

Repeated Blurring Operations Produce Sharper Images: Image Deblurring with Krylov Subspace Methods

Per Christian Hansen Technical University of Denmark

DTU Compute Department of Applied Mathematics and Computer Science

About Me ...

- Professor of Scientific Computing at DTU
- Interests: inverse problems, tomography, regularization algorithms, matrix computations, image deblurring, signal processing, Matlab software, ...
- Head of the project High-Definition Tomography, funded by an ERC Advanced Research Grant.

• Author of four books.

- Regularization Tools was developed on my "portable" Mac SE/30.

Image Deblurring

Nutrition Facts:

- Introduction to iterative methods (10%)
- Image deblurring/ reconstruction (20%)
- Inverse problems (10%)
- Regularization by Projection (9%)
- CGLS (12%)
- Semi-convergence (12%)
- Other methods (10%)
- Noise propagation (12%)
- Other matters (5%)

• solving large systems of linear equations,

- computing eigenvalues,
- solving algebraic Riccati equations, and
- determining controllability in a control system.

They are also important tools for regularization of large-scale discretizations of inverse problems, which is the topic of this talk.

Krylov Subspaces

Given a square matrix M and a vector $\boldsymbol{v},$ the associated Krylov subspace is defined by

 $\mathcal{K}_k(M,v) \equiv \operatorname{span}\{v, Mv, M^2v, \dots, M^{k-1}v\}, \qquad k = 1, 2, \dots$

with $\dim(\mathcal{K}_k(M,v)) \square k$.

Krylov subspaces have many important applications in scientific computing:

Mv

The CGLS Algorithm

DTU

The CGLS algorithm produces a sequence of iterates $x^{(k)}$ which solve

min $||A x - b||_2$ subject to $x \in \mathcal{K}_k(A^T b, A^T A)$.

Our model: Ax = b Multiplication with A and A^T is a blurring operation!

Illustration of Semi-Convergence

Sources of Blurred Images

perfocal distance opposite the are using. If you the the depth of field wi the to infinity.⊲ For timera has a hyperfo

Some Types of Blur and Distortion

From the camera:

- the lens is out of focus,
- imperfections in the lens, and
- noise in the CCD and the analog/digital converter.

From the environments:

- motion of the object (or camera),
- fluctuations in the light's path (turbulence), and
- false light, cosmic radiation (in astronomical images).

Given a mathematical/statistical *model* of the blur/distortion, we can *deblur* the image and compute a sharper reconstruction (as apposed to "cosmetic improvements" by PhotoShop etc).

Top 10 Algorithms

J. J. Dongarra, F. Sullivan et al., *The Top 10 Algorithms*, IEEE Computing in Science and Engineering, 2 (2000), pp. 22-79.

- 1946: The Monte Carlo method (Metropolis Algorithm).
- 1947: The Simplex Method for Linear Programming.
- 1950: Krylov Subspace Methods (CG, CGLS, Arnoldi, etc.).
- 1951: Decomposition Approach to matrix computations.
- 1957: The Fortran Optimizing Compiler.
- 1961: The QR Algorithm for computing eigenvalues and -vectors.
- 1962: The Quicksort Algorithm.
- 1965: The Fast Fourier Transform algorithm.
- 1977: The Integer Relation Detection Algorithm.
- 1987: The Fast Multipole Algorithm for N-body simulations.

Key algorithms in image deblurring.

The Deblurring Problem

Fredholm integral equation of the first kind:

$$\int_0^1 \int_0^1 K(x, y; x', y') f(x, y) \, dx \, dy = g(x', y') \,, \qquad 0 \,\square \, x', y' \,\square \, 1.$$

Think of f as an unknown sharp image, and g as the blurred version. Think of K as a model for the point spread function.

Discretization yields a LARGE system of linear equations: A x = b.

Two important aspects related to this system:

- Use the right boundary conditions.
- The matrix A is very ill conditioned \rightarrow Do not solve Ax = b!

Inverse Problems

Goal: use measured data to compute "hidden" information.

Inverse Problems: Regularization is Needed!

The inverse problems of image deblurring and tomographic reconstruction are *ill-posed problems*, i.e., they violate one or more of the Hadamard conditions for a well-posed problem:

- the solution exists,
- the solution is unique,
- the solution is stable with respect to perturbations of data.

Algebraic model:
$$A x = b$$
, $b = A x^{\text{exact}} + e$.

In the algebraic model, the matrix *A* is very ill conditioned, and we do **not** want to compute the "naive solution":

$$x_{\rm LSQ} = A^{\dagger}b = x^{\rm exact} + A^{-1}e, \quad ||A^{-1}e|| \gg ||x^{\rm exact}||$$

We must use *regularization* to compute a stable solution.

