

82818284

R³GMRES: Including Prior Information in GMRES-Type Methods for Discrete Inverse problems

 $f(x + \Delta x) = \sum_{i=1}^{\infty} \frac{(\Delta x)}{i!}$

Per Christian Hansen Technical University of Denmark

Joint work with:

- Yiqiu Dong
- Henrik Garde

With thanks to Nao Kuroiwa and Emil B. Kærgaard.

DTU ComputeDepartment of Applied Mathematics and Computer Science

Discrete inverse problem: A x = b or min_x // A x - b //₂ Iterative Krylov-subspace methods – regularizing iterations Augmenting the Krylov subspace – different approaches Implementation issues – the R³GMRES algorithm Numerical examples

Inverse Problem

P. C. Hansen – R³GMRES

2

Overview of Talk

Regularization Algorithm

Variational formulations take the form

$$\min_{x} \left\{ \|A x - b\|_{2}^{2} + \lambda \mathcal{R}(x) \right\}$$

where $\mathcal{R}(x)$ is a regularization terms that penalizes unwanted features in the solution, and λ is a user-chosen regularization parameter.

An alternative formulation:

$$\min_{x} \|Ax - b\|_2^2 \quad \text{s.t.} \quad x \in \mathcal{S}_k ,$$

where S_k is a linear subspace of dimension k – the "signal subspace."

If S_k is chosen such that it captures the main features in the solution, then this approach can be an interesting alternative for large-scale problems.

The Signal Subspace

In some applications we can use a pre-determined subspace, e.g., spanned by the Fourier basis, the discrete cosine bases, a wavelet basis, etc.

Alternatively we can use a subspace determined by the given problem, e.g., the Krylov subspace associated with a specific iterative method

CGLS	•	span{ $A^T b, A^T A A^T b, (A^T A)^2 A^T b, \ldots$ },
GMRES	•	$\operatorname{span}\{b, A b, A^2 b, \ldots\}$,
RRGMRES	•	$\operatorname{span}\{Ab, A^2b, A^3b, \ldots\}$.

For noisy data RRGMRES is preferable to GMRES (the noisy b is not in the Krylov subspace).

Thus our concern here is with the RRGMRES method for a square matrix $A \in \mathbb{R}^{n \times n}$, where the *j*th iterate $x^{(j)}$ is in

$$\mathcal{K}_j(A, A b) = \operatorname{span}\{A b, A^2 b, A^3 b, \dots, A^j b\} .$$

The Augmented Signal Subspace

Let \mathcal{W}_p denote a linear subspace that captures additional specific components of the desired solution; $\dim(\mathcal{W}_p) = p \ll j = \text{no.}$ its.

Then it can be advantageous (Baglama & Reichel, several papers) to consider the *augmented* linear subspace, in the case of RRGMRES:

$$\mathcal{S}_{p,j} \equiv \mathcal{W}_p + \mathcal{K}_j(A, Ab)$$
, $\mathcal{W}_p = \mathcal{R}(W_p) = \operatorname{span}\{w_1, w_2, \dots, w_p\}$.

Thus we want an efficient iterative algorithm to solve the problem

$$\min_x \|A x - b\|_2^2 \quad ext{s.t.} \quad x \in \mathcal{S}_{p,j} \;.$$

Augmented (RR)GMRES

Baglama and Reichel (2007) developed A(RR)GMRES which leaves the component of x in \mathcal{W}_p unchanged and builds a Krylov subspace from that.

The implementation is nice and simple, and very similar to (RR)GMRES.

Starting with the QR fact. $A W_p = V_p R$ it builds the factorization

$$A \, [\, W_p \, , \, \bar{V}_{p+1:p+1} \,] = \bar{V}_{p+j+1} \, \bar{H}_{p+j} \, \, ,$$

where \bar{H}_{p+j} is upper Hessenberg and $\bar{V}_{p+j+1} = [V_p, \bar{V}_{p+1:p+j}, \bar{v}_{p+j+1}]$ has orthonormal columns. Then

$$x^{(j)} = [W_p, \bar{V}_{p+1,p+j}] y^{(j)}, \quad y^{(j)} = \operatorname{argmin} \|\bar{H}_{p+1}y - \bar{V}_{p+j+1}^T b\|_2^2.$$

