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Overview of This Talk

Prelude
X-ray CT model
Reconstruction
The algebraic approach

Fugue
Stationary iterative reconstruction methods
Their convergence
Semi-convergence with noisy data
Unmatched projectors
Non-convergence and how to avoid it
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Prelude: X-Ray Computed Tomography (CT)

Lab scanner Medical scanner

Synchrotron Industrial inspection
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X-Ray Tomography and the Radon Transform

The Principle

Send X-rays through the ob-
ject at different angles, and
measure the attenuation.

Lambert-Beer law → attenuation of X-ray
through the object f is a line integral:

bi =

∫
rayi

f (ξ1, ξ2) d` ,

f = attenuation coef.

A discrete version:
Ax = b

A ∼ measurement geometry,
x ∼ reconstruction, b ∼ data.
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Modelling in CT: Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics
via integration of the image f along lines Lθ,s

R[f ](θ, s) =

∫
Lθ,s

f (ξ1, ξ2) d` = g(θ, s) = sinogram .

Back projection B = adjoint(R), an abstraction, smears g back along Lθ,s

B[g ](ξ1, ξ2) =

∫ 2π

0
g(θ, ξ1 cos θ + ξ2 sin θ) dθ .
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Reconstruction Algorithms

CT reconstruction is a mildly ill-posed inverse problem.

Lots of data + high resolution → large-scale computational problem.

Transform-based methods
Formulate the forward problem as a certain transform, then formulate a
stable way to invert the transform.
Need to incorporate filtering in the inversion to obtain stability.

2D CT: Radon transform ↔ filtered back projection (FBP).

Algebraic iterative methods
Discretize the forward problem and solve the corresponding large-scale
problem Ax = b by means of an iterative method.
Need to incorporate regularization in the iterative solver to obtain stability.
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Filtered Back Projection Versus Algebraic Reconstruction

• FBP: fast, low memory, good results with sufficiently many good data.
• But artifacts appear with noisy and/or limited data.
• Difficult to incorporate constraints (e.g., nonnegativity).
• Algebraic iterative reconstruction methods are more flexible and

adaptive – but require more computational work.
Example with 3% noise and an incomplete set of projection angles:
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Storage Considerations

N × N image: each X-ray intersects at most 2N pixels → at most 2N
nonzero elements in each row of A (at most 3N in 3D) → A is sparse.

Can still be problematic. 3D example: 1000
projection angles, 1000 × 1000 detector pix-
els, 1000× 1000× 1000 voxels → number of
non-zeros in A is of the order 1012 ∼ several
Terabytes of memory.

Alternative: use projection models to compute
the matrix multiplications – the forward and
back projections – “on the fly.” We avoid the
impossible task of storing A, at the price of
having to recompute the matrix elements each
time we need them.

More details here:
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Fugue: Stationary Iterative Reconstruction Methods
A general class of iterative methods:

xk+1 = xk + ωD ATM (b − Axk), k = 0, 1, 2, . . .

Diagonal matrices D M

Landweber I I
Gradient descent = steepest descent

Cimmino I 1
m diag

(
1
‖ai‖22

)
Landweber with row normalization

CAV I diag
(

1
‖ai‖2S

)
Component Averaging S = diag(nnz(column j))

DROP S−1 diag
(

1
‖ai‖22

)
Diagonally relaxed orthogonal projection

SIRT (aka SART) diag
(

1
‖a j‖1

)
diag

(
1
‖ai‖1

)
Simultaneous iterative reconstruction technique

Notation: ai = A(i , :) = row, a j = A(:, j) = column.
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Example of Convergence for Cimmino

Image size: 128× 128.
Data: 360 projection angles in [1◦, 360◦],
181 detector pixels.

We must be concerned with three types of convergence:
1 Convergence of the iterative method.
2 Semi-convergence in the face of noisy data.
3 Non-convergence when forward and back projections don’t match.
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Asymptotic Convergence for Cimmino

Follows from Nesterov (2004)

Assume that A is invertible and scaled such that ‖A‖22 = m.