Regularization by Spectral Filtering

DTU

We often compute regularized solutions via the following procedure:

1. Choose a (possibly orthonormal) spectral basis: w_1, w_2, \ldots, w_n .

2. Write
$$x_{\text{LSQ}} = A^{\dagger}b = \sum_{i=1}^{n} \alpha_i w_i$$
.

3. Introduce spectral filtering: $x_{\text{reg}} = \sum_{i=1}^{n} \phi_i \alpha_i w_i$, ϕ_i = filter factors.

Example: SVD basis. Given the SVD $A = \sum_{i=1}^{n} u_i \sigma_i v_i^T$ we have:

• Spectral basis: v_1, v_2, \ldots, v_n . Coefficients for x_{LSQ} are: $\alpha_i = u_i^T b / \sigma_i$.

Some Regularization Methods

Tikhonov regularization:

$$\min_{x} \left\{ \|A \, x - b\|_{2}^{2} + \lambda^{2} \, \|L \, x\|_{2}^{2} \right\}$$

The choice of smoothing norm, together with the choice of λ , forces x to be effectively dominated by components in a low-dimensional subspace, determined by the GSVD of (A, L) – or the SVD of A if L = I.

Filter factors $\phi_i = \sigma_i^2 / (\sigma_i^2 + \lambda^2)$ when L = I.

Regularization by projection:

$$\min_{x} \|Ax - b\|_2 \quad \text{subject to} \quad x \in \mathcal{W}_k$$

where \mathcal{W}_k is a k-dimensional subspace, the signal subspace.

This works well if "most of" x^{exact} lies in a low-dimensional subspace (sparsity); hence \mathcal{W}_k must be spanned by desirable basis vectors

Think of Truncated SVD: $\mathcal{W}_k = \operatorname{span}\{v_1, v_2, \ldots, v_k\}, v_i = \operatorname{right singular vectors}.$

The Projection Method

A more practical formulation of regularization by projection.

We are given the matrix $W_k = (w_1, \ldots, w_k) \in \mathbb{R}^{n \times k}$ such that $\mathcal{W}_k = \mathcal{R}(W_k)$. We can write the requirement as $x = W_k y$, leading to the formulation

Some Thought on the Basis Vectors

<u>The DCT basis</u> – and similar bases that define fast transforms:

- computationally convenient (fast) to work with, but
- may not be well suited for the particular problem.

<u>The SVD basis</u> – or GSVD basis if $L \neq I$ – gives an "optimal" basis for representation of the matrix A, but ...

- it is computationally expensive (slow), and
- it does not involve information about the righthand side *b*.

Is there a basis that is computationally attractive and also involves information about both *A* and *b*, and thus the complete given problem?

→ Krylov subspaces!

The Krylov Subspace

The Krylov subspace of interest here, defined as

 $\mathcal{K}_k(A^T b, A^T A) \equiv \operatorname{span}\{A^T b, (A^T A) A^T b, (A^T A)^2 A^T b, \dots, (A^T A)^{k-1} A^T b\},\$

always *adapts* itself to the problem at hand!

Orthonormal basis vectors for a certain $\mathcal{K}_5(A^T b, A^T A)$:

A few early references:

- W. Squire, 1976
- G. Nolet, 1985
- A. S. Nemirovskii, 1986
- A. van der Sluis and H. A. van der Vorst, 1990
- M. Hanke, 1995

17/36 P. C. Hansen – Image Deblurring with Krylov Subspace Methods

The Use of CGLS

Can we compute $x^{(k)}$ without forming and storing the Krylov basis? Apply CG to the normal equations for the least squares problem

$$\min \|A x - b\|_2 \qquad \Leftrightarrow \qquad A^T A x = A^T b .$$

This stable stable and efficient implementation of this algorithm is called CGLS, and it produces a sequence of iterates $x^{(k)}$ which solve

min
$$||Ax - b||_2$$
 subject to $x \in \mathcal{K}_k(A^T b, A^T A)$

18/36 P. C. Hansen – Image Deblurring with Krylov Subspace Methods

CGLS Basis Vectors for Image Deblurring

CGLS subspace = span{ $A^T b, (A^T A) A^T b, (A^T A)^2 A^T b, \ldots$ }.

Two different but *similar* signal subspaces.

Regularizing Iterations

CGLS algorithm solves the problem without forming the Krylov basis explicitly.

This use of CGLS to compute regularized solutions in the Krylov subspace \mathcal{K}_k is referred to as *regularizing iterations*.

