Limited-Data CT for Underwater Pipeline Inspection

Per Christian Hansen

Joint work with:

Jacob Frøsig, Nicolai A. B. Riis, Yiqiu Dong, Rasmus D. Kongskov – Technical University of Denmark

Arvid P. L. Böttiger, Torben Klit Pedersen – FORCE Technology

Jürgen Frikel – OTH Regensburg

Todd Quinto - Tufts University

Subsea CT-Scanner by FORCE Technology, Denmark

Alt. to ultrasound: use X-ray scanning to compute cross-sectional images of oil pipes lying on the seabed, to detect defects, cracks, etc. in the pipe.

Illustrations courtesy of FORCE Technology.

100 Years of \mathcal{R}

Limitations in the scanner device \Rightarrow only a part of the pipe can be illuminated by the fan-beam.

Design a set-up + algorithm that allows us to reconstruct as much of the pipe as possible from the limited data.

Full illumination, centered. Not possible.

100 Years of $\mathcal R$

Partial illumination, centered. Possible set-up.

Per Chr. Hansen: Limited-Data CT

Partial illumination, off-center. Also possible.

The CT Forward Model

Continuous formulation, limited data

The measured projections g for the object f are described by

$$g(\theta, s) = (\mathcal{R}^{\ell}f)(\theta, s) + \text{noise}$$

where $(\mathcal{R}^{\ell}f)(\theta, s) = (\mathcal{R}f)(\theta, s)$ for those pairs (θ, s) corresponding to the ℓ imited illumination, and \mathcal{R} is the Radon transform.

Corresponding algebraic model

The measured data \boldsymbol{b} for a discretized object \boldsymbol{x} is described by

$$\boldsymbol{b} = \boldsymbol{A}^{\ell} \boldsymbol{x} + \boldsymbol{e}, \qquad \boldsymbol{b} \in \mathbb{R}^{m}, \qquad \boldsymbol{x} \in \mathbb{R}^{n}, \qquad \boldsymbol{A}^{\ell} \in \mathbb{R}^{m \times n},$$

where $\boldsymbol{e} \in \mathbb{R}^m$ with $e_i \sim N(0, \sigma^2)$ and \boldsymbol{A}^{ℓ} is the discretion of \mathcal{R}^{ℓ} .

Full and Two Different Limited Illuminations

Characterising What We Can Measure - Centered Beam

Microlocal analysis: a singularity at position χ with direction ξ is visible if and only if data from the line through χ perpendicular to ξ is present.

Measured data from one view/projection.

Visible from one view/projection.

Visible from all views/projections.

Characterising What We Can Measure - Off-Center Beam

Measured data from one view/projection.

Visible from one view/projection.

Visible from all views/projections.

Reconstruction – Variational Formulation

Reconstruction with a weighted frame-based sparsity penalty

Solve the problem

$$\min_{\boldsymbol{x}} \left\{ \|\boldsymbol{A}^{\ell} \, \boldsymbol{x} - \boldsymbol{b}\|_2^2 + \alpha \| \boldsymbol{W} \, \boldsymbol{c} \|_1 \right\}, \qquad \alpha = \text{reg. parameter}$$

with weights $\boldsymbol{W} = \text{diag}(w_i)$ and tight-frame coefficients $c_i = \langle \phi_i, \boldsymbol{x} \rangle$.

To solve this problem we use the optimization algorithm FISTA – the Fast Iterative Shrinkage-Thresholding Algorithm [Beck & Teboulle 2009].

Shearlets give a good, sparse representation of defects, contours, etc.

Definition of Weights + Example

Scale weights: w_i^s depend solely on the scale, or level, of the frame ϕ_i (smaller "footprint" of $\phi_i \rightarrow$ larger weight).

Ray-density weights: w_i^r depend solely on the number of rays that intersect the "footprint" of ϕ_i ,

 $w_i^{\mathsf{r}} \sim \|\boldsymbol{M} \phi_i\|_2 / \|\phi_i\|_2, \qquad \boldsymbol{M} = \mathsf{diag}(\|A(:,j)\|_2).$

Left to right: phantom, Landweber, and 3 \times our algorithm.

$$w_i = 1$$
 $w_i = w_i^s$ $w_i = w_i^s \cdot w_i^r$

Reconstructions from Real Data - Both Geometries

Centered beam: there are many artifacts.

Off-center beam: singularities are easy to detect; artifacts are reduced.

100 Years of ${\cal R}$

Per Chr. Hansen: Limited-Data CT

Centered Versus Off-Center Beam

	Centered beam	Off-center beam
Pros	Good reconstruction in the	Captures singularities out-
	center domain.	side the center domain.
Cons	Terrible reconstruction out-	Less good reconstruction
	side the center domain.	in the center domain.
Comments	Requires less projections be-	Requires more projections
	cause the center domain is	to give good reconstruc-
	well covered by rays.	tion everywhere.
		Better suited for this appli-
		cation.

Conclusions

- For technical reasons the X-ray beam cannot cover the whole pipe.
- An off-centered beam can give a satisfactory reconstruction.
- A weighted shearlets-based sparsity penalty gives better reconstructions than FDK and ART especially with few projections.
- It is important to include weights in the sparsity penalty.

Future work:

- Optimize the algorithm for performance and robustness.
- Design heuristics for choosing the weights and the reg. parameter.
- Derive more theory for the continuous model with limited data.
- Quantify the uncertainties in the model and the solution.

