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Motivation: Motion Blur 

Motion blur arises frequently in several applications. 

Our interest here is rotational blurring which arises, 
e.g., when a satellite navigates in space. 

This is an example of spatially variant blur, where 
the blurring depends on the location in the image. 
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Different Types of Rotational Blur 

Pure rotation. The rotation axis points toward the camera (i.e., the scene 
rotates around its center) and is orthogonal to the image plane. 

Pure tilt. The rotation axis is orthogonal to the direction of the scene (i.e., 
the scene moves on a circle round the focal point at a fixed distance). 

Tilted rotation. Similar to the pure rotation, except that the rotation axis is 
not orthogonal to the image plane. 

Pure rotation 

Pure tilt 
Tilted rotation 
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Previous Work Related to Rotational Blur 

The underlying problem (the fortward model): 

• A x = b – but A is ill conditioned and b is noisy so don’t solve this system! 
 

Transform to polar coordinates where the motion is linear: 

• Estatico & Di Bendetto (2013); Sawchuk (1974). 

• Interpolation errors – works only for pure rotation. 
 

Section the image in patches with approximately invariant blur: 

• Nagy & O’Leary (1998); Trussell & Fogel (1992). 

• Works best when the blur is smoothly varying over the image. 
 

Model the motion blur by summing a sequence of rotated/translated images: 

• Tai, Tan & Brown (2011). 

• Matrix-free; uses the Richardson-Lucy algorithm. 

• Inspired this work. 
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The Deblurring Problem 

Our deblurring problem is a constrained linear least squares problem:

minf kA f ¡ gk2 ; f 2 C

Nonnegativity/box 
constraints Vector with noisy 

and blurred image Vector with recon-
structed image 

Matrix that repre-
sents the blurring 

For spatially variant blurring, there are usually no \fast algorithms"
{ i.e., no matrix structure to exploit, except perhaps sparsity.

Hence it is natural to use iterative algorithms.

We use regularizing iterations where regularization/stabilization is achieved
by early termination of the iterations (semi-convergence).

The inverse problem is ill posed, and hence A is ill conditioned ! we
need regularization to stably compute a useful approximate solution.
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Illustration of Semi-Convergence 
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The Forward Model 

Forward model: the blurred image is created as a sum of images that
undergo a sequence of small rotations:

The standard way to implement this is via a matrix-free approach that
uses interpolation from one rotated image to the next.

+ Simple to implement. Requires little extra storage.
¡ Slow!

We choose to explicitly create a sparse matrix A that represents the
rotation sequence.

+ Fast, once the matrix is created.
+ Easy to incorporate boundary conditions.
¡ Initialization and storage of the sparse matrix.

Pure 
rotation 
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Computation of A 
The motion-blurred image G is the scaled sum of images at incremental
times, or positions, during acquisition:

G =
1

M

M¡1X

i=0

F ( ~»i ):

² Each F ( ~»i ) represents the ith snapshot of the object,

² ~»0 is the position vector corresponding to the original image,

² ~»i, i = 1; 2; : : : ; M ¡ 1 are position vectors of the ith transformed
images, where ~»i = H(®i)~»0 and H is a homography matrix.

We thus obtain

g =
1

M

M¡1X

i=0

vec(F ( ~»i )) =
1

M

M¡1X

i=0

Aif = Af :
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More About the Computation of A 

Sample each image F ( ~»i ) at the pixel centers via bilinear interpolation.

Then bilinear interpolation approximates FPC as

FPC ¼ (1¡¢x)(1¡¢y) FSW + ¢x¢y FNE +

(1¡¢x)¢y FNW + ¢x(1¡¢y) FSE :

So each row of A has 4 nonzero elements: (1¡¢x)(1¡¢y), ¢x¢y, etc.

The pixel value at each center is ap-
proximated by a weighted average of
the four transformed values that sur-
round it; the weights are proportional
to the distance from the pixel center.

FPC = pixel value at a pixel center.

FNW; FNE; FSW; FSE = surrounding pixel
values after motion transformation.
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Boundary Conditions (Important) 

Recall the deblurring problem: minf kA f ¡ gk2, f 2 C. Here:

A = AF + ABC

AF = simple forward model, ABC = correction for boundary constraints.

