Limited-Data CT for Underwater Pipeline Inspection

Nicolai André Brogaard Riis (nabr@dtu.dk)

Tuesday 24th September, 2019 IDA Matematik 2019, Copenhagen, Denmark.

Industrial collaborator:

Joint work with:

Per Christian Hansen, Yiqiu Dong – Technical University of Denmark

Jacob Frøsig, Rasmus D. Kongskov – 3Shape

Torben Klit Pedersen – FORCE Technology

Arvid P. L. Böttiger – Exensor Technology

Jürgen Frikel - OTH Regensburg

Todd Quinto - Tufts University

DTU Compute

Department of Applied Mathematics and Computer Science

 $f(x+\Delta x) = \sum_{i=1}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$

DTU

Alternative to ultrasound: use X-ray scanning to compute cross-sectional images of oil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.

Illustration courtesy of FORCE Technology.

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning

DTU

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning to the subsea-inspektion-konstruktion-levetid-reparation-planlaegning to the subsea-inspektion and the subsea-inspection and

DTU

Comparing Geometries

DTU

Limitations in the scanner device

Data: Narrow high intensity X-Ray beam \rightarrow available from a limited view.

Goal: Design set-up to capture as much detail of the pipe as possible.

Full illumination Not possible Centered Possible set-up

Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

Comparing Geometries

DTU

Limitations in the scanner device

Data: Narrow high intensity X-Ray beam \rightarrow available from a limited view.

Goal: Design set-up to capture as much detail of the pipe as possible.

Full illumination Not possible Centered Possible set-up

Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019

Continuous formulation, limited data

The measured projections g for the object f are described by

$$g(\theta, s) = (\mathcal{R}^{\ell} f)(\theta, s) + \mathsf{noise}$$

where $(\mathcal{R}^{\ell}f)(\theta, s) = (\mathcal{R}f)(\theta, s)$ for those pairs (θ, s) corresponding to the ℓ imited illumination, and \mathcal{R} is the Radon transform.

Corresponding algebraic model

The measured data \boldsymbol{b} for a discretized object \boldsymbol{x} is described by

$$oldsymbol{b} = oldsymbol{A}^\ell oldsymbol{x} + oldsymbol{e}, \qquad oldsymbol{b} \in \mathbb{R}^m, \qquad oldsymbol{x} \in \mathbb{R}^n, \qquad oldsymbol{A}^\ell \in \mathbb{R}^{m imes n},$$

where $e \in \mathbb{R}^m$ with $e_i \sim N(0, \sigma^2)$ and A^{ℓ} is the discretion of \mathcal{R}^{ℓ} .

Full and Two Different Limited Illuminations

Source location

Source location

Source location

Characterising What We Can Measure - Centered Beam

Microlocal analysis: a singularity at position χ with direction ξ is visible if and only if data from the line through χ perpendicular to ξ is present.

Measured data from one view/projection.

 \bigcirc

Visible from one view/projection.

Visible from all views/projections.

Characterising What We Can Measure - Off-Center Beam

Microlocal analysis: a singularity at position χ with direction ξ is visible if and only if data from the line through χ perpendicular to ξ is present.

Measured data from one view/projection.

Visible from one view/projection.

Visible from all views/projections.

We need a robust algorithm that can utilize all information in the data.

Use the algebraic system

 $oldsymbol{b} = oldsymbol{A}^\ell \, oldsymbol{x} + \mathbf{e}, \qquad oldsymbol{b} \in \mathbb{R}^m, \qquad oldsymbol{x} \in \mathbb{R}^n, \qquad oldsymbol{A}^\ell \in \mathbb{R}^{m imes n}.$

and compute a sparse representation of the solution x in a "basis" that is well suited for the problem.

If we can represent x with few non-zero basis functions, we have fewer unknowns to determine \rightarrow same data, fewer unknowns, "easier" problem.

