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Abstract

Total Variation (TV) regularization is a powerful technique for image
reconstruction tasks such as denoising, in-painting, and deblurring, be-
cause of its ability to produce sharp edges in the images. In this talk we
discuss the use of TV regularization for tomographic imaging, where we
compute a 2D or 3D reconstruction from noisy projections. We demon-
strate that for a small signal-to-noise ratio, this new approach allows us to
compute better (i.e., more reliable) reconstructions than those obtained by
classical methods. This is possible due to the use of the TV reconstruction
model, which incorporates our prior information about the solution and
thus compensates for the loss of accuracy in the data. A consequence is
that smaller data acquisition times can be used, thus reducing a patient’s
exposure to X-rays in medical scanning and speeding up non-destructive
measurements in materials science.
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Tomography is the science of “seeing through objects.” Physical signals—waves,
particles, currents—are sent through an object from many different angles, the re-
sponse of the object to the signal is measured, and an image of the object’s interior is
reconstructed. Computed tomography (CT) is an indispensable tool in modern science
and technology as a non-invasive measurement technique for diagnostics, exploration,
analysis, and design, and it has become an independent research field on the border
between mathematics, scientific computing, and application sciences [5].

Tomographic imaging is an ill-posed problem, which means that it involves the
computation of solutions that are extremely sensitive to data errors, model errors,
and rounding errors. Useful reconstructions can only be computed by incorporating
prior information in order to define unique, stable, and physically meaningful solu-
tions [4]. Total variation (TV) reconstruction, originally proposed for image denoising
by Rudin, Osher and Fatemi [11], see also [2], incorporates the prior knowledge that
the reconstructions must be piecewise smooth with occasional steep transitions, i.e,
sharp edges— the underlying assumption being a Laplacian distribution for the im-
age’s gradient magnitude. The TV reconstruction model seeks to do so by explicitly
producing an image with a sparse gradient (something that is not achieved by other
reconstruction methods such as filtered back projection or Tikhonov regularization),
and this fact establishes an interesting connection to compressed sensing [1], [3].
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A variety of TV algorithms have been developed over the years, e.g., time marching
algorithms, fixed-point iteration, and various minimization-based methods such as sub-
gradient methods, second-order cone programming methods, duality based methods,
and graph-cut methods. Many of these algorithms are specifically geared towards 2D
problems in image processing, such as denoising, in-painting and deblurring. Other
algorithms are more general in nature and therefore also applicable to the large sparse
systems of equations that arise in 2D and 3D computed tomography. At any rate, wee
shall not try to survey all these algorithms here.

The use of TV in MRI tomography was already considered in one of the origi-
nal papers on compressed sensing [1]; here we focus on conventional CT where the
imaging model is not based on random sampling. A basic result regarding the use of
TV in tomography is that the TV reconstruction model—due to the way it incorpo-
rates prior information about the image—enables us to achieve a good reconstruction
quality with less data, or with more noise in the data, than required by a classical
reconstruction algorithm. However, one should be careful with such a definitive state-
ment, because several parameters in the model and the algorithm have a non-negligible
influence on the TV reconstruction.

Our goal here is thus to illustrate the complex interplay between the choice of
these parameters and the quality of the computed TV reconstructions. We consider
a number of important tasks: formulate an optimization problem that gives the de-
sired reconstruction and can be solved in realistic time, find an algorithm which is
fast enough, find parameter windows that give a useful reconstruction, find adequate
stopping criteria, determine the optimal amount of dose pr. views, etc.

Our computations were primarily done with an optimal first-order method de-
veloped by us [6]—but our conclusions carry over to other applications and are not
specific for our particular TV algorithm.

Below we summarize the steps involved in getting from the measurements to a
computed solution, and we introduce important parameters associated with each step.

Scanner. In the scanner we can control the dose (the intensity of the source) and the
number of views (or positions of the source/detector). The number of bins or
pixels of the detector is fixed by the manufacturers of medical scanners, but in
other applications we can control this parameter. Associated with the scanner
is the true object that we want to reconstruct.

Mathematical model. The mathematical model describes the relation between the
rays, the object, and the detectors, and it describes the noise in the data. This
step also specifies how we represent the model and the solution on the com-
puter. The model will also (perhaps implicitly) include a deterministic and/or
stochastic model of our a priori knowledge of certain properties of object. This
model defines the desired solution, i.e., the solution we want to compute if there
were no errors. In general, this desired solution is only a discrete approximation
to the underlying true object.