But this algorithm actually solves the problem

$$\min_{x} \|Ax - b\|_{2}^{2} \quad \text{s.t.} \quad x \in \mathcal{W}_{p} + \mathcal{K}_{j} \left((I - V_{p} V_{p}^{T}) A, (I - V_{p} V_{p}^{T}) A b \right) \ .$$

Regularized RRGMRES

We derive the algorithm Regularized RRGMRES, or \mathbb{R}^3 GMRES, that solves

$$\min_x \|A x - b\|_2^2 \quad ext{s.t.} \quad x \in \mathcal{S}_{p,j} \;.$$

Key observation; we should restrict the Krylov subspace to \mathcal{W}_p^{\perp} , instead of $\mathcal{R}(V_p)^{\perp} = \mathcal{R}(A W_p)$.

Our algorithm is perhaps less simple than ARRGMRES.

The intuitive/naive formulation uses the Hessenberg decomposition

$$A[W_p, Ab, A^2b, \cdots, A^jb] = V_{p+j+1}H_{p+j}$$

and computes the solution as

$$\begin{aligned} x^{(j)} &= & [W_p, Ab, A^2b, \cdots, A^jb] y^{(j)} , \\ y^{(j)} &= & \operatorname{argmin}_y \|H_{p+1}y - V_{p+j+1}^Tb\|_2^2 . \end{aligned}$$

Algorithm: Naïve Version

- 1. Compute the QR factorization $AW_p = V_p H_p$, where $V_p \in \mathbb{R}^{n \times p}$ and $H_p \in \mathbb{R}^{p \times p}$.
- 2. Let $u_1 = Ab$, $v_{p+1} = P_{V_p}^{\perp} u_1$ and normalize $u_1 = u_1 / ||u_1||_2$, $v_{p+1} = v_{p+1} / ||v_{p+1}||_2$. Then expand $V_{p+1} := [V_p, v_{p+1}]$ and $W_{p+1} := [W_p, u_1]$.
- 3. Initialize $R_1 := 1$, and set j := 1.
- 4. Compute $v_{p+j+1} = Au_j$ and $u_{j+1} = v_{p+j+1}/||v_{p+j+1}||_2$.
- 5. Apply MGS orthonormalization to v_{p+j+1} and expand $V_{p+j+1} := [V_{p+j}, v_{p+j+1}],$ $H_{p+j} := \begin{bmatrix} H_{p+j-1} & h_{p+j} \\ 0 & h_{p+j} \end{bmatrix} \in \mathbb{R}^{(p+j+1)\times(p+j)}, \text{ where } h_{p+j} \text{ is from the MGS.}$
- 6. Solve $\min_{y} \left\| H_{p+j} \begin{bmatrix} I_{p} & 0 \\ 0 & R_{j}^{-1} \end{bmatrix} y V_{p+j+1}^{\top} b \right\|_{2}^{2}$ to obtain $y^{(j)}$. Then $x^{(j)} = W_{p+j} y^{(j)}$.
- 7. Apply MGS orthonormalization to u_{j+1} such that $\{u_1, \ldots, u_{j+1}\}$ becomes an orthonormal basis for $\mathcal{K}_{j+1}(A, Ab)$, expand $W_{p+j+1} = [W_{p+1}, u_{j+1}]$, and expand $R_{j+1} := \begin{bmatrix} R_j \\ 0 & r_{j+1} \end{bmatrix} \in \mathbb{R}^{(j+1) \times (j+1)}$, where r_{j+1} is from the MGS.
- 8. Stop, or set j := j + 1 and return to step 4.

Two MGS: needs additional $O(j^2n)$ flops compared to ARRGMRES.

Towards Our Algorithm

The key idea is to run the standard Arnoldi process from RRGMRES to compute an orthonormal basis of $\mathcal{K}_j(A, Ab)$, and then augment it by \mathcal{W}_p in each step of the iterative algorithm.

This seems cumbersome – but the overhead is favorably small!