Representing pipe in a sparse "basis"

Frame decomposition Given an object, x, we decompose it into building blocks

$$oldsymbol{x} = \sum_{\mu} c_{\mu} oldsymbol{arphi}_{\mu},$$

where φ_{μ} are the building blocks and $c_{\mu} = \langle x, \varphi_{\mu} \rangle$. are coefficients. *If the object is fully represented by few building blocks, we have a sparse representation.

Representing pipe in a sparse "basis"

Frame decomposition Given an object, x, we decompose it into building blocks

$$oldsymbol{x} = \sum_{\mu} c_{\mu} oldsymbol{arphi}_{\mu},$$

where φ_{μ} are the building blocks and $c_{\mu} = \langle x, \varphi_{\mu} \rangle$. are coefficients. *If the object is fully represented by few building blocks, we have a sparse representation.

Example:

Representing pipe in a sparse "basis"

Frame decomposition Given an object, x, we decompose it into building blocks

$$oldsymbol{x} = \sum_{\mu} c_{\mu} oldsymbol{arphi}_{\mu},$$

where φ_{μ} are the building blocks and $c_{\mu} = \langle x, \varphi_{\mu} \rangle$. are coefficients. *If the object is fully represented by few building blocks, we have a sparse representation.

Example:

Why is this useful?

Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

0 $+ c_{3}$ $+ c_{2}$ c_1 Decompose $+c_4$ $+ c_{5}$ Too strong prior!

Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

0 $+ c_{3}$ $+ c_2$ c_1 Decompose $+c_4$ $+ c_{5}$ Too strong prior! Not all images are fully represented by the decompositon.

Shearlets: A tight frame

Tight frames, $\mathbf{\Phi} = ig\{ arphi_\mu ig\}$, generalises ONB, i.e., for all images x we have

$$oldsymbol{x} = \sum_{\mu} \langle oldsymbol{x}, oldsymbol{arphi}_{\mu}
angle oldsymbol{arphi}_{\mu}.$$

Examples of 2D Shearlets:

Shearlets yield a sparse representation of defects, contours, etc.

Shearlet-based optimization problem

Recall discrete model of scanning process: $m{b} = m{A}^\ell \, m{x} + f{e}.$

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

$$\arg\min_{\mathbf{x} \ge \mathbf{0}} \frac{1}{2} \| \mathbf{A}^{\ell} \mathbf{x} - \mathbf{b} \|_{2}^{2} + \alpha \| \mathbf{W} \mathbf{c} \|_{1},$$

s.t. $\mathbf{c} = \mathbf{\Phi} \mathbf{x}$

with $\alpha > 0$ regularization parameter, $\mathbf{W} = \text{diag}(w_i) \in \mathbb{R}^{p \times p}$ with weights $w_i > 0$, $\mathbf{\Phi} \in \mathbb{R}^{p \times n}$ is the shearlet analysis transform and $c_{\mu} = \langle \boldsymbol{x}, \boldsymbol{\varphi}_{\mu} \rangle$ are coefficients.

Shearlet transform contains the basis functions: $\mathbf{\Phi}^T = \begin{bmatrix} \varphi_1, & \dots, & \varphi_p \end{bmatrix}$.

Recall discrete model of scanning process: $m{b} = m{A}^\ell \, m{x} + \mathbf{e}.$

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

$$\arg\min_{\mathbf{x} \ge \mathbf{0}} \frac{1}{2} \| \mathbf{A}^{\ell} \mathbf{x} - \mathbf{b} \|_{2}^{2} + \alpha \| \mathbf{W} \mathbf{c} \|_{1},$$

s.t. $\mathbf{c} = \mathbf{\Phi} \mathbf{x}$

with $\alpha > 0$ regularization parameter, $\mathbf{W} = \text{diag}(w_i) \in \mathbb{R}^{p \times p}$ with weights $w_i > 0$, $\mathbf{\Phi} \in \mathbb{R}^{p \times n}$ is the shearlet analysis transform and $c_{\mu} = \langle \boldsymbol{x}, \boldsymbol{\varphi}_{\mu} \rangle$ are coefficients.

