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Abstract—Algebraic models for the reconstruction problem in  are common, depending on the measurement setup. The matrix
X-ray computed tomography (CT) provide a flexible framework AT represents the so-called back projector which maps the

that applies to many measurement geometries. For large-scale .10 hack onto the solution domain [21]: it plays a central
problems we need to use iterative solvers, and we need stopping

rules for these methods that terminate the iterations when role in filtered back projection and similar methods.
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Computed Tomography & Iterative Methods

Used in medical imaging, industrial
inspection, materials science, ...

Algebraic Iterative Reconstruction (AIR) |

The reconstruction problem is formulated as a
discretized problem A x = b that is solved by
an iterative method, such as:

Landweber: x,11 = 2, + w AL (b— Axy), w = relaxation parameter,
SIRT: 2441 =2 +wDATM (b— Axy), D and M diagonal matrices.

e Can use fast implementation of forward & back projections A and A*.
e Well suited for noisy data and/or underdetermined problems.
e Easy to incorporate non-negativity or box constraints.

e Rely on semi-convergence and a stopping rule.
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Semi-Convergence

Notation Reconstruction error versus number of iterations

b=AZx+e,
x = exact solution,
e = noise.

Initially
the reconstruction error
|xr — Z||2 decreases.

Later
the error increases and
X} — Noisy solution.

Need to stop at the
transition point!
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Stopping Rules I see the paper for details

Set the stage
e For each AIR method there is a matrix Azé such that x; = Ak#b.
e Define trace t; = trace(A Ak_#) and residual norm pg = ||Axx — bl|2.

e Assume that the noise is Gaussian: e ~ N(0,n?I).

The trace t; can be estimated by Monte Carlo techniques that involve an
additional random right-hand side and thus double the amount of work.

FTNL (fit to noise level):
stop as soon as p; < n?(m—1t;), m=size(4,?2)

This is the classical “discrepancy principle” if we neglect .
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Stopping RUIeS II Noise-free

=

Two methods that seek to minimize the prediction error |[(AZ) — A k|2

UPRE (unbiased predictive risk estimation):

minimize p3 + 27 (tx, —m)

GCV (generalized cross valiation):

minimize p? / (m — ty)?

Identify when all relevant information is extracted from the noisy data b,
i.e., when the residual A x; — b resembles the white noise.

NCP (normalized cumulative periodogram):

stop when the residual’s power spectrum is flat

No need for t;, or 1*. Needs just one FFT for each iteration.
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Numerical Example

HE

We simulate nano-CT reconstruction of a piece of chalk — a porous material -
from the North Sea Basin (i.e., we know the ground-truth image).
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NCP is consistently doing well, for all noise levels and all amounts of data.
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Numerical Example - Reconstructions

Reconstructions ofter different number of iterations:

Too few iterations, Optimal number Stopped by NCP. Too many iterations,
lack of details. of iterations. , noisy reconstruction.
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Conclusions

» We surveyed state-of-the-art stopping rules for AIR methods in CT.
e They aim to terminate the iterations at the point of semi-convergence.
» They are easy to use and integrate in existing software.

e We illustrated the use of the methods for a realistic CT problem,
related to the study of multiphase flow in chalk.

» The NCP stopping rule works well for this problem, and it does not
depend on knowledge of the noise level.
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