‖xk − x̄‖22 ≤
(
1− 2

1 + κ2

)k
‖x0 − x̄‖22 ,

where x̄ = A−1b and κ = ‖A‖2 ‖A−1‖2. This is linear convergence.

When κ is large then we have the approximate upper bound

‖xk − x̄‖22 <∼ (1− 2/κ2)k ‖x0 − x̄‖22 ,

showing that in each iteration the error is reduced by a factor 1− 2/κ2.
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Real Problems Have Noisy Data

A standard topic in numerical linear algebra: solve Ax = b.

Don’t do this for inverse problems with noisy data!

The right-hand side b (the data) is a sum of noise-free data b̄ = A x̄ from
the ground-truth image x̄ plus a noise component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

The naïve solution xnaïve = A−1b is undesired, because it has a large
component coming from the noise in the data:

xnaïve = A−1b = A−1(A x̄ + e) = x̄ + A−1e.

The component A−1e dominates over x̄ , because A is ill conditioned.

But something interesting happens during the iterations . . .
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The Reconstruction Error With Noisy Data

‖xk − x̄‖2
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Semi-Convergence

‖xk − x̄‖2

In the initial iterations xk approaches the unknown ground truth x̄ .
During later iterations xk converges to the undesired xnaïve = A−1b.
Stop the iterations when the convergence behavior changes.

Then we achieve a regularized solution: an approximation to the noise-free
solution which is not too perturbed by the noise in the data.

Today we explain why we have semi-convergence for noisy data.
How to stop the iterations at the right time is a different story.
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Convergence Analysis: Split the Error

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

We expect the iteration error to decrease and the noise error to increase.

Then we have semi-convergence when the noise error starts to dominate:
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Analysis of Semi-Convergence for Cimmino

We use the SVD: M
1
2A =

∑n
i=1 ui σi v

T
i

Van der Sluis & Van der Vorst (1990); Elfving, Nikazad, H (2010)

The iterate xk is a filtered SVD solution:

xk =
∑n

i=1
ϕ
[k]
i

uTi (M
1
2 b)

σi
vi , ϕ

[k]
i = 1−

(
1− ω σ2

i

)k
.

Recall that we solve noisy systems Ax = b with b = A x̄ + e. Then:

xk − x̄ =
∑n

i=1
ϕ
[k]
i

uTi (M
1
2 e)

σi
vi︸ ︷︷ ︸

noise error
increases monotonically

−
∑n

i=1
(1− ϕ[k]

i ) vTi x̄ vi︸ ︷︷ ︸
iteration error

decreases monotonically

.
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Studies of Semi-Convergence

Semi-convergence has been analyzed by several authors:
F. Natterer, The Mathematics of Computerized Tomography (1986)
A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for
the iterative solution of sparse linear least-squares problems (1990)
M. Bertero & P. Boccacci, Inverse Problems in Imaging (1998)
M. Kilmer & G. W. Stewart, Iterative regularization and MINRES
(1999)
H. W. Engl, M. Hanke & A. Neubauer, Regularization of Inverse
Problems (2000)
T. Elfving, H & T. Nikazad, Semi-convergence properties of
Kaczmarz’s method (2014)
B. S. van Lith, H & M. E. Hochstenbach, A twin error gauge for
Kaczmarz’s iterations (2021)
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So Far, So Good

At this time we have obtained an understanding of convergence and
semi-convergence for algebraic iterative reconstruction methods.

I also promised to discuss non-convergence – to do that, I must briefly
look at discretization methods for CT problems.
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Projectors and Matrices

Multiplication with A ! action of forward projector R.
Multiplication with B ! action of back projector B = adjoint(R).

When we can store A then we use AT for back projection B , and our
stationary iterative methods solve least squares problems associated with
the normal equations ATAx = ATb.

When A is too large to store, we must use matrix-free multiplications of
the forward projector and the back projector – cf. the Appendix.

HPC software: computational efficiency takes priority → B 6= AT .

We must study the influence of unmatched projector/backprojector pairs
on the computed solutions and the convergence of the iterations.
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Convergence Analysis for Unmatched Pairs

Substituting B for AT in Landweber leads to the BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0.