Reconstruction model. The reconstruction model defines an optimization problem
which incorporates some kind of regularization in order to handle ill-posedness
of the mathematical model, and whose solution is what we want to compute in
the face of the above-mentioned errors. The regularized solution depends on the
regularizing function (used to impose stability) and the regularization parameter
(and perhaps other parameters), and it is in general only an approximation to
the desired solution.

Numerical algorithm. The numerical algorithm defines the particular way we de-
cide to solve the regularization problem. We compute a numerical solution which
is a (preferably good) approximation to the regularized solution, and whose qual-
ity depends on various algorithm parameters, such as the initial guess for the
iterations, the stopping criterion, and the choice of algorithm itself.
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The mathematical model used in this work takes the form of a linear system of
equations Ax ≈ b where the sparse system matrix A ∈ Rm×n models the scanning
process. The reconstructed N × N image is represented by x ∈ Rn (with n = N2),
and the right-hand side b ∈ Rm represents the data from the scanner. While the raw
data essentially consists of photon counts with Poisson noise, our data b is obtained
by further processing the raw data and we assume that the noise in b has a Gaussian
distribution with standard deviation σ.

Our TV reconstruction model has the form

min
x≥0

f(x), f(x) = 1
2
∥Ax− b∥22 + α

∑n
j=1 ϕτ (Djx), (1)

where the second term is the TV regularization term: α > 0 is a regularization parame-
ter that controls how much regularization we wish to impose, the matrices Dj ∈ R2×n

are designed such that Djx ∈ R2 is a finite difference approximation to the gradient
at pixel j, and ϕτ (Djx) is our smooth approximation to the gradient magnitude:

ϕτ (Djx) =

{
∥Djx∥2 − τ

2
if ∥Djx∥2 ≥ τ,

1
2τ

∥Djx∥22 else.
(2)

This is actually the Huber approximation—other smooth approximations might as
well be used, such as (∥Djx∥22 + τ2)1/2; both include a smoothing threshold τ . We use
a smooth approximation because the gradient magnitude ∥Djx∥2 is not differentiable,
and while algorithms for non-smooth optimization do exist, they generally suffer from
slow convergence.

Regularization is introduced to prevent solution artifacts, arising from the ill-
posedness of the problem that magnifies the noise in the data. One should realize,
however, that the regularization also always tends to introduce other artifacts in the
solution (compared to the exact and unattainable image). The hope is that the reg-
ularization artifacts are different, and that they have a less disturbing influence on
the interpretation of the reconstructed image than the original noise artifacts. For
example, if we use ∥x∥22 as the regularizing function then we know that this leads to
smooth reconstructions, and if we wish to reconstruct sharp edges in the image (i.e.,
pixels with large gradient magnitude) then we obtain severe Gibbs artifacts appearing
as “ringing” effects near the edges. The TV function allows better reconstruction of
edges, but at the expense of so-called “staircasing” or “cartoon” artifacts [2].

No matter which numerical algorithm is used to solve the TV problem, it starts
with an initial guess x(0) and produces a sequence of iterations or approximations
x(k) for k = 1, 2, . . . until some stopping criterion is satisfied. Standard stopping
criteria are based on the change in the objective function f(x(k−1))− f(x(k)) and the
step size ∥x(k−1) − x(k)∥2, and involve thresholds Tobj and Tstep for these quantities.
Alternatively one can stop when the angle θ between the gradients of the two terms
in (1) approaches π.

Step Parameters associated with the step

The scanner d = dose (source’s intensity); ν = # views (positions of
source); p = number of bins (or pixels) on detector.

Math. model m = # data; n = # pixels; σ = noise level.
Reconstr. model α = reg. parameter; τ = smoothing threshold.

Numer. algorithm x(0) = initial guess; Tobj, Tstep, Tθ = thresholds for change in
objective function, step length, or angle between gradients.

The table above summarizes the steps and the corresponding parameters that we
have introduced here. Below we give examples of the the influence of these parameters
on the computed reconstructions.
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Fig. 1.

