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Motivation: Motion Blur

Motion blur arises frequently in several applications.

Our interest here is rotational blurring which arises,
e.g., when a satellite navigates in space.

This is an example of spatially variant blur, where
the blurring depends on the location in the image.
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Different Types of Rotational Blur

Pure rotation. The rotation axis points toward the camera (i.e., the scene
rotates around its center) and is orthogonal to the image plane.

Pure tilt. The rotation axis is orthogonal to the direction of the scene (i.e.,
the scene moves on a circle round the focal point at a fixed distance).

Tilted rotation. Similar to the pure rotation, except that the rotation axis is
not orthogonal to the image plane.

Pure rotation

Pure tilt

Tilted rotation
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Hello World!
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Previous Work Related to Rotational Blur

The underlying problem (the fortward model):

« AX =Db—but Ais ill conditioned and b is noisy so don’t solve this system!

Transform to polar coordinates where the motion is linear:
« Estatico & Di Bendetto (2013); Sawchuk (1974).

* Interpolation errors — works only for pure rotation.

Section the image in patches with approximately invariant blur:
« Nagy & O’Leary (1998); Trussell & Fogel (1992).

 Works best when the blur is smoothly varying over the image.

Model the motion blur by summing a sequence of rotated/translated images:
e Tai, Tan & Brown (2011).
 Matrix-free; uses the Richardson-Lucy algorithm.

* Inspired this work.
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The Deblurring Problem

WE

Our deblurring problem is a constrained linear least squares problem:

ming [|[Af —gl2, fecC

Matrix that repre-
sents the blurring

U S

Vector with recon-
structed image

Vector with noisy

Nonnegativity/box
constraints

and blurred image

The inverse problem is ill posed, and hence A is ill conditioned — we
need regqularization to stably compute a useful approximate solution.

For spatially variant blurring, there are usually no “fast algorithms”
— 1.e., no matrix structure to exploit, except perhaps sparsity.

Hence it is natural to use iterative algorithms.

We use reqularizing iterations where regularization /stabilization is achieved
by early termination of the iterations (semi-convergence).
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lllustration of Semi-Convergence
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The Forward Model

Forward model: the blurred image is created as a sum of images that
undergo a sequence of small rotations:

ﬂ+ﬂ+ﬂ+ aJ,@ _

The standard way to implement this is via a matrix-free approach that
uses interpolation from one rotated image to the next.

+ Simple to implement. Requires little extra storage.
—  Slow!

We choose to explicitly create a sparse matrix A that represents the
rotation sequence.

+  Fast, once the matrix is created.
+ Easy to incorporate boundary conditions.
— Initialization and storage of the sparse matrix.
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Computation of A

The motion-blurred image G is the scaled sum of images at incremental
times, or positions, during acquisition:

1M—1 .
GZM ;F(fz)

e Each F(&;) represents the ith snapshot of the object,

° 5) is the position vector corresponding to the original image,

° gj-, 1 =1,2,..., M — 1 are position vectors of the ¢th transformed
images, where &; = H(a;)& and H is a homography matriz.

We thus obtain

M-—1

! A f = AF .

M—1 B | M-
g = Vi ; vec(F(&;)) = 1V £
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More About the Computation of A

Sample each image F'( 5_; ) at the pixel centers via bilinear interpolation.

The pixel value at each center is ap-

proximated by a weighted average of Fnw INE
the four transformed values that sur- . ’
round it; the weights are proportional Ay
to the distance from the pixel center. F.PC A

Fpc = pixel value at a pixel center.

Fxw, Fne, Fsw, Fsg = surrounding pixel o .
values after motion transformation.

Then bilinear interpolation approximates Fpc as
Fre =~ (1—Ax)(1—-Ay)Fsw + AxAy Fng +
(1 - Azx)Ay Fxw + Az(l — Ay) Fsg -
So each row of A has 4 nonzero elements: (1 — Ax)(1— Ay), AzAy, etc.
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Boundary Conditions (Important)

Recall the deblurring problem: miny ||A f — g||2, f € C. Here:
A= Ar + Apc
Apr = simple forward model, Agc = correction for boundary constraints.

e Zero: the scene outside the initial image is black.

e Replicate: each pixel at the border of the initial image is infinitely
replicated outside the image.

e Periodic: the scene outside the initial image is a periodic replica-
tion of the image.

e Reflective: the scene outside the initial image is a reflection of the
image along the image border.