At step j we have the decomposition

$$A\left[V_{j}, W_{p}\right] = \left[V_{j+1}, \widetilde{V}_{j}\right] \left[\begin{array}{cc}H_{j} & G_{j}\\0 & F_{j}\end{array}\right]$$

- $AV_j = V_{j+1}H_j$ is obtained after j steps of the Arnoldi process.
- $V_j \in \mathbb{R}^{n \times j}$ has orthonormal columns with $v_1 = Ab/||Ab||_2$.
- $H_j \in \mathbb{R}^{(j+1) \times j}$ is an upper Hessenberg matrix.
- The columns of V_j form a orthonormal basis of $\mathcal{K}_j(A, Ab)$.

We then augment this basis to a basis of $S_{p,j}$, namely, $[V_j, W_p]$.

More Details

DTU

Recall that

$$A\left[V_{j}, W_{p}\right] = \left[V_{j+1}, \widetilde{V}_{j}\right] \left[\begin{array}{cc}H_{j} & G_{j}\\0 & F_{j}\end{array}\right]$$

We must augment V_{j+1} with a basis of $\mathcal{R}(AW_p)$, which gives the augmented matrix $[V_{j+1}, \widetilde{V}_j]$, where the orthonormal vectors in $\widetilde{V}_j \in \mathbb{R}^{n \times p}$ are orthogonal to the columns of V_{j+1} .

We introduce $G_j \in \mathbb{R}^{(j+1) \times p}$ and $F_j \in \mathbb{R}^{p \times p}$ which are composed of the coefficients of AW_p with respect to the basis of \mathcal{V}_{j+1} and the subspace of $\mathcal{V}_{j+1}^{\perp}$, respectively:

$$G_j = V_{j+1}^{\top} A W_p, \qquad F_j = \widetilde{V}_j^{\top} A W_p .$$

Then the iterate $x^{(j)} \in \mathcal{S}_{p,j}$ is given by $x^{(j)} = [V_j, W_p] y^{(j)}$, where

$$y^{(j)} = \operatorname{argmin}_{y} \left\| \begin{bmatrix} H_{j} & G_{j} \\ 0 & F_{j} \end{bmatrix} y - \begin{bmatrix} V_{j+1}^{\top} \\ \widetilde{V}_{j}^{\top} \end{bmatrix} b \right\|_{2}^{2}.$$

Algorithm: R³GMRES

1. Set
$$v_1 = Ab/||Ab||_2$$
, $V_1 := v_1$, $G_0 := v_1^\top AW_p$, and $j := 1$.

2. Use the Arnoldi process to obtain v_{j+1} and h_j such that $AV_j = V_{j+1}H_j$, where

$$V_{j+1} := [V_j, v_{j+1}] \text{ and } H_j := \begin{bmatrix} H_{j-1} & h_j \\ 0 & h_j \end{bmatrix} \in \mathbb{R}^{(j+1) \times j} \text{ (with } H_1 = h_1 \text{).}$$

3. Compute
$$G_j = \begin{bmatrix} G_{j-1} \\ v_{j+1}^\top A W_p \end{bmatrix} \in \mathbb{R}^{(j+1) \times p}$$
.

- 4. Orthonormalize AW_p with respect to V_{j+1} to obtain \widetilde{V}_j .
- 5. Compute $F_j = \widetilde{V}_j^\top A W_p$.

6. Solve
$$\min_{y} \left\| \begin{bmatrix} H_{j} & G_{j} \\ 0 & F_{j} \end{bmatrix} y - \begin{bmatrix} V_{j+1}^{\top} \\ \widetilde{V}_{j}^{\top} \end{bmatrix} b \right\|_{2}^{2}$$
 to obtain $y^{(j)}$.

7. Then
$$x^{(j)} = [V_j, W_p] y^{(j)}$$
.

8. Stop, or set j := j + 1 and return to step 2.

Recomputation of \tilde{V}_j and F_j in each step; but p is small!

Implementation Details – I

Efficiency: update the orthogonal factorization:

$$\begin{bmatrix} H_j & G_j \\ 0 & F_j \end{bmatrix} = Q \begin{bmatrix} T_j^{(11)} & T_j^{(12)} \\ 0 & T_j^{(22)} \\ 0 & 0 \end{bmatrix},$$

 $T_j^{(11)} \in \mathbb{R}^{j \times j}$ and $T_j^{(22)} \in \mathbb{R}^{p \times p}$ are upper triangular, Q is orthogonal.

