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. A few examples of inverse problems.

. What is an inverse problem?

. Why is it difficult to solve? — Illposedness!
. Regularization = incorporation of priors.

. Convergence of iterative methods.

. Prelude to uncertainty quantification.

i

— Per Christian

. Limited-Data CT for Underwater Pipeline Inspection.

Nicolai André Brogaard Riis, PhD student, DTU Compute
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Example: Tomography

Image reconstruction from projections.

i

Medical imaging
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Example: Rotational Image Deblurring =

Application: “star camera”
used in satellite navigation.

—

Nello World! 21
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Example: Fault Inspection

Use X-ray scanning to compute cross-
sectional images of oil pipes on the seabed.

Detect defects, cracks, etc. in the pipe.

Defect!

Reinforcing bars
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What is an Inverse Problem ...

Inverse problems

e arise when we use a
mathematical model

 to infer about internal
or hidden features

 from exterior and/or

indirect measurements.

HE

Inverse Problem

One of these is known

/N

S

Known

but with
errors

System

Why mathematics is important

« A solid foundation for formulation of inverse problems.

« A framework for developing computational algorithms.

« A “language” for expressing the properties of the solutions:
« existence, uniqueness, stability, reliability, ...
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Some Formulations

Mathematical formulations of inverse problems take different forms.

Fredholm integral equation of the first kind: '0

/1K(s,t)f(t)dt:g(s) Co<s<1. ‘U

Calderéon problem (PDE with Direclet BC):

V-oVu=0 ue€n
u=f u € o)

Fascinating: very different problems lead to the same formulations.
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A Simple Example ...

1

1

/ srir1/Wdt=gls) =1, Oss<1.
0

Can you guess a solution?

The kernel K = (1+s+t)~! is symmetric and has a real eigensystem,

1
1
/ v; (1) dt = A\ vi(s) i=1,2,3,...
0

s+t+1
Eigenvalues X, v.(t) V(1) v (t)
10° : : 01 0.1 0.1
[ ]
1072+ ° ] 0 0 / 0 m
[
[ ]
107} 1 -0.1 -0.1 -0.1
10—6 L ] V4(t) V5(t) V6(t)
0.1 0.1 0.1
[ ]
108 F 1
0 0 0
[ )
10-10 L L L | | 1
0 1 2 3 4 5 6 7 0.1 -0.1 -0.1
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... With No Solution

Let us compute finite approximations to the solution:

fk (t) — E V; (t) y
1=1
. - f1(t)
Solution coefficients 0.08
10° ' - ‘ ‘ ‘ '
104t i 0.06
103+ E 0.04
0 0.5 1
o2 f (0
50
10" ¢ 1 0
o ‘ -50
0 1 2 3 4 5 6 7
-100
0 0.5 1

i=1,2.3, ...

-1

1000

500

-500
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f.(f) f(1)
10
5
0
-5
0 0.5 1 0 0.5 1
A0 A0
5000
-5000
0 0.5 1 0 0.5 1

The amplitude of fx(t) becomes disturbingly large as k increases, and

the sum does not converge as k — oo.
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Inverse Problems Are Ill Posed

Hadamard’s definition of a well-posed problem (early 20th century)

1. Existence: the problem must have a solution.
2. Uniquness: the solution must be unique.

3. Stability: it must depend continuously on data and parameters.

If the problem violates any of these requirements, it is ill posed.

Inverse problems are, by nature, always ill posed.

And yet, we have a strong desire — and a need - to solve them ...
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Hadamard 1 (existence) and 2 (uniqueness)

Case 1 1 1 . 2.1
Ar=b < [1 2 (1)= 3.0
L2
1 3 3.9
There is no x that satisfies this equation, but we can define the least

squares solution that minimizes the residual norm

: 1.2
rps = argmin, ||[Ax — bl|s = (O 9)

Case 2
1 2 1 3
Ar=b < (1 2) (@) — (3> .