The matrices A; in A = ﬁ Zi]\ial A; are modified accordingly.
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Iterative Reconstruction Methods

A variety of iterative algorithms are available:
e ART (Kaczmarz) — slow for image deblurring.
e CGLS — cannot incorporate nonnegativity or box constraints.
e FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) — slow.
¢ MRNSD (Mod. Residual Norm Steepest Descent) — works well.
e PL (Projected Landweber) — works well for us.

e Richardson-Lucy — slow for our problems.

PL and MRNSD have iterates of the form:
Fl+l) — g(R) o glk)

where d(®) = direction vector and 7, = step length.
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Projected Landweber

We used a fixed step 7, = 7 (found by experiments) and the direction is
d¥) = AT(g— A fR)y .
We incorporate box constraints via the projection

fED =P + 7 AT (g - AfP)) .

The semi-convergence property is well established:
e van der Sluis & van der Vorst (1990); Elfving, Nikazad & H (2010).
e With projection: Elfving, H & Nikazad (2012).

The noise-error behaves as
I — fP) = O(r ke)

where € = norm of data errors and f(¥) = iterates for noise-free data.
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MRNSD

Here 7 is chosen to ensure nonnegativity, i.e.,
flHD — o) 4 1 qd®) >
and the step direction is
d® =Dy AT(g— Af™), Dy = diag(f™) .
Derivation and analysis: Nagy & Strakos (2000); Bardsley & Nagy (2006).

Richardson-Lucy can be considered a simpler and slower version of MRNSD.

The semi-convergence property is observed experimentally — but a rigorous
analysis is unfortunately lacking.

Perhaps the analysis of semi-convergence in ART — Elfving, H & Nikazad
(2014) — carries over?
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lllustration of Performance |

Example: pure rotation by 20° - no noise, Gaussian noise, Poisson noise.
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lllustration of Performance 11 ==
Rotation PL MRNSD
- - P S p S
(a) Pure rotation (b) PL  (¢) MRNSD Pure rotation  0.2149  0.7328 02117  0.7448

Pure tilt 0.2320  0.6635 02273  0.6761
Tilted rotation ~ 0.2218  0.7234  0.2240  0.7300

p = relative 2-norm error.

S = SSIM (struct. sim. index).

(d) Pure tilt (e) PL (f) MRNSD

Notice the "ghosts” — see
our paper for explanation.

(g) Tilted rotation (h) PL (i) MRNSD
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lllustration of Performance 111

The role of boundary
conditions:

* Inverse crime: the
blurred image is cre-
ated with reflective
padding.

* Thus reflective BC give
perfect reconstruction.

« Zero BC give severe
artifacts.

(c) Cropped (d) Rec., reflexive BC (e) Rec., zero BC
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Stopping Criterion
We tested two different stopping criteria.

NCP Criterion
Rust (1998); H, Kilmer & Kjeldsen (2006); Rust & O’Leary (2008).

Uses the normalized cumulative periodogram (cumulative power spectrum)
to stop when the residual vector g — A f*) becomes noise-like.

Monte-Carlo GCV
Girard (1989); Hutchinson (1989); Perry & Reeves (1994); Bardsley (2008).

Minimizes an estimate of the prediction w1t MRNsDGov

6

error ||g — A f(k) |2, g = pure data. 59, :S.f\;:.ope-

As noted by Perry & Reeves and Bardsley,
the GCV function can exhibit oscillations, =)
and we must smooth it.

10 20 30 40 5 60 70 80
Iterations (k)
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5% Poisson noise

Performance Results | Alorithm  minerror NCP GCV
k p k P k p
PL 46 02716 46 02716 57 02729
MRNSD 33 02681 35 02682 64  0.2960

Projected Landweber

Pure rotation 5% Gaussian noise
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Performance Results 11

The best results are obtained with MRNSD and reflective BC.

(a) Exact image (b) Blurred image (c) Gaussian noise (d) Poisson noise
p=0.2602,§ =0.7194 p =0.2623, 5 =0.7082
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Conclusions

Our approach with a sparse coefficient matrix allows us to treat
rotation by an arbitrary axis.

We can easily incorporate boundary conditions in the
reconstruction algorithm.

We can also incorporate nonnegativity and box constraints.

We implemented and tested robust stopping rules (Monte-Carlo
GCV worked best).

Future work: faster algorithms, total variation, ...
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