Finite precision: convergence slows down, but no deterioration of the solution. The solution and residual norms are monotone functions of k:

$$||x^{(k)}||_2 \ge ||x^{(k-1)}||_2, \qquad ||Ax^{(k)} - b||_2 \square ||Ax^{(k-1)} - b||_2, \qquad k = 1, 2, \dots$$

Iterative methods are based on multiplications with A and A^T (blurring). How come repeated blurings can lead to reconstruction?

 \rightarrow CGLS constructs a truncated polynomial approximation to A^{\dagger} .

The CGLS Polynomials

CGLS implicitly constructs a polynomial \mathcal{P}_k such that

$$x^{(k)} = \mathcal{P}_k(A^T A) A^T b$$
.

But how is \mathcal{P}_k constructed? Consider the residual

$$r^{(k)} = b - A x^{(k)} = (I - A \mathcal{P}_k(A^T A) A^T) b$$

$$\|r^{(k)}\|_2^2 = \|(I - \Sigma \mathcal{P}_k(\Sigma^2)\Sigma) U^T b\|_2^2$$

$$= \sum_{i=1}^n (1 - \sigma_i^2 \mathcal{P}_k(\sigma_i^2))^2 (u_i^T b)^2 = \sum_{i=1}^n \mathcal{Q}_k(\sigma_i^2) (u_i^T b)^2$$

To minimize residual norm $||r^{(k)}||_2$:

$$\rightarrow$$
 make $\mathcal{Q}_k(\sigma_i^2)$ small where $(u_i^T b)^2$ is large

$$\rightarrow \text{ force } \mathcal{Q}_k(\sigma_i^2) \text{ to have roots} \\ \text{ near } \sigma_i^2 \text{ that corresp. to large } (u_i^T b)^2.$$

Semi-Convergence

During the first iterations, the Krylov subspace \mathcal{K}_k captures the "important" information in the noisy right-hand side b.

• In this phase, the CGLS iterate $x^{(k)}$ approaches the exact solution.

At later stages, the Krylov subspace \mathcal{K}_k starts to capture undesired noise components in b.

• Now the CGLS iterate $x^{(k)}$ diverges from the exact solution and approach the undesired solution $A^{\dagger}b$ to the least squares problem.

The iteration number k (= the dimension of the Krylov subspace \mathcal{K}_k) plays the role of the regularization parameter.

This behavior is called *semi-convergence*.

Illustration of Semi-Convergence

Recall this illustration: $x^{[1]}$

The "ideal" behavior of the error $|| x^{(k)} - x^{exact} ||_2$ and the associated L-curve:

SVD Perspectives of the Krylov Subspace

Regularization by filtered SVD expansion:

$$x_{\text{reg}} = \sum_{i=1}^{n} \phi_i \, \frac{u_i^T b}{\sigma_i} \, v_i$$

Truncated SVD: $\phi_i = 1$ or 0. Tikhonov regularization:

$$\phi_i = rac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \; .$$

CGLS also corresponds to SVD filtering:

$$x^{(k)} = \sum_{i=1}^{n} \phi_i^{(k)} \, \frac{u_i^T b}{\sigma_i} \, v_i, \qquad \phi_i^{(k)} = 1 - \prod_{j=1}^{k} \frac{\theta_j^{(k)} - \sigma_i^2}{\theta_j^{(k)}}$$

Here $\theta_j^{(k)}$ are the Ritz values, i.e., the eigenvalues of the projection of $A^T A$ on the Krylov subspace \mathcal{K}_k . They converge to those σ_i^2 whose corresponding SVD components $u_i^T b$ are large.

The CGLS Filter Factors

A closer look at the filter factors $\phi_i^{(k)}$ in the filtered SVD expansion

25/36 P. C. Hansen – Image Deblurring with Krylov Subspace Methods

Other Krylov Subspace Methods

Sometimes it is impractical to use methods that need A^T , e.g., if $A = A^T$ or if we have a black-box function that computes Ax.

MINRES and GMRES come to mind if the matrix A is square – these methods are based on the Krylov subspace:

symmetric."

 $\mathcal{K}_k = \operatorname{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}.$

Unfortunately it is a bad idea to include the noisy vector b in the subspace.

A better choice is the "shiftet" Krylov subspace:

 $\vec{\mathcal{K}}_k = \operatorname{span}\{Ab, A^2b, \dots, A^kb\}.$

The corresponding methods are called

• MR-II (Hanke, 1995) and

26/36

• RRGMRES (Calvetti, Lewis & Reichel, 2000).

P. C. Hansen – Image Deblurring with Krylov Subspace Methods

Comparing Krylov Methods: MINRES, MR-II

 The presence of b in the MINRES Krylov subspace gives very noisy solutions.

▲ The absence of b in the MR-II Krylov subspace is essential for the noise reduction.