There are infinitely many x that satisfy this equation; we can define
the unique minimum-norm solution that minimizes the solution’s norm

ro = argmin,||z|l2 s.t. Az =10 = Ty = (?g) :
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Hadamard 3 (stability)
Unperturbed system:

1.0 2.1 3.0 1 6.1
A= 140 50 59|, z=|[1]|, b=Az+ [149
7.0 8.0 9.0 1 24.0

Perturbed system:

i 0 ) 0.927
b=0b+ [ 0.001 =N F=A"1b=11.171
0 0.904

The matrix A is ill conditioned, cond(A) = 4249, and therefore the
solution is very sensitive to perturbations of b and A:

|Ac] (HAbH ||AA||)
< cond(A + .
] S TR
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Eigenvalue Analysis for Symmetric Kernel

Recall that we can write the solution as

0= g = [ wls)gs)ds

1=1

Picard condition for a square integrable solution:

=3 (42) <o

1=1

The enumerator must decay sufficiently faster than the denomiator.

Specifically, the coefficients (v;, g) must decay faster than \; i~ 1/2.

13/33 P. C. Hansen - Inverse Problems IDA Matematik, Sept. 2019

=



Eigenvalue Analysis for Symmetric Kernel

Recall: the coefficients (v;, g) must decay faster than \; i~ /2.

10-10 . . ) 10-10 . . .
0 10 20 30 0 10 20 30
With no noise in the data, When noise is present, the

the Picard condition is satisfied. Picard condition is not satisfied.

The solution coefficients diverge.
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Dealing with the Instability > Regularization 2.

<

The ill conditioning of the problem makes it impossible to compute a
“naive” solution to the inverse problem:

— na; K_lg

(> Incorporate prior information about the solution via regularization:\

ming {|K f —g|l3+aR(f)} , R(f) = regularizer
- /
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Eigenvalue Analysis of Tikhonov Regularizer

The important special case of Tikhonov regularization

RN=IM3 = f0=Y 5 — L.

)\2
A2+ «
Noise in g(s) Tikhonov

Here ¢; = are the filter factors.

10° OM These modified
e coefficients satisfy

Ooogo s / the Picard condition.
(®)

0%
107 © ?f N O%Ogoo |  Stabilization
o i (vng)/ A °Reood  accomplished!
. . . . . %
0 10 20 30 0 10 20 30
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Case: Total Variation (TV) =

<

Prior: image consists of regions with constant intensity and sharp edges.
How to say this in mathematical terms?

Total variation regularization term R(f) = [, ||V f|l2dQ —

R(x) =) e llDizl2 ,  D;x = gradient
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Case: Directional TV (DTV)

Kongskov, Dong, Knudsen, Directional total generalized variation regularization, 2019.
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Prior: the edges in the mage have a dominating direction 6.
How to say that in mathematical terms?

Directional TV regularization term:

R(f)

(o)
YDg1 f

),

2

s

where Dy is the directional derivative.
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Blurred and noisy \

) Directional TV
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Case: Regularization with Sparsity Prior =

TV = a ”sparsity prior” that produces a solution with a sparse gradient.

We can also require that the solution itself is sparse, i.e., the image has
many nonzero pixels. How to say this in mathematical terms?

Use the 1-norm to enforce sparsity:

This is well known from compressed sensing where it is succesfully
used to reconstruct a sparse signal x from limited data.

THEOREM: we can reconstruct a sparse r € R™ with at most p nonzeroes
from a data vector b € R™ with b = Az if A is random and m ~ 2p.

In our inverse problems, A is certainly not random — it is a discretization
of the forward operator.

Surprisingly, we can still use a 1-norm regularization term R(zx) = ||x||1.
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Case: Sparse CT Reconstruction

Jargensen, Sidky, Hansen, Pan, Empirical
Average-Case Relation Between Under-
sampling and Sparsity in X-Ray CT, 2015.

d
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=y ot oo
'
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Artificial sparse test images. :>
Left to right: 5%, 10%, 20%,
40%, 60%, 80% nonzeroes.

1

1

%21 Full recovery |**

0.8} 10.8
£ 07 07
a s
€ 06 e 10.6
1 y - .
P o05f . Phase diagram: the recovery fraction of
€ 04} No recovery reconstructed images at a given sparsity ab-

o o
[ T %

0.1

95 % recovered
50 % recovered
5 % recovered

= = = Theory (Gaussian)

0 0.2 04
sparsity
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e Problems

ruptly changes from 0 to 1, once a critical
number of measurements is reached.

Agrees with the theoretical phase transition
for random matrices (Donoho, Tanner 2009).
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Case: Training Images as Regularizer

Soltani, Kilmer, Hansen, A tensor-based dictionary learning approach to tomographic imagé‘“E‘/N,UOﬁ, o
reconstruction, 2016. ’

TRy

Soltani, Andersen, Hansen, Tomographic image reconstruction using training images, 2017.

