Unmatched Projector/Backprojector Pairs and Algebraic Iterative Reconstruction

Per Christian Hansen DTU Compute, Technical University of Denmark

Joint work with Ken Hayami and Keiichi Morikuni initiated last spring during a much too short visit funded by JSPS

- What are unmatched projector pairs?
- Ising non-convergence of standard methods.
- S Alternative: use preconditioned GMRES.

Parallel-Beam X-Ray CT

Lab scanner

Medical scanner

Synchrotron

Radon transform

Forward and Back Projections

Forward projection models the physics via the Radon transform \mathcal{R} : integration of the image f along lines $L_{\theta,s}$

$$g(heta,s) = \mathcal{R}[f](heta,s) = \int_{L_{ heta,s}} f(x_1,x_2) \, d\ell$$

Back projection \mathcal{B} , a mathematical abstraction, smears g back along $L_{\theta,s}$

$$\mathcal{B}[g](x_1, x_2) = \int_0^{2\pi} g(\theta, x_1 \cos \theta + x_2 \sin \theta) \, d\theta = \operatorname{adjoint}(\mathcal{R}) \, .$$

Japan, March 2021

Hansen: Unmatched Pairs

Some Implementations

Unmatched Projectors in Matrix-Free Methods

Multiplication with $A \iff$ action of forward projector. Multiplication with $B \iff$ action of back projector.

Currently there is no pair of projection models such that $B = A^{T}$.

③ Not a problem when we use *B* in filtered back projection.

 \bigotimes When A is not stored then we must use B for A^{T} .

Example: solve $\min_{x} ||Ax - b||_{2}$ with the steepest descent method

 $x^{k+1} = x^{(k)} + \omega A^T (b - A x^k) \quad -> \quad x^{k+1} = x^{(k)} + \omega B (b - A x^k) .$

Convergence Analysis for Unmatched Pairs

We consider the simple BA Iteration

$$x^{k+1} = x^k + \omega B(b - A x^k)$$
, $\omega > 0$

Generally not related to solving a minimization problem!

It is a *fixed-point iteration* whose convergence depends on the product BA. Any fixed point x^* satisfies the *unmatched normal equations*

$$BAx^* = Bb$$

Shi, Wei, Zhang (2011); Elfving, H (2018)

The **BA** Iteration converges to a solution of BAx = Bb if and only if

$$0 < \omega < rac{2\operatorname{\mathsf{Re}}\lambda_j}{|\lambda_j|^2} \quad ext{and} \quad \operatorname{\mathsf{Re}}\lambda_j > 0, \qquad \{\lambda_j\} = \operatorname{\mathtt{eig}}(BA) \;.$$

The Challenge: Eigenvalues with Negative Real Parts

Unmatched pair from ASTRA software package, image has 64×64 pixels, 90 proj. angles, 60 detector elements, no noise, min Re $\lambda_i = -6.4 \cdot 10^{-8}$.

The Shifted BA Iteration (Suggested by Tommy Elfving)

We define the Shifted BA Iteration

$$x^{k+1} = (1 - \alpha \omega) x^k + \omega B (b - A x^k) , \qquad \omega > 0$$

This is equivalent to applying the BA Iteration with the substitutions

$$A \to \begin{bmatrix} A \\ \sqrt{\alpha} I \end{bmatrix}, \qquad B \to \begin{bmatrix} B, \sqrt{\alpha} I \end{bmatrix}, \qquad b \to \begin{bmatrix} b \\ 0 \end{bmatrix}.$$

NB: we introduce the shift $\alpha\,\omega$ to fix convergence – not to regularize.

Dong, H, Hochstenbach, Riis (2019)

The Shifted BA Iteration converges to a fixed point if and only if

$$0 < \omega < 2 \; rac{{
m Re}\,\lambda_j + lpha}{|\lambda_j|^2 + lpha\,(lpha + 2\,{
m Re}\,\lambda_j)} \qquad {
m and} \qquad {
m Re}\,\lambda_j + lpha > 0 \; .$$

Just choose α large enough that $\operatorname{Re} \lambda_j + \alpha > 0$ for all j.

Numerical Results – Divergence and Convergence

Both A and B are from the GPU-version of the ASTRA toolbox. Image has 128×128 pixels, 90 proj. angles, 80 detector pixels, no noise.

The BA Iteration diverges from $x^* = (BA)^{-1}Bb$. The Shifted BA Iteration converges to fixed point $x^*_{\alpha} = (BA + \alpha I)^{-1}Bb$.

A Quiet Moment Before the Next Topic

Instead of fixing an algorithm designed for solving another problem, just solve the unmatched normal equations in one of the forms

$$BAx = Bb$$
 or $ABy = b$, $x = By$

The left- or right-preconditioned GMRES method for (A, b) immediately presents itself as a good choice with B as the preconditioner.

