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Subsea CT-Scanner by FORCE Technology, Denmark

M

Alternative to ultrasound: use X-ray scanning to compute cross-sectional images of
oil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.
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Illustration courtesy of FORCE Technology.
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Subsea CT-Scanner by FORCE Technology, Denmark

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea- inspektion-konstruktion-levetid-reparation- planlaegning
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Comparing Geometries

Limitations in the scanner device

4 DTU Compute

Data: Narrow high intensity X-Ray beam —
available from a limited view.

Goal: Design set-up to capture as much detail
of the pipe as possible.

Full illumination Centered Off-centered
Not possible Possible set-up Possible set-up
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The Computed Tomograhy Forward Model

M

Continuous formulation, limited data

The measured projections g for the object f are described by
g(0,s) = (R')(0, s) + noise

where (R°f)(0,s) = (Rf)(6, s) for those pairs (6, s) corresponding to the Zimited
illumination, and R is the Radon transform.

Corresponding algebraic model

The measured data b for a discretized object x is described by
b=A‘z+e, beR™ xecR",  A'eR™",

where e € R™ withe; ~ N(0,0%) and A" is the discretion of R*.
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Full and Two Different Limited Illuminations

M

=r Esteal [ steet
=1 e e
a = -
[ concrere.

I Concrete [ Conrete

Detector pixel
Detector pixel
Detector pixel

Source location Source location Source location
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Characterising What We Can Measure - Centered Beam

Microlocal analysis: a singularity at position y with direction ¢ is visible if and only
if data from the line through x perpendicular to £ is present.
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Visible from one
view/projection.

Measured data from one
view/projection.

Visible from all
views/projections.
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Characterising What We Can Measure - Off-Center Beam

Microlocal analysis: a singularity at position y with direction ¢ is visible if and only
if data from the line through x perpendicular to £ is present.
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Visible from all
views/projections.

Visible from one

Measured data from one view/projection.

view/projection.
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Reconstruction: Incorporating Sparsity

M

We need a robust algorithm that can utilize all information in the data.

Use the algebraic system
b= AeiL‘ +e, be R'HL7 = R”7 AE c R™MXn .

and compute a sparse representation of the solution x in a “basis” that is well
suited for the problem.

If we can represent x with few non-zero basis functions, we have fewer unknowns
to determine — same data, fewer unknowns, “easier” problem.
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Representing pipe in a sparse “basis”

Frame decomposition Given an object, «, we decompose it into building blocks
T=D P
I

where ¢, are the building blocks and ¢, = (x, ¢,,). are coefficients.
*If the object is fully represented by few building blocks, we have a sparse representation.
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Representing pipe in a sparse “basis”

Frame decomposition Given an object, «, we decompose it into building blocks
T = Z Cu‘p,u,?
I

where ¢, are the building blocks and ¢, = (x, ¢,,). are coefficients.
*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

- +C2 n +CS

+cy
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Representing pipe in a sparse “basis”

Frame decomposition Given an object, «, we decompose it into building blocks
T = Z Cu‘p,u,?
I

where ¢, are the building blocks and ¢, = (x, ¢,,). are coefficients.
*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

- +C2 n +CS

+cy

Why is this useful?
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Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

—
Decompose
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Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

Decompose

Too strong prior!
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Why enforce sparsity of frame coefficients?

Noise/artefact reduction:

Decompose

+02 ﬂ +63

Too strong prior!

Not all images are
fully represented by
the decompositon.
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Shearlets: A tight frame

Tight frames, ® = {cp“}, generalises ONB, i.e., for allimages x we have

= Z((E, 90;4><P,u'

©w

Examples of 2D Shearlets:

Shearlets yield a sparse representation of defects, contours, etc.
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Shearlet-based optimization problem

M

Recall discrete model of scanning process: b = A’ x + e.

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

arg min £ A"x = b||3 + a|[W el
st.c= Px

with a > 0 regularization parameter, W = diag(w;) € R”*” with weights w; > 0,
® c RP*" is the shearlet analysis transform and ¢, = (=, ,,) are coefficients.

Shearlet transform contains the basis functions: ®7 = [9017 e gop].
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Shearlet-based optimization problem

Recall discrete model of scanning process: b = A z + e.

Reconstruction with a weighted shearlet-based sparsity penalty
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Optimization problem:
argmin 3| A"x — b[[3 + of|Well1,
st.c = Px

with o > 0 regularization parameter, W = diag(w;) € R”*? with weights w; > 0,
® € RP*" isthe shearlet analysis transform and c,, = (, ¢,,) are coefficients.