Training images
are patches from
high-res image.

G s 2

Dictionary patches Reconstruction

learned via nonneg. computed from highly

underdet. problem.

Dictiinary Sparsity prior on dictionary elements

!

min, ||[AWz — b5 + «allz]|1 , r=Wz.
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Case: When the Training Images are Wrong

Soltani, Andersen, Hansen, Tomographic image reconstruction using training images, 2017.

am D
RN
‘ on ~oMO
S
et
-0

W'

Peppermatches?

- n
Wiroms & A
“\ Vo BT O \’" -
Exact image The “best” reconstruction

based on a wrong dictionary
created from the peppers
training image.
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Algorithm Development - Iterative Methods =

<

IR @@@%

"'

‘ A MATLAB Package of
Iterative Regularization Methods
and
Large-Scale Test Problems

Gradient (steepest descent) method for computing CT solutions:

Huge computational problems.
How to solve them efficiently?
— Iterative methods!

x® — 2l wB(b - ALY .

Here A = Radon transform = forward projector, and B = backprojector.

By definition, B = A’ (the transpose).

So who in their right mind would write software where B # {A)?
All good HPC-programmers! Efficient use of GPUs etc.

Need to study the tmplications of this fact.
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Nonconvergence!

HE

Parallel-beam CT, unmatched pair from ASTRA, 64 x 64 Shepp-Logan
phantom, 90 projection angles, 60 detector pixels, minRe \; = —6.4-10 .

_o~Complex eigenvalues \; of BA [teration error ||z%"¢ — %4

0.25

0.8 e

"o 0.5 1 0.05F
1 1 L

-1 -05 0 0.5 ?1 —_BZAT
%10 —B — AT
. .D 1 1 1 1
Nonconvergence due to eigenvalues 0 1 2 3 4 5
of BA with negative real part ® <10
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The Fix

1. Ask the software developers to change their
implementation of B and/or A?
— Significant loss of comput. efficiency.

2. Use mathematics to fiz the nonconvergence.

We define the shifted version of the (unprojected) iterative algorithm:

"l =(1-auw)z® +wB (b - Az"), a>0

with just one extra factor (1 — aw); simple to implement.

Convergence to a fixed point if

ReA; +«

d (Re)+a>0.
NPta(at2Ren) eA T

D<w<?2

Choose the shift
Just large enough!

o

~

J
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Nonconvergende > Convergence

HE

Parallel-beam CT, 90 projections in the range 0°-180°, 80 detector pixels;
128 x 128 Shepp-Logan phantom; m = 7200 and n = 16 384.

Both A and B are generated with the GPU-version of the ASTRA toolbox.

p(BA) =1.76-10*

T
-—1 — =BA: |z —z||/||z* /
a =1.85 ——Shifted BA: ||zF — z%||/||Z |

10°

10°
Iteration number k

The BA lteration diverges from x* = (BA)~1Bb.
The Shifted BA Iteration converges to fixed point X* = (BA +«a 1)~ 1Bb.
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Beyond Sharp Reconstructions > UQ

HE

960-view FDK

Classical
method.

TV regularization
needs only 10%
of full X-ray dose.

But how reliable
Figure credit are the spots?

to E. Sidky

~

All kinds of errors have influence on the solution:

X = argmin { || A x - b || + regularization(x) }

e

algorithm-error model-error data-error regularization-error

—_

N /

\@: UQ - uncertainty quantification - is the end-to-end study of the

-—

¥ impact of all forms of error and uncertainty in the data and models.

()

27/33 P. C. Hansen - Inverse Problems IDA Matematik, Sept. 2019

Case. UQ in X-ray medical imaging:

» How reliable are the locations and contrasts of the spots?




VILLUM FONDEN

Research Initiative CU | ¢

Computational Uncertainty Quantification
for Inverse Problems

HE

e Develop the mathematical, statistical and computational framework.

e Create a modeling framework and a computational platform for non-experts.

Vision
Computational UQ becomes an essential part of solving
inverse problems in science and engineering.

@ [ know everything

There’s more to this

o than I thought Trust me. It's

complicated @

It’s starting to

I'm never going " @ make sense gy
to understand this

Confidence

.Huh?

Knowledge in Field
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UQ: Gaussian Data Errors and Gaussian Prior =

Model: b= AZ + e with A € R™*" fixed and e = N (0, 021).