A fixed-point iteration that is not related to solving a minimization problem!

Any fixed point x∗ satisfies the unmatched normal equations

BAx∗ = Bb.

If BA is invertible then x∗ = (BA)−1Bb.
If N (BA) = N (A) and b ∈ R(A) then Ax∗ = b.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = Bb if and only if

0 < ω <
2Re(λj)

|λj |2
and Re(λj) > 0, {λj} = eig(BA) .
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Iteration Error and Noise Error When Re(λj) > 0 ∀j

Elfving, H (2018)

The iteration error is given by

x̄k − x̄∗ = T k(x̄0 − x̄) , x̄0 = initial vector , T = I − ω BA ,

and it follows that we have linear convergence:

‖x̄k − x̄‖2 ≤ ‖T k‖2 ‖x̄0 − x̄‖2 ≤ ‖T‖k2 ‖x̄0 − x̄‖2.

With b = A x̄ + e the noise error satisfies

‖xk − x̄k‖2 ≤ (ω c‖B‖2) k ‖e‖2

where we define the constant c by: supj ‖(I − ωBA) j‖2 ≤ c .
I.e., the upper bound grows linearly with the number of iterations k .
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Numerical Example of Non-Convergence – no Noise

Parallel-beam CT, unmatched pair from ASTRA, 64× 64 Shepp-Logan
phantom, 90 proj. angles, 60 detector pixels, minRe(λj) = −6.4 · 10−8.

Non-convergence is the most common case.
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What To Do?

1 Ask the software developers to change their implementation of
forward projection and/or back projection?
→ Significant loss of computational efficiency.

2 Use mathematics to fix the nonconvergence.
→ What we do here.

Take inspiration from the Tikhonov problem

min
x

{
‖Ax − b‖22 + α ‖x‖22

}
,

for which a gradient step takes the form

xk+1 = xk − ω (AT (b − Ax) + α xk)

= (1− αω) xk + ω AT (b − Axk) .

Note the factor (1− αω).
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The Shifted BA Iteration

Many thanks to Tommy Elfving
for originally suggesting this.

We define the shifted version of the BA Iteration:

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

with just one extra factor (1− αω); simple to implement.

This Shifted BA Iteration is equivalent to applying the BA Iteration with
the substitutions

A→
[

A√
α I

]
, B →

[
B ,
√
α I
]
, b →

[
b
0

]
.

Hence it is “easy” to perform the convergence analysis . . .
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let λj denote those eigenvalues of BA that are different from −α.
Then the Shifted BA Iteration converges to a fixed point if and only if α
and ω satisfy

0 < ω < 2
Reλj + α

|λj |2 + α (α + 2Reλj)
and Reλj + α > 0 .

The fixed point x∗α satisfies

(BA + α I ) x∗α = Bb .

This result tells us how to choose the shift parameter α:

Choose α just large enough that Reλj + α > 0 for all j .
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“Perturbation” Result

How much do we perturb the solution x̄∗α – the fixed point – when we
introduce α > 0?

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+α I is nonsingular and the right-hand side is noise-free
with b = b̄ = A x̄ . Then the corresponding fixed point x̄∗α satisfies

x̄ − x̄∗α = α (BA + α I )−1x̄ .

Notice the factor α.

With a small α – just large enough to ensure convergence – we compute a
slightly perturbed solution (instead of computing nothing).
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Alternative: Solve the Unmatched Normal Equations

Instead of “fixing” a stationary method designed for solving another
problem, just solve the unmatched normal equations in one of the forms

BAx = Bb or AB y = b , x = B y

The left- or right-preconditioned GMRES method for (A, b) immediately
presents itself as a good choice with B as the preconditioner.

BA-GMRES solves BAx = Bb with B as a left preconditioner.

AB-GMRES solves AB y = b , x = B y with B as a right preconditioner.

Advantages:
these methods always converge,
no need for relaxation parameter or shift parameter,
we have semi-convergence, cf. Calvetti, Lewis, Reichel (2002) and
Gazzola, Novati (2016).
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Solving the Unmatched Normal Equations

Hayami, Yin, Ito (2010)

AB-GMRES solves miny ‖AB y − b‖2, x = B y (B = right precond.)

