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About Me … 

• Professor of Scientific Computing at DTU 
• Interests: inverse problems, tomography, regularization algorithms, matrix compu-

tations, image deblurring, signal processing, Matlab software, … 
• Head of the project High-Definition Tomography, 

funded by an ERC Advanced Research Grant. 
• Author of four books. 

• Regularization Tools was developed on my “portable” Mac SE/30. 
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Image Deblurring 

Nutrition Facts: 
• Introduction to iterative 

methods (10%) 
• Image deblurring/ 

reconstruction (20%) 
• Inverse problems (10%) 
• Regularization by 

Projection (9%) 
• CGLS (12%) 
• Semi-convergence 

(12%) 
• Other methods (10%) 
• Noise propagation (12%) 
• Other matters (5%) 

Forward problem 

Our model: A x = b

Blurred image 

Sharp image 
Blurring process 
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Krylov Subspaces 
Given a square matrix M and a vector v, the associated Krylov subspace
is de¯ned by

Kk(M; v) ´ spanfv; Mv; M 2v; : : : ; Mk¡1vg; k = 1; 2; : : :

with dim(Kk(M; v)) · k.
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K2(M; v) = spanfv; Mvg

v

Mv

They are also important tools for regularization of large-scale discretizations
of inverse problems, which is the topic of this talk.

Krylov subspaces have many important
applications in scienti¯c computing:

² solving large systems of linear equations,

² computing eigenvalues,

² solving algebraic Riccati equations, and

² determining controllability in a control system.
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The CGLS Algorithm 

x(0) = starting vector (e.g., zero)

r(0) = b ¡A x(0)

d(0) = AT r(0)

for k = 1; 2; : : :

¹®k = kAT r(k¡1)k22=kA d(k¡1)k22
x(k) = x(k¡1) + ¹®k d(k¡1)

r(k) = r(k¡1) ¡ ¹®k A d(k¡1)

¹̄
k = kAT r(k)k22=kAT r(k¡1)k22

d(k) = AT r(k) + ¹̄
k d(k¡1)

end

Initialization 

Mult. with A 

Mult. with AT 

The CGLS algorithm produces a sequence of iterates x(k) which solve

min kA x¡ bk2 subject to x 2 Kk(A
T b; ATA) :

Multiplication with A and AT is a blurring operation!Our model: A x = b
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Illustration of Semi-Convergence 

Ayb
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Sources of Blurred Images 
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Some Types of Blur and Distortion 

From the camera: 
 the lens is out of focus, 
 imperfections in the lens, and 
 noise in the CCD and the analog/digital converter. 

From the environments: 
 motion of the object (or camera), 
 fluctuations in the light’s path (turbulence), and 
 false light, cosmic radiation (in astronomical images). 

Given a mathematical/statistical model of the blur/distortion, 
we can deblur the image and compute a sharper reconstruction 
(as apposed to ”cosmetic improvements” by PhotoShop etc). 
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Top 10 Algorithms 

J. J. Dongarra, F. Sullivan et al., The Top 10 Algorithms, IEEE Computing 
in Science and Engineering, 2 (2000), pp. 22-79. 

1946: The Monte Carlo method (Metropolis Algorithm). 

1947: The Simplex Method for Linear Programming. 

1950: Krylov Subspace Methods (CG, CGLS, Arnoldi, etc.). 

1951: Decomposition Approach to matrix computations. 

1957: The Fortran Optimizing Compiler. 

1961: The QR Algorithm for computing eigenvalues and –vectors. 

1962: The Quicksort Algorithm. 

1965: The Fast Fourier Transform algorithm. 

1977: The Integer Relation Detection Algorithm. 

1987: The Fast Multipole Algorithm for N-body simulations. 

1946: The Monte Carlo method (Metropolis Algorithm). 

1947: The Simplex Method for Linear Programming. 

1950: Krylov Subspace Methods (CG, CGLS, Arnoldi, etc.). 

1951: Decomposition Approach to matrix computations. 

1957: The Fortran Optimizing Compiler. 

1961: The QR Algorithm for computing eigenvalues and –vectors. 

1962: The Quicksort Algorithm. 

1965: The Fast Fourier Transform algorithm. 

1977: The Integer Relation Detection Algorithm. 

1987: The Fast Multipole Algorithm for N-body simulations. 
Key algorithms in 
image deblurring. 
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The Deblurring Problem 
Fredholm integral equation of the ¯rst kind:

Z 1

0

Z 1

0

K(x; y; x0; y0) f(x; y) dx dy = g(x0; y0) ; 0 · x0; y0 · 1:

Think of f as an unknown sharp image, and g as the blurred version.

