Limited-Data CT for Underwater Pipeline Inspection

Nicolai André Brogaard Riis (nabr@dtu.dk)

Tuesday 24th September, 2019
IDA Matematik 2019, Copenhagen, Denmark.

Industrial collaborator:

Joint work with:
Per Christian Hansen, Yiqiu Dong – Technical University of Denmark
Jacob Frøsig, Rasmus D. Kongskov – 3Shape
Torben Klit Pedersen – FORCE Technology
Arvid P. L. Böttiger – Exensor Technology
Jürgen Frikel – OTH Regensburg
Todd Quinto – Tufts University

DTU Compute
Department of Applied Mathematics and Computer Science
Subsea CT-Scanner by FORCE Technology, Denmark

Alternative to ultrasound: use X-ray scanning to compute cross-sectional images of oil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.

Illustration courtesy of FORCE Technology.
Subsea CT-Scanner by FORCE Technology, Denmark

Subsea CT-Scanner by FORCE Technology, Denmark

Comparing Geometries

Limitations in the scanner device

Data: Narrow high intensity X-Ray beam → available from a limited view.

Goal: Design set-up to capture as much detail of the pipe as possible.

Full illumination Not possible

Centered Possible set-up

Off-centered Possible set-up

Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection
Comparing Geometries

Limitations in the scanner device

Data: Narrow high intensity X-Ray beam → available from a limited view.

Goal: Design set-up to capture as much detail of the pipe as possible.
The Computed Tomography Forward Model

Continuous formulation, limited data

The measured projections \(g \) for the object \(f \) are described by

\[
g(\theta, s) = (\mathcal{R}\ell f)(\theta, s) + \text{noise}
\]

where \((\mathcal{R}\ell f)(\theta, s) = (\mathcal{R}f)(\theta, s)\) for those pairs \((\theta, s)\) corresponding to the \(\ell\)imited illumination, and \(\mathcal{R}\) is the Radon transform.

Corresponding algebraic model

The measured data \(b \) for a discretized object \(x \) is described by

\[
b = A\ell x + e,
\]

\(b \in \mathbb{R}^m \), \(x \in \mathbb{R}^n \), \(A\ell \in \mathbb{R}^{m \times n} \),

where \(e \in \mathbb{R}^m \) with \(e_i \sim N(0, \sigma^2) \) and \(A\ell \) is the discretion of \(\mathcal{R}\ell \).
Full and Two Different Limited Illuminations
Characterising What We Can Measure – Centered Beam

Microlocal analysis: a singularity at position χ with direction ξ is visible if and only if data from the line through χ perpendicular to ξ is present.

Measured data from one view/projection.

Visible from one view/projection.

Visible from all views/projections.
Characterising What We Can Measure – Off-Center Beam

Microlocal analysis: a singularity at position χ with direction ξ is visible if and only if data from the line through χ perpendicular to ξ is present.

Measured data from one view/projection.

Visible from one view/projection.

Visible from all views/projections.
Reconstruction: Incorporating Sparsity

We need a robust algorithm that can utilize all information in the data.

Use the algebraic system

\[b = A^\ell \, x + e, \quad b \in \mathbb{R}^m, \quad x \in \mathbb{R}^n, \quad A^\ell \in \mathbb{R}^{m \times n}. \]

and compute a sparse representation of the solution \(x \) in a “basis” that is well suited for the problem.

If we can represent \(x \) with few non-zero basis functions, we have fewer unknowns to determine → same data, fewer unknowns, “easier” problem.
Representing pipe in a sparse “basis”

Frame decomposition Given an object, \(x \), we decompose it into building blocks

\[x = \sum_{\mu} c_\mu \varphi_\mu, \]

where \(\varphi_\mu \) are the building blocks and \(c_\mu = \langle x, \varphi_\mu \rangle \). are coefficients.

If the object is fully represented by few building blocks, we have a sparse representation.
Representing pipe in a sparse “basis”

Frame decomposition Given an object, \(x \), we decompose it into building blocks

\[
x = \sum_{\mu} c_\mu \varphi_\mu,
\]

where \(\varphi_\mu \) are the building blocks and \(c_\mu = \langle x, \varphi_\mu \rangle \). are coefficients.

*If the object is fully represented by few building blocks, we have a sparse representation.

Example:
Representing pipe in a sparse “basis”

Frame decomposition Given an object, \mathbf{x}, we decompose it into building blocks

$$\mathbf{x} = \sum_{\mu} c_{\mu} \varphi_{\mu},$$

where φ_{μ} are the building blocks and $c_{\mu} = \langle \mathbf{x}, \varphi_{\mu} \rangle$ are coefficients.

*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

\[
\begin{align*}
\text{circle} & = c_1 + c_2 + c_3 + c_4 + c_5 \\
\end{align*}
\]

Why is this useful?
Why enforce sparsity of frame coefficients?

