¥ € R62°X170 jg “¢3]] & skinny,” i.e., we have
fewer basis functions v; than the number of unknowns (pixels in the image).

Rows of C,, reshaped to (E, p) ﬁ '

domain; as before, they repre-

sent local averaging. ' [

For lower energy E the cor-
relation in pitch p increases. -
This confirms the intuition of .

the physicists. o [ ]
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Conclusions

HE

Tikhonov regularization is perhaps “old school” but it works well here.

The slowing-down functions provide a set of basis vectors that represent
the behavior of the ions in the plasma.

Via a standard-form transformation paradigm we can regirously interpret
the use of these basis functions as imposing local smoothing regularization.

The specific smoothing that we observe confirms the intuition of the
physicists.

Next steps: further studies of the insight provided by this interpretation,
and GSVD analysis of the pair (A,¥") , uncertainty quantification.
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