Think of K as a model for the point spread function.

Discretization yields a LARGE system of linear equations: A x = b.

Two important aspects related to this system:

² Use the right boundary conditions.

² The matrix A is very ill conditioned ! Do not solve A x = b !

out of focus motion Gaussian 

Examples of
point spread functions
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Inverse Problems 

Goal: use measured data to compute “hidden” information. 
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Inverse Problems: Regularization is Needed! 

In the algebraic model, the matrix A is very ill conditioned, 
and we do not want to compute the “naive solution”: 

We must use regularization to compute a stable solution. 

xLSQ = Ayb = xexact + A¡1e; kA¡1ek À kxexactk

The inverse problems of image deblurring and tomographic 
reconstruction are ill-posed problems, i.e, they violate one or 
more of the Hadamard conditions for a well-posed problem: 
• the solution exists, 
• the solution is unique, 
• the solution is stable with respect to perturbations of data. 

Algebraic model: A x = b, b = A xexact + e.
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Regularization by Spectral Filtering 
We often compute regularized solutions via the following procedure:

1. Choose a (possibly orthonormal) spectral basis: w1; w2; : : : ; wn.

2. Write xLSQ = Ayb =
Pn

i=1 ®i wi.

3. Introduce spectral ¯ltering: xreg =
Pn

i=1 Ái ®i wi, Ái = ¯lter factors.

Example: SVD basis. Given the SVD A =
Pn

i=1 ui ¾i vTi we have:

² Spectral basis: v1; v2; : : : ; vn. Coe±cients for xLSQ are: ®i = uTi b=¾i.

Noise level 

uTi b=¾i

uTi b

¾iUse the filters to discard 
these components 
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Some Regularization Methods 
Tikhonov regularization:

min
x

©
kA x¡ bk22 + ¸2 kL xk22

ª

The choice of smoothing norm, together with the choice of ¸, forces x to be
e®ectively dominated by components in a low-dimensional subspace, determined
by the GSVD of (A; L) { or the SVD of A if L = I.

Filter factors Ái = ¾2
i =(¾2

i + ¸2) when L = I.

Regularization by projection:

min
x
kA x¡ bk2 subject to x 2 Wk

where Wk is a k-dimensional subspace, the signal subspace.

This works well if \most of" xexact lies in a low-dimensional subspace (sparsity);
hence Wk must be spanned by desirable basis vectors

Think of Truncated SVD:Wk = spanfv1; v2; : : : ; vkg, vi = right singular vectors.
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The Projection Method 
A more practical formulation of regularization by projection.

We are given the matrix Wk = (w1; : : : ; wk) 2 Rn£k such that Wk = R(Wk).

We can write the requirement as x = Wk y, leading to the formulation

x(k) = Wk y(k); y(k) = argminy k(A Wk) y ¡ bk2:

Projected problem 

Example: 
DCT basis 

Operations
often do not
require Wk

explicitly.
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Some Thought on the Basis Vectors 

The DCT basis – and similar bases that define fast transforms: 
•   computationally convenient (fast) to work with, but 
•   may not be well suited for the particular problem. 

The SVD basis – or GSVD basis if L ≠ I – gives an “optimal” 
basis for representation of the matrix A, but ... 

•   it is computationally expensive (slow), and 
•   it does not involve information about the right- 
     hand side b. 

Is there a basis that is computationally attractive and also 
involves information about both A and b, and thus the 
complete given problem? 
    →   Krylov subspaces! 
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The Krylov Subspace 
The Krylov subspace of interest here, de¯ned as

Kk(A
T b; ATA) ´ spanfAT b; (ATA) AT b; (ATA)2AT b; : : : ; (ATA)k¡1AT bg;

always adapts itself to the problem at hand!

Orthonormal basis vectors for a certain K5(A
T b; ATA):

A few early references: 
• W. Squire, 1976 
• G. Nolet, 1985 
• A. S. Nemirovskii, 1986 
• A. van der Sluis and H. A. van der Vorst, 1990 
• M. Hanke, 1995 
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The Use of CGLS 
Can we compute x(k) without forming and storing the Krylov basis?

Apply CG to the normal equations for the least squares problem

min kA x¡ bk2 , ATA x = AT b :

This stable stable and e±cient implementation of this algorithm is called CGLS,
and it produces a sequence of iterates x(k) which solve

min kA x¡ bk2 subject to x 2 Kk(A
T b; ATA) :
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Truncated SVD subspace = spanfv1; v2; v3; : : :g.

CGLS subspace = spanfAT b; (ATA)AT b; (ATA)2AT b; : : :g.