The pdf for b, given  and o (known as the likelihood):

1\ 1
p(blz, o) = (27T02> exp<—ﬁ |Ax — b||§) :

The unknown z is a random vector. Assume a Gaussian prior z ~ N (0,67 11)

this yields the prior
5\ "2 5
pww>=(§;) am(—ﬁnﬂ@).

Bayes rule/law /theorem defines the posterior for x:
p(blz, ) p(x|o)

p(x|b, 0,0 x p(blx,o)p(x|o
(a]b.0.5) Py (12, 0) p(a]5)
]. 2 5 2
x const - exp —ﬁHAaz—bHQ - exXp —§Ha:\|2
x exp(—|Az—bJ3—aleld) , a=d02.
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UQ in Image Deblurring

Measured blurred image.

UQ shows uncertainty in each pixel; white denotes high uncertainty.

30/33
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Case: UQ with Non-Negative Prior =
If the prior or likelihood is non-Gaussian, we must sample the posterior:
we generate many random instances of the regularized solution with the
specified likelihood and prior. C
Yer
Bardsley, Hansen, MCMC Algorithms for Non-negativity Constrained Inverse Problems, 2019.
Mean of samples MAP estimate
Gauss Trunc. Gauss Nonneg. Gauss ol ol c000
We have an analytical I I :
expression for the prior, oL , B e .
but no analytical expres- Hist. of t Standard deviation
sion for the posterior. w2t OF TE€J. PAaramerers e e

— 10k
30 q

— 201 400

251 1 301 350

401 300

201

Positron Emission Tomography. ol

501 250

=

60 200

701

Solutions sampled by a new |
Poisson Hierarchical Gibbs Sampler. | ’

150

100

50

0 100
265 27 275 28 28 29 295 3 3.05 31 20 40 60 80 100

x107
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Case: UQ for Model Discrepancies =
27
Dong, Riis, Hansen, Modeling of sound fields, joint with DTU Elektro, 2019. @/
~Actual field "Naive” point source model Point source & model discrep.

Measured

32/33

Physical

data model

Cannot include
all possible
aspects

P. C. Hansen - Inverse Problems

Model

+ discrep- + DElEE
errors
ancy
Accounts for Known
known unknowns & statistics

unknown unknowns
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And The Future ...

e As more people solve inverse problems, more training is necessary.

e New modalities pose new questions about existence and stability
- coupled-physics in impedance tomography, neutron imaging, ...

e Many priors today are not covered by our “standard” techniques
- need more flexible regularization methods.

e Dealing with uncertainties. Natural to demand UQ for one’s problem, but
 how to obtain the necessary statistical insight,

« how to execute the sampling methods robust and efficiently, and

« how to make UQ available to non-experts?
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Numerical analysis, inverse problems, regularization algorithms, matrix computations,
image deblurring, signal processing, Matlab software, ...

Head of the Villum Investigator project
Computational Uncertainty Quantification for Inverse Problems. # CUQI

Author of several Matlab software packages.

Author of four books.

Least Squares
Data Fitting

WITH APPLICATIONS

Discrete Inverse

Problems
Insight and Algorithms

Rank-Deficient
and

Par Chrishan Handen

00 ¥ = ATmu1t(
g%rtflnnnhrvn |
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HD-Tomo: High-Definition Tomography =
The following examples are from the project

HD-Tomo, which was funded by an ERC l
Advanced Research Grant, 2012-17.

EDrnmn 2

HIGH - DEFINITION TOMOGRAPHY

Siltanen

£

Quinto

Romanov Sciacchitano

a

Harhanen Jorgensen Kjer

Soltani Xenaki

Tomographic imaging allows us to see inside objects. Doctors look for cancer, physicists study microscopic
details of materials, security personnel inspect luggage, engineers identify defects in pipes, concrete, etc.

To achieve high-definition tomography, sharp images with reliable details, we must use prior information
— accumulated knowledge about the object. This project: how to do this in an optimal way.

We developed new theory that provides insight and understanding of the challenges and possibilities of using advanced priors.
This insight allowed us to develop a framework for precisely formulated tomographic algorithms that produce well-defined results.
We laid the groundwork for the next generation of algorithms that will further optimize the use of prior information.

The project produced 47 journal papers, 6 proceeding papers, T software packages, 25 bachelor/master projects and 3 workshops.
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