Noise/ artefact reduction:

Decompose

\[c_1 + c_2 + c_3 + c_4 + c_5 = \]

\[\begin{array}{c}
\text{Decompose} \\
\text{Why enforce sparsity of frame coefficients?}
\end{array} \]
Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

分解

$c_1 + c_2 + c_3$

$c_4 + c_5$

$= $
Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

- Decompose
- $c_1 + c_2 + c_3$
- $+ c_4 + c_5 = c_1$

Too strong prior!
Not all images are fully represented by the decomposition.
Shearlets: A tight frame

Tight frames, $\Phi = \{ \varphi_\mu \}$, generalises ONB, i.e., for all images x we have

$$x = \sum_\mu \langle x, \varphi_\mu \rangle \varphi_\mu.$$

Examples of 2D Shearlets:

Shearlets yield a sparse representation of defects, contours, etc.
Shearlet-based optimization problem

Recall discrete model of scanning process: \(b = A^\ell x + e. \)

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

\[
\begin{align*}
\arg \min_{x \geq 0} & \quad \frac{1}{2} \| A^\ell x - b \|_2^2 + \alpha \| W c \|_1, \\
\text{s.t.} & \quad c = \Phi x
\end{align*}
\]

with \(\alpha > 0 \) regularization parameter, \(W = \text{diag}(w_i) \in \mathbb{R}^{p \times p} \) with weights \(w_i > 0 \), \(\Phi \in \mathbb{R}^{p \times n} \) is the shearlet analysis transform and \(c_\mu = \langle x, \varphi_\mu \rangle \) are coefficients.

Shearlet transform contains the basis functions: \(\Phi^T = [\varphi_1, \ldots, \varphi_p] \).
Shearlet-based optimization problem

Recall discrete model of scanning process: $b = A^\ell x + e$.

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

$$\arg\min_{x \geq 0} \frac{1}{2} \| A^\ell x - b \|_2^2 + \alpha \| W c \|_1,$$

s.t. $c = \Phi x$

with $\alpha > 0$ regularization parameter, $W = \text{diag}(w_i) \in \mathbb{R}^{p \times p}$ with weights $w_i > 0$, $\Phi \in \mathbb{R}^{P \times n}$ is the shearlet analysis transform and $c_\mu = \langle x, \varphi_\mu \rangle$ are coefficients.

Shearlet transform contains the basis functions: $\Phi^T = [\varphi_1, \ldots, \varphi_p]$.

Data-fitting
Shearlet-based optimization problem

Recall discrete model of scanning process: \(\mathbf{b} = \mathbf{A}^{\ell} \mathbf{x} + \mathbf{e} \).

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

\[
\begin{align*}
\arg \min_{\mathbf{x} \geq 0} & \quad \frac{1}{2} \| \mathbf{A}^{\ell} \mathbf{x} - \mathbf{b} \|_2^2 + \alpha \| \mathbf{W} \mathbf{c} \|_1, \\
\text{s.t.} & \quad \mathbf{c} = \mathbf{\Phi} \mathbf{x}
\end{align*}
\]

with \(\alpha > 0 \) regularization parameter, \(\mathbf{W} = \text{diag}(w_i) \in \mathbb{R}^{p \times p} \) with weights \(w_i > 0 \), \(\mathbf{\Phi} \in \mathbb{R}^{p \times n} \) is the shearlet analysis transform and \(c_\mu = \langle \mathbf{x}, \varphi_\mu \rangle \) are coefficients.

Shearlet transform contains the basis functions: \(\mathbf{\Phi}^T = [\varphi_1, \ldots, \varphi_p] \).

Weighted sparsity penalty on shearlet coefficients
Final algorithm

Recall optimization problem:

\[
\begin{align*}
\arg \min_{x \geq 0} & \frac{1}{2} \| A^\ell x - b \|_2^2 + \alpha \| W c \|_1, \\
\text{s.t. } & c = \Phi x
\end{align*}
\]

ADMM-based algorithm

We solve it using the ADMM method [Boyd et. al. 2011]. Auxiliary variable \(c = \Phi x \). Iterative updates:

\[
\begin{align*}
x^{k+1} & := \min_{x \geq 0} \frac{1}{2} \| A^\ell x - b \|_2^2 + \frac{\rho}{2} \| \Phi x - c^k + u^k \|_2^2, \\
c^{k+1} & := \min_{c} \alpha \| W c \|_1 + \frac{\rho}{2} \| \Phi x^{k+1} - c + u^k \|_2^2, \\
u^{k+1} & := u^k + \Phi x^{k+1} - c^{k+1},
\end{align*}
\]

where \(u \) are the scaled Lagrange multipliers and \(\rho > 0 \) the penalty parameter.

The updates are calculated using:
\(x^{k+1} \): CGLS + non-negativity projection.
\(c^{k+1} \): Element-wise soft thresholding.
Subsea CT-Scanner by FORCE Technology, Denmark

Synthetic and measured data from both geometries

Synthetic centered
Projection angle
Detector pixel

Measured centered
Projection angle
Detector pixel

Synthetic off-centered
Projection angle
Detector pixel

Measured off-centered
Projection angle
Reconstructions from Real Data – Both Geometries

Centered beam: there are many artifacts.