Shearlet transform contains the basis functions: 7 = [4,01, cee <pp].
Data-fitting
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Shearlet-based optimization problem

Recall discrete model of scanning process: b = A z + e.
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Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:
arg m>1{)1 3IA% = b|3 + oWl
st.c = Px

with o > 0 regularization parameter, W = diag(w;) € R”*? with weights w; > 0,
® € RP*" isthe shearlet analysis transform and c,, = (, ¢,,) are coefficients.

Shearlet transform contains the basis functions: 7 = [4,01, cee <pp].
Weighted sparsity penalty on shearlet coefficients
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Final algorithm

M

Recall optimization problem:
Y 2
arg min 7[[A"x = b5 + a|Wc|\,

st.c = dx

ADMM-based algorithm

We solve it using the ADMM method [Boyd et. al. 2011]. Auxiliary variable ¢ = ®x. Iterative
updates:

X" = min 1A z—b|3+ 2P x—c"+u”|3,
x>0

M = min aHWCHl+gl|q’wk+l_c+uk”§>
Cc

utt o= uk—|—<I>:ck+1—ck+1,

where u are the scaled Lagrange multipliers and p > 0 the penalty parameter.

The updates are calculated using:
x™1: CGLS + non-negativity projection.
c*™: Element-wise soft thresholding.
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Subsea CT-Scanner by FORCE Technology, Denmark

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea- inspektion-konstruktion-levetid-reparation- planlaegning
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Detector pixel

Synthetic and measured data from both geometries

Synthetic centered Measured centered Synthetic off-centered Measured off-centered

Projection angle Projection angle Projection angle Projection angle
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Reconstructions from Real Data - Both Geometries
Centered beam: there are many artifacts.
0.2 0.2
0.1 0.1
Prev. alg. . . Hn Our alg.
Off-center beam: singularities are easy to detect; artifacts are reduced.
s, I =N
@ o2 @ 0
o s 0.04 'S e 0.04
Prev. alg. o . ) . Ouralg.
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Reconstructions from Real Data - Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg. Our alg.
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Reconstructions from Real Data - Zoom

Off-center beam: singularities are easy to detect; artifacts are reduced.

argmgg | Az — b3 + | V|21 Our alg.

e
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Centered Versus Off-Center Beam

Centered beam

Off-center beam

Pros Good reconstruction in the | Captures singularities out-
center domain. side the center domain.

Cons Terrible reconstruction outside | Less good reconstruction in
the center domain. the center domain.

Comments | Requires less projections be- | Requires more projections to

cause the centerdomainis well
covered by rays.

give good reconstruction ev-
erywhere.

Better suited for this applica-
tion.
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Conclusions

M

® For technical reasons the X-ray beam cannot cover the whole pipe.
® An off-centered beam can give a satisfactory reconstruction.

® A weighted shearlets-based sparsity penalty gives better reconstructions - especially with
few projections.

® |tisimportant to include weights in the sparsity penalty.

Future work:

® Optimize the algorithm for performance and robustness.

® Design heuristics for choosing the weights and the reg. parameter.
® Derive more theory for the continuous model with limited data.

® Quantify the uncertainties in the model and the solution.

22 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



]
=

Conclusions

M

® For technical reasons the X-ray beam cannot cover the whole pipe.
® An off-centered beam can give a satisfactory reconstruction.

® A weighted shearlets-based sparsity penalty gives better reconstructions - especially with
few projections.

® |tisimportant to include weights in the sparsity penalty.

Future work:

® Optimize the algorithm for performance and robustness.

® Design heuristics for choosing the weights and the reg. parameter.
® Derive more theory for the continuous model with limited data.

® Quantify the uncertainties in the model and the solution.

23 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



Formulation of problem =

Uncertain view angle CT

b=AO)x+e, 0O ~mg(:),e~mel). (1)
Measured / fixed: ﬁez“m Model
b € R™: measured noisy sinogram. /\/ Machine
A € R™*™: discretized Radon transform. X N
. . ?6
Known but with uncertainty: =4 1%
0 € R?: view angles. I\

e € R™: measurement noise.

Unknown:
x € R": attenuation coefficients.

v
(=)
=
A

X

o

-

~ P,(ea\* v O
b2 =
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Actual data comes from b := A (6) x + e™°s°



Formulation of problem

Uncertain view angle CT

b=A@)x+e, O ~mg(), e~me(). )

Goal:
Reconstruct x from b with uncertainty in 6 and e!

Applications:
Inaccuracies in rotation, patient motion etc.
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Early results
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Early results 2
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TV (A=1.33-107%)

TV (A=3.16-107%)

STV (A=1.33-10"%)

STV (A =3.16-107%)
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Ongoing Research - Uncertain View Angles

® Large scale problems (2D — 3D)

® Apply to pipe scanner (with shearlet regularizer)
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Contact:

Nicolai André Brogaard Riis
nabr@dtu.dk

DTU Compute

Building 303B Room 118
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Thank you!
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