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Many Many Thanks to Dianne for Inspiration, 
Insight, and Very Nice Collaborations  

Dianne, Jim and I wrote a book and tried it on students in Bari. 

It is water! 

Pictures by 
Nicola Mastronardi 
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Overview of Talk 

1. Iterative Krylov-subspace methods – regularizing iterations. 
2. Augmenting the Krylov subspace for improved solutions. 
3. Lanczos bidiagonalization algorithm with augmented subspace. 
4. Numerical examples that illustrate the advantage of this idea. 

Discrete inverse 
problem: Ax = b 
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Regularization Algorithms 
Variational formulations take the form

min
x

©
kA x¡ bk22 + ¸R(x)

ª

where R(x) is a regularization terms that penalizes unwanted features
in the solution, and ¸ is a user-chosen regularization parameter.

Projection formulations take the form

min
x
kA x¡ bk22 s.t. x 2 Sk ;

where the \signal subspace" Sk is a linear subspace of dimension k.

If Sk is chosen such that it captures the main features in the solution,
then this approach is well suited for large-scale problems.

H & O’Leary 1993, O’Leary 2001; Rust & O’Leary 2008 – choosing λ. 

Hybrid methods that apply regularization to the projected problem.

Chung, Nagy & O’Leary 2008 – hybrid method with GCV. 
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The Signal Subspace 

In some applications we can use a pre-determined subspace, e.g., spanned
by the Fourier basis, the discrete cosine bases, a wavelet basis, etc.

An example: truncated SVD

Sk = spanfv1; v2; : : : ; vkg:

O’Leary & Simmons 1981, Kilmer & O’Leary 2001 – regularizing iterations. 

Alternatively we can use a subspace determined by the given problem,
e.g., the Krylov subspace Kk associated with a speci¯c iterative method

CGLS : spanfAT b; ATA AT b; (ATA)2AT b; : : :g ;

GMRES : spanfb; A b; A2 b; : : :g ;

RRGMRES : spanfA b; A2b; A3b; : : :g :
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Illustration of Semi-Convergence 

Ayb

¹x = exact solution
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Augmented Signal Subspace 

Here we want an e±cient CGLS-type algorithm to solve the problem

min
x
kA x¡ bk22 s.t. x 2 Sp;k = Wp +Kk(A

TA; AT b) :

Ex.: deriv2 & GMRES.

All vectors in the
Krylov subspace ! 0
at end points. Now use

w1 = (1; 1; : : : ; 1)T ,
w2 = (1; 2; : : : ; n)T .

GMRES Augmented GMRES 

Let Wp denote a linear subspace that captures additional speci¯c com-
ponents of the desired solution; dim(Wp) = p ¿ k = no. its.

Then it can be advantageous to use an augmented linear subspace

Sp;k = Wp +Kk; Wp = R(Wp) = spanfw1; : : : ; wpg :
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Rectangular matrix A 2 Rm£n (this work)

² In some problems (e.g., tomography) the matrix A is rectangular.

² In some problems (tomography, inverse heat equation) the Arnoldi
subspace is not suited.

² \LBAS" { Lanczos bidiagonalization with augmented subspace.

² Open question: can we use LSQR or LSMR to implement this?

Overview of Methods 
Square matrix A 2 Rn£n

² \Augmented (RR)GMRES" (Baglama, Reichel 2007),
where the subspace augmentation idea was originally formulated.
An elegant and e±cient algorithmthat uses an incorrect subspace.

² \R3GMRES" (Dong, Garde, H 2014), uses the correct subspace,
less elegant, still e±cient.

→ 
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Towards our Algorithm LBAS 
We want to solve

min
x
kA x¡ bk22 s.t. x 2 Wp +Kk(A

TA; AT b) :

In principle we could use, say, a Hessenberg decomposition

A [ Wp ; AT b ; ATA AT b ; ¢ ¢ ¢ ; (ATA)k¡1AT b ] = Vp+k+1 Hp+k

and compute the solution as

x(k) = [ Wp ; AT b ; ATA AT b ; : : : ; (ATA)k¡1AT b ] y(k) ;

y(k) = argminykHp+1y ¡ V T
p+k+1bk22 :

But we prefer to use a stable and e±cient \standard" algorithm.

Run the bidiagonalization algorithm to compute an orthonormal basis
of Kk(A

TA; AT b), and augment it by Wp in each step of the algorithm.

This seems cumbersome { but the overhead is favorably small!
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Setting the Stage for Our Algorithm 
At step k we have the decomposition

A [ Vk ; Wp ] =
h

Uk+1 ; eUk

i · Bk Gk

0 Fk

¸

where

² A Vk = Uk+1Bk is obtained after k steps of the bidiag. process.

² Vk 2 Rn£k has orthonormal columns that span Kj(A
TA; AT b).

² Uk+1 2 Rm£(k+1) has orthonormal columns, u1 = b=kbk2.

² eUk 2 Rm£p: range(AWp) = range(Uk+1Gk+ eUkFk) and eUT
k Uk+1 = 0.

² Bk 2 R(k+1)£k is a lower bidiagonal matrix.

² Fk 2 Rp£p and changes in every iteration.

² Gk is (k + 1)£ p and is updated along with Bk.