Prev. alg.

![Image](prev_alg.png)

Our alg.

![Image](our_alg.png)

Off-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg.

![Image](prev_alg_off_center.png)

Our alg.

![Image](our_alg_off_center.png)
Reconstructions from Real Data – Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg.

Our alg.
Reconstructions from Real Data – Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

$$\arg \min_{x \geq 0} \|Ax - b\|_2^2 + \lambda \|\nabla x\|_{2,1}$$

Our alg.
Centered Versus Off-Center Beam

<table>
<thead>
<tr>
<th>Pros</th>
<th>Centered beam</th>
<th>Off-center beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good reconstruction in the center domain.</td>
<td>Captures singularities outside the center domain.</td>
<td></td>
</tr>
<tr>
<td>Terrible reconstruction outside the center domain.</td>
<td>Less good reconstruction in the center domain.</td>
<td></td>
</tr>
<tr>
<td>Requires less projections because the center domain is well covered by rays.</td>
<td>Requires more projections to give good reconstruction everywhere. Better suited for this application.</td>
<td></td>
</tr>
</tbody>
</table>

Table: Centered Versus Off-Center Beam
Conclusions

• For technical reasons the X-ray beam cannot cover the whole pipe.
• An off-centered beam can give a satisfactory reconstruction.
• A weighted shearlets-based sparsity penalty gives better reconstructions – especially with few projections.
• It is important to include weights in the sparsity penalty.

Future work:
• Optimize the algorithm for performance and robustness.
• Design heuristics for choosing the weights and the reg. parameter.
• Derive more theory for the continuous model with limited data.
• Quantify the uncertainties in the model and the solution.
Conclusions

• For technical reasons the X-ray beam cannot cover the whole pipe.
• An off-centered beam can give a satisfactory reconstruction.
• A weighted shearlets-based sparsity penalty gives better reconstructions – especially with few projections.
• It is important to include weights in the sparsity penalty.

Future work:
• Optimize the algorithm for performance and robustness.
• Design heuristics for choosing the weights and the reg. parameter.
• Derive more theory for the continuous model with limited data.
• Quantify the uncertainties in the model and the solution.
Uncertain view angle CT

\[b = A(\theta) x + e, \quad \theta \sim \pi_\theta(\cdot), \ e \sim \pi_e(\cdot). \]

(1)

Measured / fixed:
- \(b \in \mathbb{R}^m \): measured noisy sinogram.
- \(A \in \mathbb{R}^{m \times n} \): discretized Radon transform.

Known but with uncertainty:
- \(\theta \in \mathbb{R}^q \): view angles.
- \(e \in \mathbb{R}^m \): measurement noise.

Unknown:
- \(x \in \mathbb{R}^n \): attenuation coefficients.
Formulation of problem

Uncertain view angle CT

\[
b = A(\theta) \, x + e, \quad \theta \sim \pi_\theta(\cdot), \ e \sim \pi_e(\cdot). \quad (1)
\]

Measured / fixed:
- \(b \in \mathbb{R}^m \): measured noisy sinogram.
- \(A \in \mathbb{R}^{m \times n} \): discretized Radon transform.

Known but with uncertainty:
- \(\theta \in \mathbb{R}^q \): view angles.
- \(e \in \mathbb{R}^m \): measurement noise.

Unknown:
- \(x \in \mathbb{R}^n \): attenuation coefficients.

Actual data comes from \(b := A(\bar{\theta}) \, x + e^{\text{noise}} \).
Introduction

Formulation of problem

Uncertain view angle CT

\[b = A(\theta) x + e, \quad \theta \sim \pi_\theta(\cdot), \; e \sim \pi_e(\cdot). \] (1)

Goal:
Reconstruct \(x \) from \(b \) with uncertainty in \(\theta \) and \(e \! \)!

Applications:
Inaccuracies in rotation, patient motion etc.
Introduction

Early results

\[\text{TV} (\lambda = 10^{-4}) \]

\[\text{STV} (\lambda = 10^{-4}) \]

\[\text{TV}(\lambda = 3 \cdot 10^{-4}) \]

\[\text{STV} (\lambda = 3 \cdot 10^{-4}) \]
Introduction

Early results 2

TV ($\lambda = 1.33 \cdot 10^{-4}$)

STV ($\lambda = 1.33 \cdot 10^{-4}$)

TV ($\lambda = 3.16 \cdot 10^{-4}$)

STV ($\lambda = 3.16 \cdot 10^{-4}$)
Ongoing Research - Uncertain View Angles

- Large scale problems (2D → 3D)
- Apply to pipe scanner (with shearlet regularizer)
Thank you!

Contact:
Nicolai André Brogaard Riis
nabr@dtu.dk
DTU Compute
Building 303B Room 118