Dose and number of views

In a number of applications the accumulated dose during the measurements must be
limited— for example due to safety requirements in a medical scan or due to material
limitations in nondestructive testing. This means that the product d ·ν of the source’s
intensity and the number of views is a constant. The signal-to-noise level (SNR) in the
data is proportional to the source’s intensity, and therefore we can basically distinguish
between two scenarios: many views with dense angular sampling but low SNR in each
view, or few views with high SNR in each view but coarse angular sampling. A study
of this aspect is given in [7].

The main dilemma in such a study is that when varying the scanner parameters
we need to go through all the stages mentioned above to arrive at a reconstruction,
making it difficult to make a completely fair comparison. For example, in our study
we chose the TV regularization parameter α by a visual inspection when varying d
and ν; but how should this really be done to make a completely fair comparison?

We use a test image that simulates a cross section of a female breast consisting of
four different tissue types: skin, fat, fibroglandular tissue (having a complex structure
that is fairly realistic) and micro-calcifications, with different gray level intensities. Of
particular interest are the micro-calcifications which are considered an early indicator
of a developing cancer. Their tiny size and high contrast make accurate imaging a
challenge.

CT screening for breast cancer is being developed as an supplement to conventional
mammography, and to make CT feasible in this setting it is necessary to operate at
a much lower X-ray dose than conventional CT. In the present study our particular
question of interest was therefore: Given a fixed X-ray exposure to the patient (equiv-
alent to mammography levels) what is the best distribution of the dose between the
views? We compute noise-free data for ν = 64, 128, 256 and 512 views and manually
add noise with increasing intensity to simulate the fixed accumulated dose across all
views, i.e., more noise per view in the many view cases.

Figure 1 shows reconstructions computed with two different reconstruction models,
filtered back projection (FBP, top) and total variation (TV, bottom), and with four
different number of views ranging from ν = 64 (with high SNR in each view) to
ν = 512 (with low SNR in each view). We also show a zoomed-in version of the region
of interest around the micro-calcification structures.

We see that FBP tends to give results that improve slightly with ν and with a lot
of high-frequent “structure noise” (a well known artifact in FBP) while TV produces
reconstructions whose visual appearance varies significantly with ν. As expected,
the “cartoon” artifacts dominate the TV reconstructions. As the SNR deteriorates
we must increase the regularization parameter α and hence the size of the piecewise
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constant regions increases while their number decreases.
While most of the micro-calcifications are visible in each reconstruction, the ar-

tifacts and noise texture in the sparse-view images can be distracting and mistaken
for additional micro-calcifications. The increased SNR per view impacts the recon-
struction less than artifacts due to reduced sampling. Hence, with our choice of α it
appears that the micro-calcifications are better revealed in the reconstructions based
on many low-SNR views. This result is interesting and warrants further investigation
with more rigorous and quantitative evaluation.

Number of views and bins

This case study from [9] illustrates the interplay by the scanner, the mathematical
model, and the reconstruction model. The ill-posedness of the reconstruction problem
can, to a certain extent, be measured by the condition number cond(A) of the system
matrix, since this number describes the reconstruction’s sensitivity to data errors when
regularization is not imposed. For the present simulations we considered fan-beam CT,
assuming a circular path for the source. The reconstruction is an N ×N image with
N = 32, but we fix all pixel values outside a circular region at 0 in order to match the
rotational symmetry in the scan geometry, and the number of unknowns is therefore
n ≈ (π/4)N2 = 812.

Fig. 2.

Figure 2 shows cond(A), measured in the 2-norm, as a function of the number ν of
views and the number p of bins on the detector, for a discrete model with n = 812 pixels
in the reconstruction. The largest condition number for the considered sampling range
is 825.5 occurring at ν = p = 32. The large condition number for the lower number of
samples implies that any data inconsistency could be amplified. The condition number
decays fast with increasing p and slower with ν. These results seem to suggest the
choice ν ≈ 2N and p ≈ 2N which ensures a small condition number. Increasing ν or
p only reduces the condition number marginally.

TV versus 2-norm regularization

Another case study from [9] illustrates the influence of the regularization function in
the reconstruction model; specifically, we compare the TV model (1) with a similar
model where the TV term is replaced by the 2-norm ∥x∥2 of the solution. The model
problem is the same as above.

