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X-Ray Computed Tomography (CT)
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X-Ray CT and the Radon Transform

The Principle

Send X-rays through the ob-
ject f at many angles, and
measure the attenuation g .

f = 2D object/image

g = R f = Radon transform of f
= sinogram
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This Work Focuses on Unmatched Projectors

My interest in this topic arose when we started writing a new book on
computational algorithms for computed tomography – in particular when
write the chapters on algebraic iterative reconstruction methods.
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X-Ray CT – Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics.
Back projection B = adjoint(R) is a mathematical abstraction.

Multiplication with A ! action of forward projector R.
Multiplication with B ! action of back projector B.

When we can store A then we use AT for back projection, and our iterative
methods solve (weighted) normal equations ATAx = ATb.

When A is too large to store, we must use matrix-free multiplications of
the forward projector and back projector.

HPC software: computational efficiency takes priority → B 6= AT .

We are now faced with the unmatched normal equations

BAx = Bb.

The matrix BA usually has some eigenvalues with negative real part, so we
cannot use stationary iterative methods with AT replaced by B .
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“Fix” a Stationary Iterative Method

Unmatched pair from ASTRA software package, image has 64× 64 pixels,
90 proj. angles, 60 detector elements, no noise, min<λj = −6.4 · 10−8.

No convergence
when B 6= AT

Define the Shifted BA Iteration (T. Elfving)

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

Convergence condition:
<
(
eig(BA)

)
+ α > 0 .

Just choose α large enough that this is satisfied.
Drawback: in addition to relax. param. ω we must also choose shift α.
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Alternative: Solve the Unmatched Normal Equations

Instead of “fixing” an algorithm designed for solving another problem,
just solve the unmatched normal equations in one of the forms

BAx = Bb or AB y = b , x = B y

The left- or right-preconditioned GMRES method for (A, b) immediately
presents itself as a good choice with B as the preconditioner.

BA-GMRES solves BAx = Bb with B as a left preconditioner.

AB-GMRES solves AB y = b , x = B y with B as a right preconditioner.

Advantages:
these methods always converge,
no need for relaxation parameter or shift parameter.

Perturbation theory: Elfving, H (2018) and H, Hayami, Morikuni (subm.).
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Solving the Unmatched Normal Equations

Hayami, Yin, Ito (2010)

AB-GMRES solves miny ‖AB y − b‖2, x = B y (B = right precond.)

. minx ‖Ax − b‖2 = minz ‖AB z − b‖2 holds for all b if an only
if range(AB) = range(A), e.g., if range(B) = range(AT ).

BA-GMRES solves minx ‖BAx − Bb‖2 (B = left preconditioner)

. the problems minx ‖Ax − b‖2 and minx ‖BAx − Bb‖2 are
equivalent for all b if and only if range(BTBA) = range(A),
e.g., if range(BT ) = range(A).

Both methods use the same Krylov subspace Kk(BA,Bb) for the solution,
but they use different objective functions.

Conditions are difficult/impossible to check in a given X-ray CT problem
. . . but it works #
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Relation to LSQR and LSMR with a Matched Transpose

H, Hayami, Morikuni (submitted)

AB-GMRES with B = AT computes xk = ATuk with

uk = arg min
u∈Kk (AAT ,b)

‖b − AATu‖22 .

Let rk = b − Axk ; the method minimizes

‖rk‖22 = ‖rk |range(A)‖22 + constant

and so does LSQR; they produce the same iterates (in ∞ precision).

BA-GMRES with B = AT applies GMRES to

ATAx = ATb ←→ min
x
‖b − Ax‖2 .

Equivalent to applying MINRES to the normal equations ATAx = ATb
which, in turn, is equivalent to LSMR (in ∞ precision).
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Reconstr. Error, Noisy Data, Matrix is 252 000× 176 400

Image has 420× 420 pixels, 600 projection angles, 420 detector pixels.

AB-GMRES ‖xk − x̄‖2/‖x̄‖2 x BA-GMRES ‖xk − x̄‖2/‖x̄‖2 x

Semi-convergence (see next slide #) is evident for both methods.
Same minimum reconstruction error ‖xk − x̄‖2/‖x̄‖2 ≈ 0.10 for both.
Slightly fewer iterations for AB-GMRES in this example.
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Analysis of Semi-Convergence: Split the Error

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

The iteration error decreases, and we expect the noise error to increase.

Then we have semi-convergence, when the noise error starts to dominate:
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Semi-Convergence of GMRES

Some insight has been obtained.
Calvetti, Lewis, Reichel (2002): if the noise-free data lies in a
finite-dimensional Krylov subspace, and if GMRES is equipped with a
suitable stopping rule, then the GMRES-solution converges to the
exact solution x̄ as the noise goes to zero.
Gazzola, Novati (2016): if Ax = b satisfies the discrete Picard
condition (DPC) and if the left singular vectors of the Hessenberg
matrices of two consecutive GMRES steps resemble each other – then
the Hessenberg systems in GMRES also satisfy the DPC.

Our lesson: if all SVD components corresponding to the large singular
values are captured in order of decreasing magnitude when GMRES is
applied to Ax = b, then GMRES will exhibit semi-convergence.
A complete understanding of these aspects has not emerged yet.
Here we rely on insight from numerical experiments.
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BA-GMRES: SVD Analysis, Small Matrix 23 040× 16 384
Right-hand side: b̄ = A x̄

x̄ = ground truth
no noise ‖2

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.
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BA-GMRES: SVD Analysis – Now With Noisy Data
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.003 Gaussian

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.

NMSC21 GMRES and Unmatched Projectors P. C. Hansen 14 / 18



BA-GMRES: SVD Analysis – With More Noise
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.03 Gaussian

Left plot: the “noise floor” increases..
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
Now we obtain the best reconstruction after k ≈ 20 iterations.
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Stopping Rules

We must terminate the iterations at the point of semi-convergence.

Discrepancy principle (DP): terminates the iterations as soon as the
residual norm is smaller than the noise level:

kDP = the smallest k for which ‖b − Axk‖2 ≤ τ ‖e‖2

where τ ≥ 1 = safety factor when we have a rough estimate of ‖e‖2.

NCP criterion: uses the normalized cumulative periodogram to
perform a spectral analysis of the residual vector b−Axk and identifies
when the residual is close to being white noise – which indicates that
all available information has been extracted from the noisy data.

For those who are curious: the L-curve criterion does not work, and we
cannot implement generalized cross validation (GCV) efficiently.
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Stopping Rules: Tests With 2 Different Back Projectors

Both DP and NCP stop a bit too early – better than stopping too late.
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Conclusion

Facts
Unmatched projector pairs in X-ray CT are here to stay.
Need efficient iterative reconstruction methods for unmatched pairs.

Different approaches
Use a classical method that ignores the mismatch
→ hope for the best.
Modify a classical method, e.g., as in the Shifted BA Iteration
→ but this requires an estimate of the leftmost eigenvalue.
Use a method that solves the unmatched normal equations
→ AB-GMRES and BA-GMRES are the choices here.

Our contribution
The AB- and BA-GMRES methods exhibit semi-convergence.
They are suited as iterative regularization methods in X-ray CT.
We have stopping rules that work well.
Next step: flexible preconditioning to enforce nonnegativity.
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