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X-Ray CT in 2D – and the Radon Transform

The Principle

Send X-rays through the ob-
ject f at many angles, and
measure the attenuation g .

f = 2D object/image

g = R f = Radon transform of f
= sinogram
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Modelling in CT: Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics
via integration of the function f along lines Lθ,s

R[f ](θ, s) =

∫
Lθ,s

f (ξ1, ξ2) d` = g(θ, s) = sinogram .

Back projection B = adjoint(R), an abstraction, smears g back along Lθ,s

B[g ](ξ1, ξ2) =

∫ 2π

0
g(θ, ξ1 cos θ + ξ2 sin θ) dθ .
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Ray/Pixel Driven Discretization Models

Forward line model Back projection model Details here
Ray driven Pixel driven

Forward line model: start from detector element centers.
Back projection model: start from image pixel centers and

interpolate detector element values.
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Reconstruction Algorithms

Transform-based methods
Formulate the forward problem as a certain transform, then formulate a
stable way to invert the transform.

2D CT: Radon transform ↔ filtered back projection (FBP).

Works well when we have lots of projection data with low noise.

Algebraic iterative methods
Discretize the forward problem and solve the corresponding large-scale
problem Ax = b by means of an iterative method.
A simple example is Landweber iteration = steepest descent:

xk+1 = xk + ω AT (b − Axk), k = 0, 1, 2, . . .

Other examples: SART, Kaczmarz (ART), Landweber-Kaczmarz, CGLS.

Suited for applications with few projections and/or high noise.
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Noisy Data Gives Semi-Convergence

The right-hand side b (the data) is a sum of noise-free data b̄ = A x̄ from
the ground-truth image x̄ plus a noise component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

‖xk − x̄‖2

In the initial iterations xk approaches the unknown ground truth x̄ .
During later iterations xk converges to the undesired xnaïve = A−1b.
Stop the iterations when the convergence behavior changes.
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Noise Error and Iteration Error

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

Convergence analysis – which we skip here – shows that the iteration error
decreases and the noise error increases.

Then we have semi-convergence when the noise error starts to dominate:

PRIMO 2022 GMRES and Unmatched Projectors P. C. Hansen 7 / 23



Projectors and Matrices

Multiplication with A ! action of forward projector R.
Multiplication with B ! action of back projector B = adjoint(R).

When we can store A (it is sparse), then we use AT for back projection B ,
and our stationary iterative methods solve least squares problems
associated with the normal equations ATAx = ATb.

But this can still be problematic. 3D example:
1000 projection angles, 1000× 1000 detector
elements, 1000× 1000× 1000 voxels→ num-
ber of non-zeros in A is of the order 1012 ∼
several Terabytes of memory.

When A is too large to store, we must use matrix-free multiplications of
the forward projector and the back projector – cf. the discr. models.

Ray and pixel driven models → B 6= AT → unmatched projector pair.
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Convergence Analysis for Unmatched Pairs

Substituting B for AT in Landweber leads to the BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0.

A fixed-point iteration that is not related to solving a minimization problem!

Any fixed point x∗ satisfies the unmatched normal equations

BAx∗ = Bb.

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = Bb if and only if

0 < ω <
2<eal(λj)
|λj |2

and <eal(λj) > 0, {λj} = eig(BA) .

Zeng & Gullberg (2000): similar analysis but ignoring complex λj .
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Non-Convergence – and Fixing It

Unmatched pair from ASTRA software package, image has 64× 64 pixels,
90 proj. angles, 60 detector elements, no noise, min<ealλj = −6.4 · 10−8.

No convergence
when B 6= AT

Define the Shifted BA Iteration (T. Elfving)

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

Convergence condition:
<eal

(
eig(BA)

)
+ α > 0 .

Just choose α large enough that this is satisfied.
Drawback: in addition to relax. param. ω we must also choose shift α.
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Alternative: Solve the Unmatched Normal Equations

Instead of “fixing” an iterative method designed for another problem, just
solve the unmatched normal equations in one of the forms

UNE: BAx = Bb or AB y = b , x = B y

We will use GMRES (Saad, Schultz, 1986), a very efficient iterative
method for solving systems

M x = d with a square and nonsymmetric matrix M.

We skip the implementation details here, and just remind that in the kth
step, the iterate xk of GMRES solves the problem

min
x
‖M x − d‖2 subject to x ∈ Kk(M, d) ,

with the Krylov subspace

Kk(M, d) = span{d , Md , M2d , . . . , Mk−1d} .
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AB-GMRES and BA-GMRES

We can formulate specialized versions of GMRES for the UNEs:

BA-GMRES solves BAx = Bb.

AB-GMRES solves AB y = b, x = B y .

Both methods use the same Krylov subspace Kk(BA,Bb) for the solution,
but they use different objective functions.

Advantages:
both methods always converge,
no need for relaxation parameter or shift parameter,
fairly simple to implement → next page.
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The ABBA Algorithms

K. Hayami, J.-F. Yin, T. Ito, GMRES methods for least squares problems, SIAM J. Matrix Anal. Appl., 31 (2010),
2400–2430.

P. C. Hansen, K. Hayami, and K. Morikuni, GMRES methods for tomographic reconstruction with an unmatched
back projector, J. Comp. Appl. Math., 413 (2022), 114352.
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Properties of the ABBA Algorithms as LS Solvers

Hayami, Yin, Ito (2010), H, Hayami, Morikuni (2022)

AB-GMRES solves miny ‖AB y − b‖2, x = B y

. minx ‖Ax − b‖2 = miny ‖AB y − b‖2 holds for all b if an only
if range(AB) = range(A), e.g., if range(B) = range(AT ).

