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Abstract

The iterative reconstruction method known as ART (Algebraic Recon-
struction Technique) and Kaczmarz’s method, as well as its many variants,
are surprisingly simple and efficient methods with many applications in
computed tomography, where we compute 2D and 3D reconstructions
from noisy and often incomplete projections. On the theoretical side we
are interested in explaining why it is so successful, and on the practical
side how to implement it efficiently, how to select the relaxation param-
eter, and how to stop the iterations. This report takes the form of an
“exhibit” of the many aspects of ART.
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There are many ways to compute reconstructions in tomography — too many to list
here — such as methods based on explicit inversion formulas, Bayesian methods, and
algebraic iterative methods. I will focus on a particular algebraic iterative method,
ART, which is surprisingly simple to formulate, has a simple geometric interpretation,
and works well for a number of applications due to its fast initial convergence. I give
only a few references; sorry about all the good work that is not mentioned here.

In Kaczmarz’s formulation [11] of the algorithm from 1937, each iteration takes
the form of a sweep over the rows al of the matrix A € R™*™ — from top to bottom —
where we orthogonally project the current iterate x on the hyperplane defined by row
al and the corresponding element b; of the right-hand side:
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ai , i=1,2,...,m.

Herman and his coworkers [7] rediscovered the algorithm 1970 (for the case where
all elements of A are 0 or 1). They named it “ART,” introduced a nonnegativity
projection and used a different normalization:
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This version does not have the simple interpretation as a sequence of orthogonal pro-
jections; in later works (e.g., [10]) the name ART is used synonymously with the

*This work is part of the project High-Definition Tomography, supported by grant No.
291405 from the European Research Council.



Kaczmarz formulation. Current versions of ART also include a relaxation parameter
Ak and a projection Pc on a convex set C (e.g., the positive orthant or the box [0, 1]™):

i—a;x

x(—Pc(x—F)\kb a,-) , i=1,2,...,m.
llaill3

In spite of its success there are many open questions associated with the use of this
method, and hence it is a rich source for research problems! Below is a survey of some
of these issues, with a strong bias towards my own research and my ongoing work with
the MATLAB package AIR TooOLS [9]. Please note the effort by Joost Batenburt from
CWI to develop a highly efficient toolbox ASTRA [14], based on a MATLAB wrapper
around native C++ and CUDA code.

Semi-Convergence Theory

There is a rich convergence theory for ART and its many block extensions; but most
of this theory exclusively deals with its asymptotic convergence. However, the power
of ART really lies in its ability to converge fast to a good approximate/regularized
solution during the initial iterations — while at later stages its slows down considerably
and eventually converges to an undesirable solution dominated by noise from the data.

Specifically, ART is observed to exhibit semi-convergence [13], where the iteration
number plays the role of the regularizing parameter. In the early stages the iterates
approach a regularized solution, while continuing the iteration leads to iterates dete-
riorated by noise. A few attempts have been made to give a rigorous foundation for
this observed behavior, such as [4]; but more work is needed to demonstrate in which
circumstances we are guaranteed to have semi-convergence, to give rates for the initial
convergence, etc.

Perhaps such a study could use the close connection between ART and the SOR
method. Also, one might be able to use the fact that the “symmetric ART” method
(which is connected to SSOR) lends itself to an SVD analysis.

Implementation of Block ART

There are surprisingly many ways to define block extensions of ART; some of them are
surveyed in [6] and [15]. These block methods lends themselves naturally to distributed
computing systems and MPI-type implementations for large-scale problems [12]. The
block methods are also well suited for multi-core computers [15] as well as systems
based on GPUs. Some important questions here are:

e How do we best choose the number of blocks on a given computer?

e How can we best utilize the structural orthogonality between the matrix rows
to choose the blocks adaptively?

e What is the best combination of block iteration (sequential/parallel) and treat-
ment of the individual blocks (by a direct or iterative method)?

To best utilize the specialized architecture of the GPU, the matrix-free multiplica-
tions are implemented such that the backprojection corresponds to multiplication with
the transposed of a matrix A that is slightly different from the matrix A associated
with the forward computation [17]. The unmatched transpose may prevent asymptotic
convergence; it is unclear how it affects the semi-convergence and the accuracy of the
reconstruction.

Choice of Relaxation Parameter

For a given problem and a given (block) method we claim that there is an optimal
choice of relaxation parameter — either fixed or depending on the iterations — that



gives the fastest semi-convergence during the initial iterations. The problem is how to
estimate this parameter or parameter-sequence for a given problem with noisy data.
Some options are:

e Determine a fixed parameter by means of “training,” i.e., by determining the
parameter that gives fastest semi-convergence for a test problem with a known
solution [9].

e Determine a “greedy” strategy to vary the parameter during the iterations that
gives the largest reduction of the error at each stage, similar to [3].

e Determine a strategy such that the iterations “slow down” once we reach the
point of semi-convergence (this makes the stopping criterion less critical) [5].

Stopping Rules

For discretizations of inverse problems it is well known that the “standard” stopping
rule for iterative methods — stop when the residual is small — cannot ensure a sat-
isfactory regularized solution. Any stopping rule for such systems should take into
account the ill-posed nature of the underlying problem, the type of noise, and prefer-
ably the desired properties of the regularized solution. Several methods for choosing
the Tikhonov regularization parameter [8] have these properties (e.g., Morozov’s dis-
crepancy principle, the L-curve criterion, and Rust’s method based on the residual’s
power spectrum), but it is unclear how suited they are for iterative methods applied to
large-scale problems. To define robust stopping rules it may be worthwhile to consider
the following issues:

e Often we know the statistical properties of the noise in the data because we have
detailed information about the instrument. This information should be utilized.

e ART is strongly related to first-order optimization methods of the incremental
gradient type, and it should be possible to exploit the solid understanding of
these methods.

e The reconstructed image is, in many cases, in intermediate result to which fur-
ther data analysis is applied (the objective is not to produce “pretty pictures”).
A good stopping rule should ensure that reconstruction allows for optimal data
analysis.

Extensions and Variations of ART

ART is typically formulated as a row-action method what works with (blocks of) rows
of the matrix. An obvious variation of ART is to work instead with the columns of
the matrix [16], which may be advantageous when it is desirable to updated elements
or blocks of the solution independently (e.g., for memory issues) [2].

Extensions of ART are possible through its connection to first-order optimization
methods and its interpretation as an incremental gradient method. Some examples of
this can be found in [1], and these seems to be potential for powerful extensions that
combine the simplicity of ART with the ability to incorporate prior information and
improve the convergence rate.
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