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Subsea CT-Scanner by FORCE Technology, Denmark

Alternative to ultrasound: use X-ray scanning to compute cross-sectional images of
oil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.

Illustration courtesy of FORCE Technology.
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Subsea CT-Scanner by FORCE Technology, Denmark

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning
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Comparing Geometries

Limitations in the scanner device
Data: Narrow high intensity X-Ray beam→

available from a limited view.
Goal: Design set-up to capture as much detail

of the pipe as possible.

Full illumination
Not possible

Centered
Possible set-up

O�-centered
Possible set-up
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The Computed Tomograhy Forward Model

Continuous formulation, limited data

Themeasured projections g for the object f are described by

g(θ, s) = (R`f)(θ, s) + noise

where (R`f)(θ, s) = (Rf)(θ, s) for those pairs (θ, s) corresponding to the `imited
illumination, andR is the Radon transform.

Corresponding algebraic model

Themeasured data b for a discretized objectx is described by

b = A` x+ e, b ∈ Rm, x ∈ Rn, A` ∈ Rm×n,

where e ∈ Rm with ei ∼ N(0, σ2) andA` is the discretion ofR`.
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Full and Two Di�erent Limited Illuminations
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Characterising What We Can Measure – Centered Beam

Microlocal analysis: a singularity at position χwith direction ξ is visible if and only
if data from the line through χ perpendicular to ξ is present.

Measured data from one
view/projection.

Visible from one
view/projection.

Visible from all
views/projections.
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Characterising What We Can Measure – O�-Center Beam

Microlocal analysis: a singularity at position χwith direction ξ is visible if and only
if data from the line through χ perpendicular to ξ is present.

Measured data from one
view/projection.

Visible from one
view/projection.

Visible from all
views/projections.
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Reconstruction: Incorporating Sparsity

We need a robust algorithm that can utilize all information in the data.

Use the algebraic system

b = A` x+ e, b ∈ Rm, x ∈ Rn, A` ∈ Rm×n.

and compute a sparse representation of the solution x in a “basis” that is well
suited for the problem.
If we can represent xwith few non-zero basis functions, we have fewer unknowns
to determine→ same data, fewer unknowns, “easier” problem.
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Representing pipe in a sparse “basis”

Frame decomposition Given an object, x, we decompose it into building blocks

x =
∑
µ

cµϕµ,

whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.
*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

= c1 + c2 + c3

+c4 + c5

Why is this useful?

11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



Representing pipe in a sparse “basis”

Frame decomposition Given an object, x, we decompose it into building blocks

x =
∑
µ

cµϕµ,

whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.
*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

= c1 + c2 + c3

+c4 + c5

Why is this useful?

11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



Representing pipe in a sparse “basis”

Frame decomposition Given an object, x, we decompose it into building blocks

x =
∑
µ

cµϕµ,

whereϕµ are the building blocks and cµ = 〈x,ϕµ〉. are coe�icients.
*If the object is fully represented by few building blocks, we have a sparse representation.

Example:

= c1 + c2 + c3

+c4 + c5

Why is this useful?

11 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



Why enforce sparsity of frame coe�icients?

Noise/artefact reduction:

−−−−−−→
Decompose

c1 + c2 + c3

+c4 + c5

=
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Why enforce sparsity of frame coe�icients?

Noise/artefact reduction:

−−−−−−→
Decompose

c1 + c2 + c3

+c4 + c5

=

Too strong prior!
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Why enforce sparsity of frame coe�icients?

Noise/artefact reduction:

−−−−−−→
Decompose

c1 + c2 + c3

+c4 + c5

=

Too strong prior!
Not all images are
fully represented by
the decompositon.
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Shearlets: A tight frame

Tight frames,Φ =
{
ϕµ
}
, generalises ONB, i.e., for all images xwe have

x =
∑
µ

〈x,ϕµ〉ϕµ.

Examples of 2D Shearlets:

Shearlets yield a sparse representation of defects, contours, etc.

13 DTU Compute Nicolai A. B. Riis: Limited-Data CT for Underwater Pipeline Inspection 24.9.2019



Shearlet-based optimization problem

Recall discrete model of scanning process: b = A` x+ e.