Figure 3 shows the root mean square error (RMSE), i.e., the 2-norm of the dif-
ference between the exact image and the reconstruction, as a function of the number
of views, for the TV and the 2-norm regularizers in the reconstruction model. We
already know that the two models give different artifacts in the reconstruction, so the
RMSE does not tell the whole story; but the main observation here is that the TV
model is able to give much lower RMSE than the 2-norm model as the number of
views ν decreases. In fact, the RMSE for TV is almost independent of ν as long as
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Fig. 3.

this number exceeds 100, while the RMSE increases dramatically for fewer views. The
RMSE for the 2-norm regularizer, on the other hand, increases steadily as ν decreases.
The conclusion is that the TV regularization term represents strong a priori knowl-
edge which is better able to compensate for the reduction in the amount of data than
2-norm regularization.

The TV regularization parameter

The TV reconstruction model includes the parameter α that controls the weight given
to the regularization term, and studies in [13] demonstrate that α acts as a “scale
parameter” or “resolution limit” that controls the size of the smallest features that can
be reconstructed by the TV model. This parameter depends on the noise level in the
data and a too small value will result in a useless reconstruction that is contaminated
by influence from the noise, while a too large value will result in a very “cartoony”
reconstruction with too few details

Fig. 4.

Figure 4 illustrates this aspect. In the left image, α is too large— the inverted noise
is suppressed but the regions of constant intensity are too large giving a “cartoony”
reconstruction. In the right image, α is too small such that f(x) is dominated by
the residual term, and hence the solution is dominated by inverted noise due to the
ill conditioned A matrix. The middle image contains more details without being
influenced by the noise.

At the same time, the size of α influences how “difficult” it is to solve the opti-
mization problem (1) numerically: A small α means the the objective function f(x) is
dominated by the residual term which is smooth, while a large α puts more emphasis
on the less smooth TV term. An additional issue—which we will not consider here—
is the choice of the smoothing threshold τ that controls how much we smooth the TV
term in (2).
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Figure 5 (from [6]) shows the convergence of
four numerical algorithms for solving the TV
regularization problem (1) for three choices of α.
Note the different iteration ranges on the ab-
scissa axis! The four algorithms are:

GP The standard gradient projection algo-
rithm.

GPBB GP with Barzilai–Borwein accelera-
tion.

UPN0 An optimal first-order method from [6]
not exploiting strong convexity.

UPN An optimal first-order method from [6]
that exploits strong convexity.

As α increases, the TV regularization term in
f(x) becomes increasingly important and the
problem becomes more difficult to solve, result-
ing in an increasing number of iterations for all
four methods to reach a solution of the desired
accuracy

In all three cases GPBB is superior to GP, and for large values of α the two
first-order methods are even faster. The four methods differ by the amount of “in-
formation” about the optimization problem that they exploit. Ranging from GP—a
basic steepest-descent type method—to UPN, which adaptively estimates the Lips-
chitz constant and the strong convexity parameter of the objective function.

The stopping criterion

Our last example shows the influence of the stopping criterion on the TV reconstruc-
tion. The stopping criterion used here is based on the optimality criterion cos θ = −1,
where θ is the angle between the gradients of the squared residual and the TV regu-
larization term [12], and we stop when cos θ is sufficiently close to −1. The algorithm
used here is GPBB from the previous section.

Fig. 6.

Figure 6 (from [10]) shows a particular profile through a single micro-calcification,
see the inserted image, for different iterations that are increasingly close to satisfying
cos θ = −1. As the number of iterations increases the profile’s sharp peak gets bet-
ter resolved. Interestingly, the low-frequency components of the profile are captured
already after a small number of iterations, while many more iterations are needed to
capture the correct shape and magnitude of the peak. The TV reconstruction model
focuses on providing an accurate representation of the image’s gradient, and our exam-
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ple shows that it is important to be close to the minimum of f(x) in order to achieve
this.

An important point is that it is unclear precisely how close cos θ shold be to −1,
and whether a different stopping criterion, e.g., exploiting local information around the
micro-calcification, could be more reliable. On the other hand, we could simply take
an extremely large number of iterations to ensure an accurate solution, but in practice
this is of course not feasible. Accepting an inadequate reconstruction can have clinical
impact, as it might fail to provide enough contrast for detecting the micro-calcification.
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