CGLS Basis Vectors for Image Deblurring 

Two di®erent but similar signal subspaces.
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Regularizing Iterations 

! CGLS constructs a truncated polynomial approximation to Ay.

Iterative methods are based on multiplications with A and AT (blurring).

How come repeated blurings can lead to reconstruction?

CGLS algorithm solves the problem without forming the Krylov basis explicitly.

This use of CGLS to compute regularized solutions in the Krylov subspace Kk

is referred to as regularizing iterations.

Finite precision: convergence slows down, but no deterioration of the solution.

The solution and residual norms are monotone functions of k:

kx(k)k2 ¸ kx(k¡1)k2; kA x(k) ¡ bk2 · kA x(k¡1) ¡ bk2; k = 1; 2; : : :
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The CGLS Polynomials 

CGLS implicitly constructs a polynomial Pk such that

x(k) = Pk(ATA)AT b :

To minimize residual norm kr(k)k2:

! make Qk(¾
2
i ) small where (uTi b)2 is large

! force Qk(¾
2
i ) to have roots

near ¾2
i that corresp. to large (uTi b)2.

But how is Pk constructed? Consider the residual

r(k) = b¡A x(k) =
¡
I ¡APk(A

TA) AT
¢

b

kr(k)k22 =
°°¡I ¡ §Pk(§

2)§
¢

UT b
°°2

2

=
nX

i=1

¡
1¡ ¾2

iPk(¾2
i )
¢2

(uTi b)2 =
nX

i=1

Qk(¾
2
i )(u

T
i b)2
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Semi-Convergence 

During the ¯rst iterations, the Krylov subspace Kk captures the

\important" information in the noisy right-hand side b.

² In this phase, the CGLS iterate x(k) approaches the exact solution.

At later stages, the Krylov subspace Kk starts to capture undesired

noise components in b.

² Now the CGLS iterate x(k) diverges from the exact solution and

approach the undesired solution Ayb to the least squares problem.

The iteration number k (= the dimension of the Krylov subspace Kk)

plays the role of the regularization parameter.

This behavior is called semi-convergence.
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Illustration of Semi-Convergence 

Recall this illustration: 

The ”ideal” behavior of the error || x(k) – xexact ||2 and the associated L-curve: 
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SVD Perspectives of the Krylov Subspace 
Regularization by ¯ltered SVD expansion:

xreg =
Pn

i=1 Ái
uTi b
¾i

vi :

Truncated SVD: Ái = 1 or 0. Tikhonov regularization:

Ái =
¾2
i

¾2
i + ¸2

:

CGLS also corresponds to SVD ¯ltering:

Here µ
(k)
j are the Ritz values, i.e., the eigenvalues of the projection

of ATA on the Krylov subspace Kk. They converge to those ¾2
i

whose corresponding SVD components uTi b are large.

x(k) =
Pn

i=1 Á
(k)
i

uTi b
¾i

vi; Á
(k)
i = 1¡

Qk
j=1

µ
(k)
j ¡¾2

i

µ
(k)
j
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The CGLS Filter Factors 

A closer look at the ¯lter factors Á
(k)
i in the ¯ltered SVD expansion

x(k) =

nX

i=1

Á
(k)
i

uTi b

¾i
vi

= V ©k §yUT b

©k = Pk(§2) §2

Recall that Pk is the
unique polynomial
such that

x(k) = Pk(ATA) AT b.

Filter factors Á
(k)
i

¾i ¾i

¾i¾i
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Other Krylov Subspace Methods 
Sometimes it is impractical to use methods
that need AT , e.g, if A = AT or if we have
a black-box function that computes A x.

MINRES and GMRES come to mind if the matrix A is square { these methods
are based on the Krylov subspace:

Kk = spanfb; Ab; A2b; : : : ; Ak¡1bg.

Unfortunately it is a bad idea to include the
noisy vector b in the subspace.

A is symmetric, e.g., 
if the PSF is ”doubly 
symmetric.” 

A better choice is the \shiftet" Krylov subspace:

~Kk = spanfAb; A2b; : : : ; Akbg.

The corresponding methods are called

² MR-II (Hanke, 1995) and

² RRGMRES (Calvetti, Lewis & Reichel, 2000).