The columns of [ Vj ; Wp ] form a basis for Sp;j .
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More Details 

Recall that

A [ Vk ; Wp ] =
h

Uk+1 ; eUk

i · Bk Gk

0 Fk

¸
:

The matrices Gk 2 R(k+1)£p and Fk 2 Rp£p are composed of the co-
e±cients of AWp with respect to basis of range(Uk+1) and range(eUk),
respectively:

Gk = UT
k+1AWp; Fk = eUT

k AWp :

Then the iterate x(k) 2 Sp;k is given by x(k) = [ Vk ; Wp ] y(k), where

y(k) = argminy

°°°°°

"
Bk Gk

0 Fk

#
y ¡

"
UT
k+1

eUT
j

#
b

°°°°°

2

2

:
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Algorithm: LBAS 
1. Set U1 = b=kbk2, V0 = [ ], B0 = [ ], G0 = UT

1 AWp, and k = 1.

2. Use the bidiag. process to obtain vk, uk+1 such that A Vk = Uk+1Bk, where

Vk = [Vk¡1; vk], Uk+1 = [ Uk; uk+1 ], Bk =

2

4 Bk¡1
0
£

0 £

3

5 .

3. Compute Gk =

·
Gk¡1

uTk+1AWp

¸
2 R(k+1)£p.

4. Orthonormalize AWp with respect to Uk+1 to obtain eUk 2 Rm£p.

5. Compute Fk = eUT
k AWp 2 Rp£p.

6. Solve miny

°°°°°

"
Bk Gk

0 Fk

#
y ¡

"
UT
k+1

eUT
k

#
b

°°°°°

2

2

to obtain y(k).

7. Then x(k) = [ Vk ; Wp ] y(k).

8. Stop, or set k := k + 1 and return to step 2.

Recomputation of eUk and Fk in each step; but p is small!
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Efficient and Stable Implementation 

In each step we update the orthogonal factorization:

"
Bk Gk

0 Fk

#
= Q

2

64
T

(11)
k T

(12)
k

0 T
(22)
k

0 0

3

75 ;

T
(11)
k 2 Rk£k and T

(22)
k 2 Rp£p are upper triangular, Q is orthogonal.

Update T
(11)
k via Givens rotations that are also applied to Gk and UT

k+1b.

eUk is already orthogonal to Uk, hence (in principle) we can perform the update

eUk+1 = (Im ¡ uk+1u
T
k+1)

eUk:

For numerical stability: must reorthogonalize the columns of Vk, Uk+1, and eUk.
Consider the use of partial reorthogonalization.

Algorithm HYBR (Chung, Nagy, O’Leary 2008) uses full reorthogonalization. 
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Numerical Examples 

Setting up the test problems:

1. Generate noise-free system: A xexact = bexact.

2. Add noise: b = bexact + e where e is a random vector of Gaussian
white noise scaled such that kek2=kbexactk2 = ´.

3. We show best solution within the iterations plus:

² relative error kxexact ¡ x(k)k2=kxexactk2,
² relative residual norm kb¡A x(k)k2=kbk2.

We compare combinations of the following algorithms:

² CGLS is the implementation from Regularization Tools.

² RRGMRES is the implementation from Regularization Tools.

² R3GMRES is our implementation (Dong, Garde, H 2014).

² LBAS is our new algorithm.
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Large Component in Augment. Subspace 
Test problem deriv2(n,2), n = 32, relative noise level ´ = 10¡5.

W2 = spanfw1; w2g; w1 = (1; 1; : : : ; 1)T ; w2 = (1; 2; : : : ; n)T :

For this problem

kW2W T
2 xexactk2=kxexactk2 = 0:99 ;

k(I ¡W2W T
2 )xexactk2=kxexactk2 = 0:035 ;

we only need to spend e®ort in capturing the small component in W?
2 .
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Capture a Discontinuity 
Test problem gravity(n), n = 100, ´ = 10¡3, exact sol. changed to
include a discontinuity between elements ` = 50 and ` + 1 = 51.

Augmentation matrix W2 allows us to represent this discontinuity:

w1 =

·
ones(`; 1)

zeros(n¡`; 1)

¸
; w2 =

·
zeros(`; 1)

ones(n¡`; 1)

¸
:
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Fix Boundary Conditions 

Here W2 compensates for the \incorrect" or \incompatible" boundary
conditions implicit in A, by allowing the regularized solutions to have
nonzero values and nonzero derivatives at the endpoints.
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Fix Boundary Conditions, Rectangular A 

The matrix A is rectangular so RRGMRES and R3GMRES cannot be used.
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Compute Spectrum of X-Ray Source 
The spectrum of an X-ray source (where accelerated electrons hit an anode) 
consists of a continuous spectrum superimposed with line spectra. 

We know the frequencies of the line spectral, so we can easily incorporate this 
information through the augmentation subspace. 

Experiment with two choices: 
• Wdelta  – two delta functions at the right frequencies, 
• WGauss – two narrow Gauss functions at the right frequencies. 

Many thanks to Jan Sijbers for inspiration to this example. 

Exact spectrum 
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Conclusions 

 We consider (again) how to augment the Krylov subspace. 
 Focus here on rectangular matrices and Lanczos bidiag. 
 We develop an efficent algorihtm LBAS. 
 Numerical examples demonstrate the advantage of LBAS. 
 Future work: 

 Selective reorthogonalization? 
 Is it occasionally necessary to do the MGS twice? 
 A similar algorithm based on MINRES/MR-II? 
 Hybrid algorithm with regularization of projected problem! 
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