² Zero: the scene outside the initial image is black.

² Replicate: each pixel at the border of the initial image is in¯nitely
replicated outside the image.

² Periodic: the scene outside the initial image is a periodic replica-
tion of the image.

² Re°ective: the scene outside the initial image is a re°ection of the
image along the image border.

The matrices Ai in A = 1
M

PM¡1
i=0 Ai are modi¯ed accordingly.
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Iterative Reconstruction Methods 

A variety of iterative algorithms are available:

² ART (Kaczmarz) { slow for image deblurring.

² CGLS { cannot incorporate nonnegativity or box constraints.

² FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) { slow.

² MRNSD (Mod. Residual Norm Steepest Descent) { works well.

² PL (Projected Landweber) { works well for us.

² Richardson-Lucy { slow for our problems.

PL and MRNSD have iterates of the form:

f (k+1) = f (k) + ¿k d(k) ;

where d(k) = direction vector and ¿k = step length.
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Projected Landweber 

We used a ¯xed step ¿k = ¿ (found by experiments) and the direction is

d(k) = AT (g ¡A f (k)) :

We incorporate box constraints via the projection

f (k+1) = P
¡
f (k) + ¿ AT (g ¡A f (k))

¢
:

The semi-convergence property is well established:

² van der Sluis & van der Vorst (1990); Elfving, Nikazad & H (2010).

² With projection: Elfving, H & Nikazad (2012).

The noise-error behaves as

kf (k) ¡ ¹f (k)k = O(¿ k ²)

where ² = norm of data errors and ¹f (k) = iterates for noise-free data.
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MRNSD 

Here ¿k is chosen to ensure nonnegativity, i.e.,

f (k+1) = f (k) + ¿k d(k) ¸ 0 ;

and the step direction is

d(k) = Dk AT (g ¡A f (k)) ; Dk = diag(f (k)) :

Derivation and analysis: Nagy & Strako·s (2000); Bardsley & Nagy (2006).

Richardson-Lucy can be considered a simpler and slower version of MRNSD.

The semi-convergence property is observed experimentally { but a rigorous
analysis is unfortunately lacking.

Perhaps the analysis of semi-convergence in ART { Elfving, H & Nikazad
(2014) { carries over?
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Illustration of Performance I 

Example: pure rotation by 20° - no noise, Gaussian noise, Poisson noise. 

The semi-convergence is evident. 
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Illustration of Performance II 

½ = relative 2-norm error.

S = SSIM (struct. sim. index).

Notice the ”ghosts” – see 
our paper for explanation. 
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Illustration of Performance III 

The role of boundary 
conditions: 

• Inverse crime: the 
blurred image is cre-
ated with reflective 
padding. 

• Thus reflective BC give 
perfect reconstruction. 

• Zero BC give severe 
artifacts. 
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Stopping Criterion 

We tested two di®erent stopping criteria.

NCP Criterion
Rust (1998); H, Kilmer & Kjeldsen (2006); Rust & O'Leary (2008).

Uses the normalized cumulative periodogram (cumulative power spectrum)
to stop when the residual vector g ¡A f (k) becomes noise-like.

Monte-Carlo GCV
Girard (1989); Hutchinson (1989); Perry & Reeves (1994); Bardsley (2008).

Minimizes an estimate of the prediction
error k¹g ¡A f (k)k2, ¹g = pure data.

As noted by Perry & Reeves and Bardsley,
the GCV function can exhibit oscillations,
and we must smooth it.
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Performance Results I 
Projected Landweber MRNSD 

No inverse crime: 

We use high-resolution 
images to compute the 
blurred image. 
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Performance Results II 

The best results are obtained with MRNSD and reflective BC. 
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Conclusions 

• Our approach with a sparse coefficient matrix allows us to treat 
rotation by an arbitrary axis. 

• We can easily incorporate boundary conditions in the 
reconstruction algorithm. 

• We can also incorporate nonnegativity and box constraints. 

• We implemented and tested robust stopping rules (Monte-Carlo 
GCV worked best). 

• Future work: faster algorithms, total variation, … 
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