. minx ‖Ax − b‖2 = minz ‖AB z − b‖2 holds for all b if an only
if range(AB) = range(A), e.g., if range(B) = range(AT ).

BA-GMRES solves minx ‖BAx − Bb‖2 (B = left preconditioner)

. the problems minx ‖Ax − b‖2 and minx ‖BAx − Bb‖2 are
equivalent for all b if and only if range(BTBA) = range(A),
e.g., if range(BT ) = range(A).

Both methods use the same Krylov subspace Kk(BA,Bb) for the solution,
but they use different objective functions.
They are identical to LSQR/LSMR when B = AT .

Conditions are impossible to check in a given problem, but it works #
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Reconstr. Error, Noisy Data, Matrix is 252 000× 176 400

Image has 420× 420 pixels, 600 projection angles, 420 detector pixels.

AB-GMRES ‖xk − x̄‖2/‖x̄‖2 x BA-GMRES ‖xk − x̄‖2/‖x̄‖2 x

Semi-convergence is evident (SVD analysis in Appendix).
Same minimum reconstruction error ‖xk − x̄‖2/‖x̄‖2 ≈ 0.10 for both.
Discrepancy principle and NCP-criterion stopping rules work well.
Slightly fewer iterations for AB-GMRES in this example.
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Coda

Facts
The algebraic approach is very flexible; calls for iterative methods.
Need to use matrix-free implementations for large-scale problems.

Convergence
Good understanding of convergence for noise-free data.
Emerging: good understanding of semi-convergence for noisy data.
Non-convergence is caused by unmatched forward and back projectors.
We avoid it with the right choice of algorithms.

Future
Need more theory about semi-convergence for GMRES.
Ready-to-use implementations for the CT community.
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Appendix: Examples of Discretization Models

Forward strip model Forward line model Back projection model
Reflects the physics Ray driven Pixel driven
Not suited for GPUs Suited for GPUs Suited for GPUs

Forward line model: start from detector element centers.
Back projection model: start from image pixel centers and

interpolate detector element values.
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Appendix: Divergence and Convergence

Parallel-beam CT, 128× 128 Shepp-Logan phantom, 90 projection angles
in [0◦, 180◦], 80 detector pixels; m = 7 200 and n = 16 384.
Both A and B are generated with the GPU-version of the ASTRA toolbox.

ρ(BA) = 1.76 · 104

α = 1.85

The BA Iteration diverges from x̄∗ = (BA)−1Bb̄.
The Shifted BA Iteration converges to fixed point x̄∗α = (BA + α I )−1Bb̄.
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BA-GMRES: SVD Analysis, Small Matrix 23 040× 16 384
Right-hand side: b̄ = A x̄

x̄ = ground truth
no noise ‖2

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.
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BA-GMRES: SVD Analysis – Now With Noisy Data
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.003 Gaussian

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.
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BA-GMRES: SVD Analysis – With More Noise
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.03 Gaussian

Left plot: the “noise floor” increases..
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
Now we obtain the best reconstruction after k ≈ 20 iterations.
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Appendix: Stopping Rules

We must terminate the iterations at the point of semi-convergence.

Discrepancy principle (DP): terminates the iterations as soon as the
residual norm is smaller than the noise level:

kDP = the smallest k for which ‖b − Axk‖2 ≤ τ ‖e‖2

where τ ≥ 1 = safety factor when we have a rough estimate of ‖e‖2.

NCP criterion: uses the normalized cumulative periodogram to
perform a spectral analysis of the residual vector b−Axk and identifies
when the residual is close to being white noise – which indicates that
all available information has been extracted from the noisy data.

For those who are curious: the L-curve criterion does not work, and we
cannot implement generalized cross validation (GCV) efficiently.
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Stopping Rules: Tests With 2 Different Back Projectors

Both DP and NCP stop a bit too early – better than stopping too late.
IMAGINE 2021 Convergence and Non-Convergence 7 / 7


	Appendix