<u>BA-GMES</u> solves BAx = Bb with B as a left preconditioner.

<u>AB-GMES</u> solves A By = b, x = B y with B as a right preconditioner.

Advantage: no need for relaxation parameter or shift parameter.

Convergence Analysis for Preconditioned GMRES

Hayami, Yin, Ito (2010)

<u>AB-GMRES</u>: $\min_{x} ||Ax - b||_2 = \min_{z} ||b - ABz||_2$ holds for all *b* if and only if range(*AB*) = range(*A*).

<u>BA-GMRES</u>: The problems $\min_{x} ||Ax - b||_{2}$ and $\min_{x} ||BAx - Bb||_{2}$ are equivalent for all *b* if and only if $\operatorname{range}(B^{T}BA) = \operatorname{range}(A)$.

These results tells us that, under the stated assumptions, both methods converge to a solution to the least squares problem

$$\min_{x} \|Ax - b\|_2 \; .$$

Unfortunately, the conditions are difficult (impossible?) to check in a given X-ray CT problem.

Reconstr. Error, Big System $252\,000 \times 176\,400$ Noisy Data

Image has 420 \times 420 pixels, 600 projection angles, 420 detector pixels.

• Semi-convergence is evident for both methods (next slide \hookrightarrow).

- Same minimum reconstruction error $||x^k \bar{x}||_2 / ||\bar{x}||_2 \approx 0.10$ for both.
- Slightly fewer iterations for AB-GMRES in this example.

BA-GMRES: SVD Analysis, Small System $23\,040 \times 16\,384$

Right-hand side: $\bar{b} = A\bar{x}$ $\bar{x} =$ ground truth no noise.

- Left plot is typical for X-ray CT problems; no rank deficiency.
- As k increases we capture more SVD components in x^k .
- At k = 30 we already capture the first 11000 SVD components.
- ۰

BA-GMRES: SVD Analysis - Now With Noisy Data

Right-hand side: $b = A\bar{x} + e$ $\bar{x} =$ ground truth e = noise.

- Left plot is typical for X-ray CT problems; no rank deficiency.
- As k increases we capture more SVD components in x^k .
- At k = 30 we already capture the first 11000 SVD components.
- Eventually we include noisy SVD components = semi-convergence.
- We obtain the best reconstruction after $k \approx 50$ iterations.

Discussion (Technical Details \rightarrow Forthcoming Paper)

Assumptions

- Ax = b comes from discretization of an inverse problem.
- The noise-free solution is dominated by the principal SVD components \rightarrow we have already seen this.

Hence it is important to use an iterative method that initially captures the principal right singular vectors v_1, v_2, \ldots of A.

Semi-convergence: at later iterations the noise dominates (also saw this).

BA-GMRES

- If $B = A^T$ then it is natural to use CLGS whose semi-convergence has been established in many previous works.
- 3 If $B \approx A^T$ then (hopefully) the left and right singular vectors of BA resemble those of A^TA we cannot prove this.
- Then BA-GMRES exhibits semi-convergence, cf. Gazzola & Novati.

Computational Insight

Compare the subspaces defined from the principal singular vectors:

$$\begin{aligned} \mathcal{V}_{A}^{(k)} &= \mathsf{range}(V_{A}(:,1:k)) & A^{\mathsf{T}}A &= V_{A}\,\Sigma^{2}\,V_{A}^{\mathsf{T}} \\ \mathcal{V}_{BA}^{(k)} &= \mathsf{range}(V_{BA}(:,1:k)) & BA &= U_{BA}\,\Sigma_{BA}\,V_{BA}^{\mathsf{T}} \end{aligned}$$

Distance between the two subspaces:

$$\mathsf{dist}(\mathcal{V}_{A}^{(k)},\mathcal{W}_{BA}^{(k)}) \equiv \left\| V_{A}(:,1:k) V_{A}(:,1:k)^{\mathsf{T}} - V_{BA}(:,1:k) V_{BA}(:,1:k)^{\mathsf{T}} \right\|_{2} \,.$$

Conclusion: the two subspaces remain close as k increaes.

Hence, BA-GMRES captures the (approximate) SVD components in the desired order and exhibits semi-convergence.

Conclusion

Facts

- Unmatched projector pairs are here to stay because computational efficiency is very important for large-scale problems.
- Some CT scientists claim that unmatched pairs give better results.

Need efficient iterative reconstruction methods for unmatched pairs

- Use a standard method that ignores the mismatch \rightarrow hope for the best.
- Modify a standard method, e.g., as in the Shifted BA Iteration
 → but this requires an estimate of the leftmost eigenvalue.
- Use a method that solves the unmatched normal equations \rightarrow AB-GMRES and BA-GMRES are the choices here.

Next step: convince the CT community to use the latter methods.