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Overview of Talk 

• Discrete inverse problem:  A x = b  or  minx || A x – b ||2 

• Iterative Krylov-subspace methods – regularizing iterations 
• Augmenting the Krylov subspace – different approaches 
• Implementation issues – the R3GMRES algorithm 
• Numerical examples 

Forward problem 
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Regularization Algorithm 

Variational formulations take the form

min
x

©
kA x¡ bk22 + ¸R(x)

ª

where R(x) is a regularization terms that penalizes unwanted features
in the solution, and ¸ is a user-chosen regularization parameter.

An alternative formulation:

min
x
kA x¡ bk22 s.t. x 2 Sk ;

where Sk is a linear subspace of dimension k { the \signal subspace."

If Sk is chosen such that it captures the main features in the solution,
then this approach can be an interesting alternative for large-scale
problems.
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The Signal Subspace 
In some applications we can use a pre-determined subspace, e.g., spanned
by the Fourier basis, the discrete cosine bases, a wavelet basis, etc.

Alternatively we can use a subspace determined by the given problem,
e.g., the Krylov subspace associated with a speci¯c iterative method

CGLS : spanfAT b; ATA AT b; (ATA)2AT b; : : :g ;

GMRES : spanfb; A b; A2 b; : : :g ;

RRGMRES : spanfA b; A2b; A3b; : : :g :

For noisy data RRGMRES is preferable to GMRES (the noisy b is not
in the Krylov subspace).

Thus our concern here is with the RRGMRES method for a square
matrix A 2 Rn£n, where the jth iterate x(j) is in

Kj(A; A b) = spanfA b; A2b; A3b; : : : ; Ajbg :
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The Augmented Signal Subspace 
LetWp denote a linear subspace that captures additional speci¯c com-
ponents of the desired solution; dim(Wp) = p ¿ j = no. its.

Then it can be advantageous (Baglama & Reichel, several papers) to
consider the augmented linear subspace, in the case of RRGMRES:

Sp;j ´ Wp +Kj(A; Ab) ; Wp = R(Wp) = spanfw1; w2; : : : ; wpg :

Thus we want an e±cient iterative algorithm to solve the problem

min
x
kA x¡ bk22 s.t. x 2 Sp;j :

Example: deriv2. 
 

All vectors in the 
Krylov subspace 
→ 0 at the ends. 
 

w1 = (1,1,...,1)T 

w2 = (1,2,...,n)T 
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Augmented (RR)GMRES 
Baglama and Reichel (2007) developed A(RR)GMRES which leaves
the component of x in Wp unchanged and builds a Krylov subspace
from that.

The implementation is nice and simple, and very similar to (RR)GMRES.

Starting with the QR fact. A Wp = Vp R it builds the factorization

A [ Wp ; ¹Vp+1:p+1 ] = ¹Vp+j+1
¹Hp+j ;

where ¹Hp+j is upper Hessenberg and ¹Vp+j+1 = [ Vp ; ¹Vp+1:p+j ; ¹vp+j+1 ]
has orthonormal columns. Then

x(j) = [ Wp ; ¹Vp+1;p+j ] y(j) ; y(j) = argmink ¹Hp+1y ¡ ¹V T
p+j+1bk22 :

But this algorithm actually solves the problem

min
x
kA x¡ bk22 s.t. x 2 Wp +Kj

¡
(I¡VpV

T
p )A; (I¡VpV

T
p )Ab

¢
:
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Regularized RRGMRES 
We derive the algorithm Regularized RRGMRES, or R3GMRES, that
solves

min
x
kA x¡ bk22 s.t. x 2 Sp;j :

Key observation; we should restrict the Krylov subspace to W?
p , in-

stead of R(Vp)
? = R(A Wp).

Our algorithm is perhaps less simple than ARRGMRES.

The intuitive/naive formulation uses the Hessenberg decomposition

A [ Wp ; Ab ; A2b ; ¢ ¢ ¢ ; Ajb ] = Vp+j+1 Hp+j

and computes the solution as

x(j) = [ Wp ; Ab ; A2b ; ¢ ¢ ¢ ; Ajb ] y(j) ;

y(j) = argminykHp+1y ¡ V T
p+j+1bk22 :
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Algorithm: Naïve Version 
1. Compute the QR factorization AWp = VpHp, where Vp 2 Rn£p and Hp 2 Rp£p.

2. Let u1 = Ab, vp+1 = P?Vpu1 and normalize u1 = u1=ku1k2, vp+1 = vp+1=kvp+1k2.
Then expand Vp+1 := [ Vp ; vp+1 ] and Wp+1 := [ Wp ; u1 ].

3. Initialize R1 := 1, and set j := 1.

4. Compute vp+j+1 = Auj and uj+1 = vp+j+1=kvp+j+1k2.
5. Apply MGS orthonormalization to vp+j+1 and expand Vp+j+1 := [ Vp+j ; vp+j+1 ],

Hp+j :=

·
Hp+j¡1

0
hp+j

¸
2 R(p+j+1)£(p+j), where hp+j is from the MGS.