Reconstruction with a weighted shearlet-based sparsity penalty

Optimization problem:

argmin
x≥0

1
2
‖A`x− b‖22 + α‖W c‖1,

s.t. c = Φx

with α > 0 regularization parameter,W = diag(wi) ∈ Rp×p with weightswi > 0,
Φ ∈ Rp×n is the shearlet analysis transform and cµ = 〈x,ϕµ〉 are coe�icients.

Shearlet transform contains the basis functions:ΦT =
[
ϕ1, . . . , ϕp

]
. hey
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Data-fitting
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ϕ1, . . . , ϕp

]
.

Weighted sparsity penalty on shearlet coe�icients
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Final algorithm
Recall optimization problem:

arg min
x≥0

1
2‖A

`x− b‖22 + α‖W c‖1,

s.t. c = Φx

ADMM-based algorithm

We solve it using the ADMMmethod [Boyd et. al. 2011]. Auxiliary variable c = Φx. Iterative
updates:

xk+1 := min
x≥0

1
2
‖A` x−b‖22+ ρ

2
‖Φx−ck+uk‖22,

ck+1 := min
c

α‖W c‖1 + ρ
2
‖Φxk+1−c+uk‖22,

uk+1 := uk+Φxk+1−ck+1,

where u are the scaled Lagrange multipliers and ρ > 0 the penalty parameter.

The updates are calculated using:
xk+1: CGLS + non-negativity projection.
ck+1: Element-wise so� thresholding.
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Subsea CT-Scanner by FORCE Technology, Denmark

https://forcetechnology.com/da/innovation/afsluttede-projekter/subsea-inspektion-konstruktion-levetid-reparation-planlaegning
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Synthetic andmeasured data from both geometries
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Reconstructions from Real Data – Both Geometries
Centered beam: there are many artifacts.

Prev. alg.

Kaczmarz, 5 iterations
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O�-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg.

Kaczmarz, 5 iterations
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Reconstructions from Real Data – Zoom

O�-center beam: singularities are easy to detect; artifacts are reduced.

Prev. alg. Our alg.
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Reconstructions from Real Data – Zoom

O�-center beam: singularities are easy to detect; artifacts are reduced.

arg min
x≥0
‖Ax− b‖22 + λ‖∇x‖2,1 Our alg. hey
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Centered Versus O�-Center Beam

Centered beam O�-center beam
Pros Good reconstruction in the

center domain.
Captures singularities out-
side the center domain.

Cons Terrible reconstruction outside
the center domain.

Less good reconstruction in
the center domain.

Comments Requires less projections be-
cause the center domain iswell
covered by rays.

Requiresmore projections to
give good reconstruction ev-
erywhere.
Better suited for this applica-
tion.
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Conclusions

• For technical reasons the X-ray beam cannot cover the whole pipe.
• An o�-centered beam can give a satisfactory reconstruction.
• A weighted shearlets-based sparsity penalty gives better reconstructions – especially with
few projections.
• It is important to include weights in the sparsity penalty.

Future work:
• Optimize the algorithm for performance and robustness.
• Design heuristics for choosing the weights and the reg. parameter.
• Derive more theory for the continuous model with limited data.
• Quantify the uncertainties in the model and the solution.
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Introduction
Formulation of problem

Uncertain view angle CT

b = A(θ)x + e, θ ∼ πθ(·), e ∼ πe(·). (1)

Measured / fixed:
b ∈ Rm: measured noisy sinogram.
A ∈ Rm×n: discretized Radon transform.

Known but with uncertainty:
θ ∈ Rq : view angles.
e ∈ Rm: measurement noise.

Unknown:
x ∈ Rn: attenuation coe�icients.

π
θ
1 (θ

1 )

πθ2(θ2
)

b
1

=
A

(θ
1 )x

+
e
1

b2 = A(θ2)x
+ e2

x

Model
Machine
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Actual data comes from b := A(θ̄) x + enoise.
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Introduction
Formulation of problem

Uncertain view angle CT

b = A(θ)x + e, θ ∼ πθ(·), e ∼ πe(·). (1)

Goal:
Reconstruct x from bwith uncertainty in θ and e!

Applications:
Inaccuracies in rotation, patient motion etc.
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Introduction
Early results
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Introduction
Early results 2
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Introduction
Ongoing Research - Uncertain View Angles

• Large scale problems (2D→ 3D)
• Apply to pipe scanner (with shearlet regularizer)
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Thank you!

Contact:
Nicolai André Brogaard Riis
nabr@dtu.dk
DTU Compute
Building 303B Room 118
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