Update $T_j^{(11)}$ via Givens transf. as in (RR)GMRES algorithms; the rotations are also applied to G_j and the right-hand side, i.e., to $V_{j+1}^{\top}b$.

At this stage we have an intermediate system:

$$\begin{bmatrix} T_{j}^{(11)} & \text{intermediate} \\ 0 & F_{j} & \widetilde{V}_{j}^{\top}b \end{bmatrix} = \begin{bmatrix} \times & \times & \times & | & \times & | & \times \\ & \times & \times & | & \times & | & \times \\ & & & \times & \times & | & \times \\ & & & & \times & \times & | & \times \\ & & & & & \times & \times & | & \times \\ & & & & & & \times & | & \times \\ & & & & & & \times & | & \times \end{bmatrix} \leftarrow \text{save row } j+1$$

Implementation Details – II

To complete the orthogonal reduction, we apply an orthogonal transformation that involves the bottom p + 1 rows of the system and produces a system of the form:

- ×	×	×	\times	\times	$ \times]$
	\times	\times	\times	\times	\times
		\times	×	\times	\times
			*	*	*
				*	*
_					*

where * denotes an element that has changed. Note that $T_j^{(22)}$ in this example consists of the elements in rows 4–5 and columns 4–5.

Implementation Details – III

Next iteration: Arnoldi produces a new column of H_j in the (1,1)block. This block is then reduced to upper triangular form:

Γ	\otimes	\otimes	\otimes	\times	\otimes	\otimes	\otimes		\otimes	\otimes	\otimes	*	\otimes	\otimes	\otimes
		\otimes	\otimes	×	\otimes	\otimes	\otimes			\otimes	\otimes	*	\otimes	\otimes	\otimes
			\otimes	×	\otimes	\otimes	\otimes				\otimes	\star	\otimes	\otimes	\otimes
				×	\otimes	\otimes	\otimes	\rightarrow				*	*	*	*
				×	\times	\times	\times						*	*	*
					\times	×	×						\times	×	×
					\times	\times	$ \times]$						\times	\times	\times

 \otimes are from the intermediate system of the previous it., \times are new. Elements \star are updated by means of the stored Givens transf. from the previous its., and * are transformed by the new Givens rotation. This is followed by an orthogonal transformation involving the bottom p + 1 rows of the system, as before.

Implementation Details – IV

Next iteration: Arnoldi produces a new column of H_j in the (1,1)block. This block is then reduced to upper triangular form:

$ \otimes $	\otimes	\otimes	×	\otimes	\otimes	\otimes		\otimes	\otimes	\otimes	*	\otimes	\otimes	\otimes
	\otimes	\otimes	X	\otimes	\otimes	\otimes			\otimes	\otimes	*	\otimes	\otimes	\otimes
		\otimes	×	\otimes	\otimes	\otimes				\otimes	*	\otimes	\otimes	\otimes
			×	\otimes	\otimes	\otimes	\rightarrow				*	*	*	*
			X	\times	\times	\times						*	*	*
				\times	×	×						×	\times	×
				\times	\times	\times						×	\times	\times

 \otimes are from the intermediate system of the previous it., \times are new.

In the previous iteration (j = 3), row j + 1 = 4 of the intermediate system was *overwritten* to obtain triangular form.

Therefore we must save this row, so we can insert it again in the system at the beginning of the next iteration (j = 4), before the Givens rotation is applied.

The Work in R³GMRES

Consider the additional work in \mathbb{R}^3 GMRES, compared to RRGMRES where the work in j iterations is $O(j^2n)$ flops.

In each \mathbb{R}^3 GMRES iteration the additional work is dominated by:

- 1. orthonormalization of the columns of \widetilde{V}_j to v_{j+1} : 2pn flops,
- 2. computation of the new F_j : $2p^2n$ flops (assuming AW_p is stored),
- 3. application of an orthogonal transformation that involves the bottom right $(p+1) \times p$ submatrix: $\approx 2p^3$ flops.