6. Solve miny

°°°°Hp+j

·
Ip 0
0 R¡1

j

¸
y ¡ V >p+j+1b

°°°°
2

2

to obtain y(j). Then x(j) = Wp+jy
(j).

7. Apply MGS orthonormalization to uj+1 such that fu1; : : : ; uj+1g becomes an
orthonormal basis for Kj+1(A; Ab), expand Wp+j+1 = [ Wp+1 ; uj+1 ], and expand

Rj+1 :=

·
Rj

0
rj+1

¸
2 R(j+1)£(j+1), where rj+1 is from the MGS.

8. Stop, or set j := j + 1 and return to step 4.

Two MGS: needs additional O(j2n) °ops compared to ARRGMRES.



Tokyo, May 2014 9 P. C. Hansen – R3GMRES 

Towards Our Algorithm 
The key idea is to run the standard Arnoldi process from RRGMRES
to compute an orthonormal basis of Kj(A; Ab), and then augment it
by Wp in each step of the iterative algorithm.

This seems cumbersome { but the overhead is favorably small!

At step j we have the decomposition

A [ Vj ; Wp ] =
h

Vj+1 ; eVj
i · Hj Gj

0 Fj

¸

² AVj = Vj+1Hj is obtained after j steps of the Arnoldi process.

² Vj 2 Rn£j has orthonormal columns with v1 = Ab=kAbk2.

² Hj 2 R(j+1)£j is an upper Hessenberg matrix.

² The columns of Vj form a orthonormal basis of Kj(A; Ab).

We then augment this basis to a basis of Sp;j , namely, [ Vj ; Wp ].
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More Details 
Recall that

A [ Vj ; Wp ] =
h

Vj+1 ; eVj
i · Hj Gj

0 Fj

¸
:

We must augment Vj+1 with a basis of R(AWp), which gives the aug-

mented matrix [ Vj+1 ; eVj ], where the orthonormal vectors in eVj 2
Rn£p are orthogonal to the columns of Vj+1.

We introduce Gj 2 R(j+1)£p and Fj 2 Rp£p which are composed of
the coe±cients of AWp with respect to the basis of Vj+1 and the sub-
space of V?j+1, respectively:

Gj = V >j+1AWp; Fj = eV >j AWp :

Then the iterate x(j) 2 Sp;j is given by x(j) = [ Vj ; Wp ] y(j), where

y(j) = argminy

°°°°°

"
Hj Gj

0 Fj

#
y ¡

"
V >j+1

eV >j

#
b

°°°°°

2

2

:
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Algorithm: R3GMRES 

1. Set v1 = Ab=kAbk2, V1 := v1, G0 := v>1 AWp, and j := 1.

2. Use the Arnoldi process to obtain vj+1 and hj such that AVj = Vj+1Hj , where

Vj+1 := [ Vj ; vj+1 ] and Hj :=

·
Hj¡1

0
hj

¸
2 R(j+1)£j (with H1 = h1).

3. Compute Gj =

·
Gj¡1

v>j+1AWp

¸
2 R(j+1)£p.

4. Orthonormalize AWp with respect to Vj+1 to obtain eVj .

5. Compute Fj = eV >j AWp.

6. Solve miny

°°°°°

"
Hj Gj

0 Fj

#
y ¡

"
V >j+1

eV >j

#
b

°°°°°

2

2

to obtain y(j).

7. Then x(j) = [ Vj ; Wp ] y(j).

8. Stop, or set j := j + 1 and return to step 2.

Recomputation of eVj and Fj in each step; but p is small!
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Implementation Details – I 

E±ciency: update the orthogonal factorization:

"
Hj Gj

0 Fj

#
= Q

2

64
T

(11)
j T

(12)
j

0 T
(22)
j

0 0

3

75 ;

T
(11)
j 2 Rj£j and T

(22)
j 2 Rp£p are upper triangular, Q is orthogonal.

Update T
(11)
j via Givens transf. as in (RR)GMRES algorithms; the rotations

are also applied to Gj and the right-hand side, i.e., to V >j+1b.

At this stage we have an intermediate system:

"
T

(11)
j intermediate

0 Fj
eV >j b

#
=

2

6666664

£ £ £ £ £ £
£ £ £ £ £

£ £ £ £
£ £ £
£ £ £
£ £ £

3

7777775
Ã save row j + 1



Tokyo, May 2014 13 P. C. Hansen – R3GMRES 

Implementation Details – II 

To complete the orthogonal reduction, we apply an orthogonal trans-
formation that involves the bottom p + 1 rows of the system and pro-
duces a system of the form:

2

6666664

£ £ £ £ £ £
£ £ £ £ £

£ £ £ £
¤ ¤ ¤

¤ ¤
¤

3

7777775

where ¤ denotes an element that has changed. Note that T
(22)
j in this

example consists of the elements in rows 4{5 and columns 4{5.
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Implementation Details – III 

Next iteration: Arnoldi produces a new column of Hj in the (1,1)-
block. This block is then reduced to upper triangular form:

2

666666664

   £   
  £   

 £   
£   
£ £ £ £

£ £ £
£ £ £

3

777777775

!

2

666666664

   ?   
  ?   