Shearlet transform contains the basis functions: $\Phi^T = [\varphi_1, \dots, \varphi_p]$. Data-fitting

Recall discrete model of scanning process: $m{b} = m{A}^\ell \, m{x} + \mathbf{e}.$

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

$$\arg\min_{\mathbf{x} \ge \mathbf{0}} \frac{1}{2} \| \mathbf{A}^{\ell} \mathbf{x} - \mathbf{b} \|_{2}^{2} + \alpha \| \mathbf{W} \mathbf{c} \|_{1},$$

s.t. $\mathbf{c} = \mathbf{\Phi} \mathbf{x}$

with $\alpha > 0$ regularization parameter, $\mathbf{W} = \text{diag}(w_i) \in \mathbb{R}^{p \times p}$ with weights $w_i > 0$, $\mathbf{\Phi} \in \mathbb{R}^{p \times n}$ is the shearlet analysis transform and $c_{\mu} = \langle \boldsymbol{x}, \boldsymbol{\varphi}_{\mu} \rangle$ are coefficients.

Shearlet transform contains the basis functions: $\Phi^T = [\varphi_1, \dots, \varphi_p]$. Weighted sparsity penalty on shearlet coefficients

Final algorithm

Recall optimization problem:

$$\begin{split} &\arg\min_{\mathbf{x}\geq\mathbf{0}}\frac{1}{2}\|\boldsymbol{A}^{\ell}\mathbf{x}-\mathbf{b}\|_{2}^{2}+\alpha\|\mathbf{W}\mathbf{c}\|_{1},\\ &\text{s.t. }\mathbf{c}=\boldsymbol{\Phi}\boldsymbol{x} \end{split}$$

ADMM-based algorithm

We solve it using the ADMM method [Boyd et. al. 2011]. Auxiliary variable $\mathbf{c}=\Phi\mathbf{x}.$ Iterative updates:

$$\begin{split} \mathbf{x}^{k+1} &:= \min_{\mathbf{x} \ge \mathbf{0}} \quad \frac{1}{2} \| \mathbf{A}^{\ell} \, \mathbf{x} - \mathbf{b} \|_{2}^{2} + \frac{\rho}{2} \| \mathbf{\Phi} \, \mathbf{x} - \mathbf{c}^{k} + \mathbf{u}^{k} \|_{2}^{2}, \\ \mathbf{c}^{k+1} &:= \min_{\mathbf{c}} \quad \alpha \| \mathbf{W} \, \mathbf{c} \|_{1} + \frac{\rho}{2} \| \mathbf{\Phi} \, \mathbf{x}^{k+1} - \mathbf{c} + \mathbf{u}^{k} \|_{2}^{2}, \\ \mathbf{u}^{k+1} &:= \mathbf{u}^{k} + \mathbf{\Phi} \, \mathbf{x}^{k+1} - \mathbf{c}^{k+1}, \end{split}$$

where ${\bf u}$ are the scaled Lagrange multipliers and $\rho>0$ the penalty parameter.

The updates are calculated using: \mathbf{x}^{k+1} : CGLS + non-negativity projection. \mathbf{c}^{k+1} : Element-wise soft thresholding.

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning to the subsea-inspektion-konstruktion-levetid-reparation-planlaegning to the subsea-inspektion and the subsea-inspection and

DTU

Synthetic and measured data from both geometries

Reconstructions from Real Data – Both Geometries

Centered beam: there are many artifacts.

Off-center beam: singularities are easy to detect; artifacts are reduced.

18 DTU Compute

Reconstructions from Real Data – Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg.

Our alg.

Reconstructions from Real Data – Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

 $\arg\min_{\mathbf{x} \ge \mathbf{0}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \lambda \|\nabla \boldsymbol{x}\|_{2,1}$

Our alg.