MR-II computes a filtered SVD solution:

$$x^{(k)} = V \,\Phi_k \,\Sigma^{\dagger} V^T b$$

 $\Phi_k = \mathcal{P}_k(\Omega \Sigma) \,\Omega \,\Sigma$

 $\Lambda = \Omega \Sigma, \quad \Omega = \operatorname{diag}(\pm 1)$

 Negative eigenvalues of A do not inhibit the regulalarizing effect of MR-II, but they can slow down the convergence.

Comparing: GMRES, RRGMRES

GMRES

RRGMRES

CGLS

 The presence of b in the GMRES Krylov subspace gives very noisy solutions.

▲ The absence of *b* in the RRGMRES Krylov subspace is essential for the noise reduction.

• RRGMRES *mixes* the SVD components in each iteration and $x^{(k)}$ is not a filtered SVD solution:

 $x^{(k)} = V \Phi_k \Sigma^{\dagger} U^T b$

$$\Phi_k = \mathcal{P}_k(C\,\Sigma)\,C\,\Sigma$$

 $C = V^T U$

• RRGMRES works well if the mixing is weak (e.g., if $A \approx A^{T}$), or if the Krylov basis vectors are well suited for the problem.

Back to CGLS: The "Freckles"

CGLS: k = 4, 10and 25 iterations

Initially, the image gets sharper – then "freckles" start to appear.

Noise Propagation

Recall once again that we can write the CGLS solution as:

$$x^{(k)} = \mathcal{P}_k(A^T A) A^T b,$$

where \mathcal{P}_k is the polynomium associated with the Krylov subspace $\mathcal{K}_k(A^T b, A^T A)$.

Thus \mathcal{P}_k is fixed by A and b, and if $b = b^{\text{exact}} + e$ then

$$x^{(k)} = \mathcal{P}_k(A^T A) A^T b^{\text{exact}} + \mathcal{P}_k(A^T A) A^T e \equiv x_{b^{\text{exact}}}^{(k)} + x_e^{(k)}.$$

Similarly for the other iterative methods. Signal component Noise component

Note that signal component $x_{b^{\text{exact}}}^{(k)}$ depends on the noise e via \mathcal{P}_k .

Signal and Noise Components

Same Behavior in All Methods

The noise components are always correlated with the image!

Yet Another Krylov Subspace Method

If certain components (or features) are missing from the Krylov subspace, then it makes good sense to *augment* the subspace with these components.

Specifically, for GMRES and RRGMRES, use the subspaces:

$$\mathcal{S}_k = \operatorname{span}\{w_1, \dots, w_p\} + \operatorname{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}.$$

$$\vec{\mathcal{S}}_k = \operatorname{span}\{w_1, \dots, w_p\} + \operatorname{span}\{Ab, A^2b, A^3b, \dots, A^kb\}.$$

Implementation Aspects, RRGMRES

Baglama & Reichel (2007) proposed algorithm AugRRGMRES that uses the simple formulation

$$A W_p = V_p H_0 \quad \rightarrow \quad A \left[W_p, V_k \right] = \left[V_p, V_{k+1} \right] H_k .$$

But their algorithm actually solves the problem

$$\min_{x} \|Ax - b\|_{2}^{2} \quad \text{s.t.} \quad x \in \mathcal{W}_{p} + \mathcal{K}_{j}\left((I - V_{p}V_{p}^{T})A, (I - V_{p}V_{p}^{T})Ab\right)$$

Dong, Garde & H recently proposed an alternative algorithm R³GMRES (Regularized RRGMRES) that uses the desired subspace

$$\mathcal{W}_p + \mathcal{K}_j(A, Ab)$$
.

Their algorithm is a bit more complicated, but has the same complexity as RRGMRES and AugRRGMRES.

The classical stopping rule for iterative methods is:

• Stop when the residual norm $|| b - A x^{(k)} ||_2$ is "small." It does not work for ill-posed problems: a small residual norm does not imply that $x^{(k)}$ is close to the exact solution!

Must stop when all available information has been extracted from the right-hand side b, just before the noise start to dominate $x^{(k)}$. Some stopping rules:

- discrepancy principle,
- generalized cross validation (GCV),
- L-curve criterion (?),
- normalized cumulative periodogram (NCP),
- and probably several others ...

What we covered here

- We understand the inherent regularizing properties of Krylov subspace methods.
- We understand how the noise enters the solutions.
- We can incorporate smoothing conditions/priors via a process similar to preconditioning (not discussed in this talk).
- We can augment the methods to incorporate certain types of priors.

Future work – challenges

- Development of *robust stopping rules*.
- Preconditioning for *acceleration* of the iterations.
- Flexible ways of incorporating other constraints/priors.
- Nonnegativity constraints?!