 ?   
¤ ¤ ¤ ¤

¤ ¤ ¤
£ £ £
£ £ £

3

777777775

 are from the intermediate system of the previous it., £ are new.

Elements ? are updated by means of the stored Givens transf. from
the previous its., and ¤ are transformed by the new Givens rotation.

This is followed by an orthogonal transformation involving the bottom
p + 1 rows of the system, as before.
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Implementation Details – IV 

Next iteration: Arnoldi produces a new column of Hj in the (1,1)-
block. This block is then reduced to upper triangular form:

2

666666664

   £   
  £   

 £   
£   
£ £ £ £

£ £ £
£ £ £

3

777777775

!

2

666666664

   ?   
  ?   

 ?   
¤ ¤ ¤ ¤

¤ ¤ ¤
£ £ £
£ £ £

3

777777775

 are from the intermediate system of the previous it., £ are new.

In the previous iteration (j = 3), row j + 1 = 4 of the intermediate
system was overwritten to obtain triangular form.

Therefore we must save this row, so we can insert it again in the
system at the beginning of the next iteration (j = 4), before the
Givens rotation is applied.



Tokyo, May 2014 16 P. C. Hansen – R3GMRES 

The Work in R3GMRES 

Consider the additional work in R3GMRES, compared to RRGMRES
where the work in j iterations is O(j2n) °ops.

In each R3GMRES iteration the additional work is dominated by:

1. orthonormalization of the columns of eVj to vj+1: 2pn °ops,

2. computation of the new Fj : 2p2n °ops (assuming AWp is stored),

3. application of an orthogonal transformation that involves the
bottom right (p + 1)£ p submatrix: ¼ 2p3 °ops.

Hence, the additional work in j iterations is about 2jp(p + 1)n °ops.
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Numerical Examples 
Setting up the test problems:

1. Generate noise-free system: A xexact = bexact.

2. Add noise: b = bexact + e where e is a random vector of Gaussian
white noise scaled such that kek2=kbexactk2 = ´.

3. We show best solution within the iterations plus:

² relative error kxexact ¡ x(j)k2=kxexactk2,
² relative residual norm kb¡A x(j)k2=kbk2.

We compare combinations of the following algorithms:

² CGLS is the implementation from Regularization Tools.

² PCGLS is the subspace-preconditioned CGLS algorithm from Reg-
ularization Tools, L ¼ second derivative.

² RRGMRES is the implementation from Regularization Tools.

² ARRGMRES is our implementation of Augmented RRGMRES.

² R3GMRES is our new algorithm.
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Large Component in Augment. Subspace 
Test problem deriv2(n,2), n = 32, relative noise level ´ = 10¡5.

W2 = spanfw1; w2g; w1 = (1; 1; : : : ; 1)>; w2 = (1; 2; : : : ; n)>:

For this problem

kW2W
>
2 xexactk2=kxexactk2 = 0:99 ;

k(I ¡W2W
>
2 )xexactk2=kxexactk2 = 0:035 ;

we only need to spend e®ort in capturing the small component in W?
2 .

PCGLS: L = 2. deriv.
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Fix Boundary Conditions 
Same problem as before, except a modi¯ed exact solution:

x = x.^3

The new exact solution has a large ¯rst derivative at the right endpoint.

Here W2 compensates for the \incorrect" or \incompatible" boundary
conditions implicit in A, by allowing the regularized solutions to have
nonzero values and nonzero derivatives at the endpoints.
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Capture a Discontinuity 
Test problem gravity(n), n = 100, ´ = 10¡3, exact sol. changed to
include a single discontinuity between elements ` = 50 and ` + 1 = 51.

Augmentation matrix W2 allows us to represent this discontinuity:

w1 =

·
ones(`; 1)

zeros(n¡`; 1)

¸
; w2 =

·
zeros(`; 1)

ones(n¡`; 1)

¸
:

Error history for R3GMRES is not smooth; not an error, since it is only
the residual norm that has guaranteed monotonic behavior.
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Capture a Discontinuity – More Insight 
Why is R3 much better than ARRGMRES? Look at the basis vectors:

² ¹vp+1; ¹vp+1; : : : basis for Kj

¡
(I¡VpV

T
p )A; (I¡VpV

T
p )Ab

¢
.

² v1; v2; : : : basis for Kj(A; Ab).

The ¯rst two smooth com-
ponents in R3GMRES, rep-
resented by v1 and v2, are
missing from the basis for
ARRGMRES.
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Handling a Potential Discontinuity 
What happens if we include a discontinuity in Wp that is not present in
the exact solution?

I.e., our prior information tells us about potential discontinuities, but
not all of them may be present in the given problem.

In this example there is one discontinuity in the solution, but two in
Wp between elements 50{51 and 75{76. The noise level is ´ = 10¡4.

Only R3GMRES captures the single discontinuity correctly.
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Conclusions 

 We consider how to augment the Krylov subspace. 
 Focus here on RRGMRES. 
 We developed an efficent algorihtm R3GMRES. 
 Numerical examples demonstrate the advantage of R3GMRES. 
 Future work: 

 When is it necessary to do the MGS twice? 
 How to augment the Krylov subspace for CGLS? 
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