Centered Versus Off-Center Beam

	Centered beam	Off-center beam
Pros	Good reconstruction in the	Captures singularities out-
	center domain.	side the center domain.
Cons	Terrible reconstruction outside	Less good reconstruction in
	the center domain.	the center domain.
Comments	Requires less projections be-	Requires more projections to
	cause the center domain is well	give good reconstruction ev-
	covered by rays.	erywhere.
		Better suited for this applica-
		tion.

Conclusions

- For technical reasons the X-ray beam cannot cover the whole pipe.
- An off-centered beam can give a satisfactory reconstruction.
- A weighted shearlets-based sparsity penalty gives better reconstructions especially with few projections.
- It is important to include weights in the sparsity penalty.

Future work:

- Optimize the algorithm for performance and robustness.
- Design heuristics for choosing the weights and the reg. parameter.
- Derive more theory for the continuous model with limited data.
- Quantify the uncertainties in the model and the solution.

Conclusions

- For technical reasons the X-ray beam cannot cover the whole pipe.
- An off-centered beam can give a satisfactory reconstruction.
- A weighted shearlets-based sparsity penalty gives better reconstructions especially with few projections.
- It is important to include weights in the sparsity penalty.

Future work:

- Optimize the algorithm for performance and robustness.
- Design heuristics for choosing the weights and the reg. parameter.
- Derive more theory for the continuous model with limited data.
- Quantify the uncertainties in the model and the solution.

Introduction Formulation of problem

$$oldsymbol{b} = \mathbf{A}(oldsymbol{ heta}) \, \mathbf{x} + \mathbf{e}, \quad oldsymbol{ heta} \sim \pi_{oldsymbol{ heta}}(\cdot), \, \mathbf{e} \sim \pi_{\mathbf{e}}(\cdot).$$

Measured / fixed:

 $m{b} \in \mathbb{R}^m$: measured noisy sinogram. $\mathbf{A} \in \mathbb{R}^{m imes n}$: discretized Radon transform.

Known but with uncertainty:

 $oldsymbol{ heta} \in \mathbb{R}^q$: view angles. $\mathbf{e} \in \mathbb{R}^m$: measurement noise.

Unknown:

 $\mathbf{x} \in \mathbb{R}^n$: attenuation coefficients.

DTU

(1)

Introduction Formulation of problem

Uncertain view angle CT

$$oldsymbol{b} = \mathbf{A}(oldsymbol{ heta}) \, \mathbf{x} + \mathbf{e}, \quad oldsymbol{ heta} \sim \pi_{oldsymbol{ heta}}(\cdot), \, \mathbf{e} \sim \pi_{\mathbf{e}}(\cdot).$$

Measured / fixed:

 $m{b} \in \mathbb{R}^m$: measured noisy sinogram. $\mathbf{A} \in \mathbb{R}^{m imes n}$: discretized Radon transform.

Known but with uncertainty:

 $oldsymbol{ heta} \in \mathbb{R}^q$: view angles. $\mathbf{e} \in \mathbb{R}^m$: measurement noise.

Unknown:

 $\mathbf{x} \in \mathbb{R}^n$: attenuation coefficients.

Actual data comes from $b := \mathbf{A}(\overline{\boldsymbol{\theta}}) \mathbf{x} + \mathbf{e}^{\text{noise}}$.

(1)

Introduction Formulation of problem

(1)

Uncertain view angle CT

$$\boldsymbol{b} = \mathbf{A}(\boldsymbol{\theta}) \mathbf{x} + \mathbf{e}, \quad \boldsymbol{\theta} \sim \pi_{\boldsymbol{\theta}}(\cdot), \, \mathbf{e} \sim \pi_{\mathbf{e}}(\cdot).$$

Goal: Reconstruct x from b with uncertainty in θ and e!

Applications:

Inaccuracies in rotation, patient motion etc.

Introduction Early results

Introduction Early results 2

Introduction Ongoing Research - Uncertain View Angles

- Large scale problems $(2D \rightarrow 3D)$
- Apply to pipe scanner (with shearlet regularizer)

Thank you!

Contact: Nicolai André Brogaard Riis nabr@dtu.dk DTU Compute Building 303B Room 118