. equivalent to LSQR when B = AT .

BA-GMRES solves minx ‖BAx − Bb‖2
. the problems minx ‖Ax − b‖2 and minx ‖BAx − Bb‖2 are

equivalent for all b if and only if range(BTBA) = range(A),
e.g., if range(BT ) = range(A).

. equivalent to LSMR when B = AT .

Conditions are difficult/impossible to check in a given CT problem
. . . but we shall demonstrate success #
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Theory for Semi-Convergence of GMRES (Technical!)

Some insight has been obtained.
Calvetti, Lewis, Reichel (2002): if the noise-free data lies in a
finite-dimensional Krylov subspace, and if GMRES is equipped with a
suitable stopping rule, then the GMRES-solution converges to the
exact solution as the noise goes to zero.
Gazzola, Novati (2016): if the discrete Picard condition (DPC) is
satisfied and if the left singular vectors of the Hessenberg matrices of
two consecutive GMRES steps resemble each other – then the
Hessenberg systems in GMRES also satisfy the DPC.

If the SVD components for the large singular values are captured in order
of decreasing magnitude, then GMRES will exhibit semi-convergence.

A complete understanding of these aspects has not emerged yet.
Here we rely on insight from numerical experiments (cf. appendix).
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Reconstr. Error, Noisy Data, Matrix is 252 000× 176 400

Image has 420× 420 pixels, 600 projection angles, 420 detector pixels.

AB-GMRES ‖xk − x̄‖2/‖x̄‖2 x BA-GMRES ‖xk − x̄‖2/‖x̄‖2 x

Semi-convergence is evident for both methods.
Same minimum reconstruction error ‖xk − x̄‖2/‖x̄‖2 ≈ 0.10 for both.
Slightly fewer iterations for AB-GMRES in this example.
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Stopping Rules

We must terminate the iterations at the point of semi-convergence.

Discrepancy principle (DP): terminates the iterations as soon as the
residual norm is smaller than the noise level:

kDP = the smallest k for which ‖b − Axk‖2 ≤ τ ‖e‖2

where τ ≥ 1 = safety factor when we have a rough estimate of ‖e‖2.

NCP criterion: uses the Normalized Cumulative Periodogram to per-
form a spectral analysis of the residual vector b − Axk and identifies
when the residual is close to being white noise – which indicates that
all available information has been extracted from the noisy data.

For those who are curious: the L-curve criterion does not work, and we
cannot implement generalized cross validation (GCV) efficiently.
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Stopping Rules: Tests With 2 Different Back Projectors

Both DP and NCP stop a bit too early – better than stopping too late.
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7th International Conference on Image Formation in X-Ray
Computed Tomography, June 12–16, 2022, Baltimore, USA

New computational experiments by:
Emil Y. Sidky, Department of Radiology, University of Chicago.

Cone-beam CT data from an Epica Pegaso veterinary CT scanner.
180 projections taken uniformly over one circular rotation.
Physical “quality assurance” (QA) phantom.
Detector: 1088× 896 pixels of size (0.278mm)2.
3D reconstruction: 1024× 1024× 300 voxel grid.

Ray-driven projector A. Two choices of B :
Bun = voxel-driven back projection, linear interpolation on detector.
BFBP = BunF = filtered back-projection, where F = ramp filter.
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The LS Residual and the UNE Residual

‖Axk − b‖2 ‖B Axk − B b‖2

Decay: no guarantee Decay: guaranteed

BA-GMRES works well with both B-matrices.

“CGLS” = CGLS with AT replaced by B ; it cannot converge.
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“Reconstruction Error”

Real data from a physical phantom ⇒ no ground truth x̄ .

Instead we use a high-quality FBP reconstruction xFBP.

‖xk − xFBP‖2

With both B-matrices we observe semi-convergence.
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Reconstruction, Mid-Slice ROI

Top left: reference xFBP = FBP reconstructed image from 720 views.
Top right: FBP reconstructed images from 180 views.
Bottom left: BA-GMRES image for B = Bun at k = 29 iterations.
Bottom right: BA-GMRES image for B = BFBP at k = 4 iterations.
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Conclusion

Unmatched projector pairsF

Need efficient iterative reconstruction methods for unmatched pairs.
Modify a classical method, e.g., as in the Shifted BA Iteration.
Use a method that solves the unmatched normal equations.

FNew matched pair: K. Bredies & R. Huber, Convergence analysis of pixel-driven
Radon and fanbeam transforms, SIAM J. Numer. Anal., 59 (2021), 1399–1432.

Convergence
Good understanding of convergence for noise-free data.
Emerging: intuitive understanding of semi-convergence for noisy data.

Future
More theory about semi-convergence for GMRES.
Deal with memory issue: restart, recycling, etc.
Ready-to-use implementations for the CT community.
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BA-GMRES: SVD Analysis, Small Matrix 23 040× 16 384
Right-hand side: b̄ = A x̄

x̄ = ground truth
no noise ‖2

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.
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BA-GMRES: SVD Analysis – Now With Noisy Data
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.003 Gaussian

Left plot is typical for X-ray CT problems; no rank deficiency.
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
We obtain the best reconstruction after k ≈ 50 iterations.
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BA-GMRES: SVD Analysis – With More Noise
Right-hand side: b = A x̄ + e

x̄ = ground truth
‖e‖2/‖b̄‖2 = 0.03 Gaussian

Left plot: the “noise floor” increases..
As k increases we capture more SVD components in xk .
At k = 30 we already capture the first 11 000 exact SVD components.
Eventually we include noisy SVD components = semi-convergence.
Now we obtain the best reconstruction after k ≈ 20 iterations.
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