Hence, the additional work in j iterations is about 2jp(p+1)n flops.

Numerical Examples

Setting up the test problems:

- 1. Generate noise-free system: $A x_{\text{exact}} = b_{\text{exact}}$.
- 2. Add noise: $b = b_{\text{exact}} + e$ where e is a random vector of Gaussian white noise scaled such that $||e||_2/||b_{\text{exact}}||_2 = \eta$.
- 3. We show best solution within the iterations plus:
 - relative error $||x_{\text{exact}} x^{(j)}||_2 / ||x_{\text{exact}}||_2$,
 - relative residual norm $\|b A x^{(j)}\|_2 / \|b\|_2$.

We compare combinations of the following algorithms:

- \bullet CGLS is the implementation from Regularization Tools.
- PCGLS is the subspace-preconditioned CGLS algorithm from Regularization Tools, $L \approx$ second derivative.
- **RRGMRES** is the implementation from REGULARIZATION TOOLS.
- ARRGMRES is our implementation of Augmented RRGMRES.
- R^3GMRES is our new algorithm.

DTU

Large Component in Augment. Subspace

Test problem deriv2(n,2), n = 32, relative noise level $\eta = 10^{-5}$.

 $\mathcal{W}_2 = \text{span}\{w_1, w_2\}, \quad w_1 = (1, 1, \dots, 1)^\top, \quad w_2 = (1, 2, \dots, n)^\top.$ For this problem

$$\|W_2 W_2^\top x_{\text{exact}}\|_2 / \|x_{\text{exact}}\|_2 = 0.99 ,$$

$$\|(I - W_2 W_2^\top) x_{\text{exact}}\|_2 / \|x_{\text{exact}}\|_2 = 0.035 ;$$

we only need to spend effort in capturing the small component in \mathcal{W}_2^{\perp} .

Fix Boundary Conditions

Same problem as before, except a modified exact solution:

 $x = x.^3$

The new exact solution has a large first derivative at the right endpoint.

Here W_2 compensates for the "incorrect" or "incompatible" boundary conditions implicit in A, by allowing the regularized solutions to have nonzero values and nonzero derivatives at the endpoints.

Capture a Discontinuity

Test problem gravity(n), n = 100, $\eta = 10^{-3}$, exact sol. changed to include a single discontinuity between elements $\ell = 50$ and $\ell + 1 = 51$. Augmentation matrix W_2 allows us to represent this discontinuity:

$$w_1 = \begin{bmatrix} \operatorname{ones}(\ell, 1) \\ \operatorname{zeros}(n-\ell, 1) \end{bmatrix}, \quad w_2 = \begin{bmatrix} \operatorname{zeros}(\ell, 1) \\ \operatorname{ones}(n-\ell, 1) \end{bmatrix}$$

Error history for \mathbb{R}^3 GMRES is not smooth; not an error, since it is only the residual norm that has guaranteed monotonic behavior.

Capture a Discontinuity – More Insight

Why is \mathbb{R}^3 much better than ARRGMRES? Look at the basis vectors:

- $\overline{v}_{p+1}, \overline{v}_{p+1}, \dots$ basis for $\mathcal{K}_j((I-V_pV_p^T)A, (I-V_pV_p^T)Ab).$
- v_1, v_2, \ldots basis for $\mathcal{K}_j(A, Ab)$.

The first two smooth components in \mathbb{R}^3 GMRES, represented by v_1 and v_2 , are missing from the basis for ARRGMRES.

Handling a Potential Discontinuity

What happens if we include a discontinuity in \mathcal{W}_p that is not present in the exact solution?

I.e., our prior information tells us about *potential* discontinuities, but not all of them may be present in the given problem.

In this example there is one discontinuity in the solution, but two in W_p between elements 50–51 and 75–76. The noise level is $\eta = 10^{-4}$.

Only R³GMRES captures the single discontinuity correctly.

Conclusions

- We consider how to augment the Krylov subspace.
- Focus here on RRGMRES.
- We developed an efficent algorithm R³GMRES.
- Numerical examples demonstrate the advantage of R³GMRES.
- **G** Future work:
 - □ When is it necessary to do the MGS twice?
 - How to augment the Krylov subspace for CGLS?