Both are included in
Regularization Tools.
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Comparing Krylov Methods: MINRES, MR-II 

♥ The presence of b in the 
MINRES Krylov subspace 
gives very noisy solutions. 
♠ The absence of b in the 
MR-II Krylov subspace is 
essential for the noise 
reduction. 
♣ MR-II computes a filter-
ed SVD solution: 
 
 
 
 
♦ Negative eigenvalues of 
A do not inhibit the regu-
lalarizing effect of MR-II, 
but they can slow down 
the convergence. 

x(k) = V ©k §yV T b

©k = Pk(§)§

¤ = §;  = diag(§1)
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Comparing: GMRES, RRGMRES 
♥ The presence of b in the 
GMRES Krylov subspace 
gives very noisy solutions. 
♠ The absence of b in the 
RRGMRES Krylov subspace 
is essential for the noise 
reduction. 
♣ RRGMRES mixes the 
SVD components in each 
iteration and x(k) is not a 
filtered SVD solution: 
 
 
 
 
♦ RRGMRES works well if 
the mixing is weak (e.g., if 
A ≈ AT), or if the Krylov 
basis vectors are well suit-
ed for the problem. 
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Back to CGLS: The “Freckles” 

Initially, the image gets sharper – then ”freckles” start to appear. 
D

C
T 

sp
ec

tr
um

 
sp

at
ia

l 
do

m
ai

n 

”Freckles” are band- 
pass filtered noise. 

CGLS: 
k = 4, 10 
and 25 
iterations 

Low frequencies carry 
the main information. 

idct2 idct2 idct2 
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Noise Propagation 
Recall once again that we can write the CGLS solution as:

x(k) = Pk(ATA) AT b;

where Pk is the polynomium associated with the Krylov subspace
Kk(A

T b; ATA).

Thus Pk is ¯xed by A and b, and if b = bexact + e then

x(k) = Pk(ATA) AT bexact + Pk(ATA) AT e ´ x
(k)
bexact + x(k)

e :

Similarly for the other iterative methods.

Note that signal component x
(k)
bexact depends on the noise e via Pk.

Noise 
component 

Signal 
component 
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Signal and Noise Components 

Two different 
blurring ma- 
trices A 

signal noise 
Note that 
the noise 
components 
(the freckles) 
are correlated 
with structures 
in the image! 

Tends to mask 
the appearance 
of the noise!! 
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Same Behavior in All Methods 

The noise components are always correlated with the image! 

x
(k)
bexact x

(k)
bexact

x
(k)
e x

(k)
e
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Yet Another Krylov Subspace Method 

If certain components (or features) are missing from the Krylov subspace, then
it makes good sense to augment the subspace with these components.

Speci¯cally, for GMRES and RRGMRES, use the subspaces:

Sk = spanfw1; : : : ; wpg+ spanfb; Ab; A2b; : : : ; Ak¡1bg:

~Sk = spanfw1; : : : ; wpg+ spanfAb; A2b; A3b; : : : ; Akbg:

Example: deriv2. 
 

All vectors in the 
Krylov subspace 
→ 0 at the ends. 
 

w1 = (1,1,...,1)T 

w2 = (1,2,...,n)T 
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Implementation Aspects, RRGMRES 

Baglama & Reichel (2007) proposed algorithm AugRRGMRES that uses
the simple formulation

A Wp = Vp H0 ! A
£
Wp ; Vk

¤
=
£
Vp ; Vk+1

¤
Hk :

But their algorithm actually solves the problem

min
x
kA x¡ bk22 s.t. x 2 Wp +Kj

¡
(I¡VpV

T
p )A; (I¡VpV

T
p )Ab

¢
:

Dong, Garde & H recently proposed an alternative algorithm R3GMRES
(Regularized RRGMRES) that uses the desired subspace

Wp +Kj(A; Ab) :

Their algorithm is a bit more complicated, but has the same complexity
as RRGMRES and AugRRGMRES.



March 2014 35/36 P. C. Hansen – Image Deblurring with Krylov Subspace Methods 

Stopping Rules = Reg. Param. Choice 

The classical stopping rule for iterative methods is: 
• Stop when the residual norm || b – A x(k) ||2 is ”small.” 
It does not work for ill-posed problems: a small residual 
norm does not imply that x(k) is close to the exact solution! 
 
Must stop when all available information has been extracted 
from the right-hand side b, just before the noise start to 
dominate x(k). Some stopping rules: 
• discrepancy principle, 
• generalized cross validation (GCV), 
• L-curve criterion (?), 
• normalized cumulative periodogram (NCP), 
• and probably several others ... 
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What we covered here 
• We understand the inherent regularizing properties of Krylov 

subspace methods. 
• We understand how the noise enters the solutions. 
• We can incorporate smoothing conditions/priors via a process 

similar to preconditioning (not discussed in this talk). 
• We can augment the methods to incorporate certain types of priors. 

Future work – challenges 
• Development of robust stopping rules. 
• Preconditioning for acceleration of the iterations. 
• Flexible ways of incorporating other constraints/priors. 
• Nonnegativity constraints?! 
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