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Overview of Talk 

• Tomography → A x = b 
• Algebraic iterative methods 
• Semi-convergence 
• Analysis and results 

Why consider such a 
simple method? 
• Suited for very-large- 

scale problems. 
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Tomography = Our Main Application Area 

Image reconstruction 
from projections 

Medical scanning 

Mapping of metal grains 

100 µm 
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Setting Up the Algebraic Model 

Damping of i-th X-ray through domain: 

bi =
R
rayi

Â(s) d`; Â(s) = attenuation coef.

Discretization leads to a large, 
sparse, ill-conditioned system: 

A x = b

Geometry 

Image 

Projections Noise 

¹b = A ¹x

b = ¹b + e
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Some Large-Scale Reconstruction Algorithms 

Bayesian Methods 
My knowledge here is very limited … 
 

Transform-Based Methods 
The forward problem is formulated as a certain transform 

→ find a stable way to compute the inverse transform. 
Examples: the inverse Radon transform for tomography 

→ filtered back-projection, FDK. 
 

Algebraic Iterative Methods 
The forward problem is formulated as a discretized problem 

→ solve A x = b iteratively using prior information. 
Examples: Cimmino, Kaczmarz, CGLS. 
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Classical Algebraic Iterative Methods 

SIRT – Simultaneous Iterative Reconstruction Techniques 
 Landweber, Cimmino, CAV, DROP, SART, ... 
 These methods use all the rows of A simultaneously in one 

iteration (i.e., they are based on matrix multiplications): 
 
 
 
 

 
ART – Algebraic Reconstruction Techniques 
 Kaczmarz’s method + variants. 
 Sequential row-action methods that update the solution using 

one row of A at a time: 
 

x Ã P
µ

x + !
bi ¡ aTi x

kaik22
ai

¶
aTi = ith row of A

x Ã P
¡
x + ! ATM(b¡A x)

¢

P = projection on a convex set (e.g., x ¸ 0)
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Semi-Convergence 

Notation: b = A ¹x + e, ¹x = exact solution, e = noise.

Initial iterations: the error k¹x¡ xkk2 decreases.

Later: the error increases as xk ! (weighted) least squares
solution.

A few references: 
 F. Natterer, The Mathematics of 

Computerized Tomography (1986) 
 A. van der Sluis & H. van der Vorst, 

SIRT- and CG-type methods for the 
iterative solution of sparse linear 
least-squares problems (1990) 

 M. Bertero & P. Boccacci, Inverse 
Problems in Imaging (1998) 

 M. Kilmer & G. W. Stewart, Iterative 
Regularization And Minres (1999) 

 H. W. Engl, M. Hanke & A. Neubauer, 
Regularization of Inverse Problems 
(2000) 

k ¹x
¡

x
k
k 2
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Illustration of Semi-Convergence 

¹x = exact solution
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Semi-Convergence of SIRT and ART 

• SIRT’s semi-conver-
gence is ”easy” to 
show using SVD. 
 

• ART also has semi-
convergence; not 
rigorously proved. 
 

• ART converges much 
faster than SIRT. 

Example 
parallel-beam with 
200×200 phantom 
and 60 projections 
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Analysis of Semi-Convergence for ART 

Let ¹x be the solution to the noise-free problem, and let ¹xk

denote the iterates when applying ART to ¹b. Then

kxk ¡ ¹xk2 · kxk ¡ ¹xkk2 + k¹xk ¡ ¹xk2 :

Noise error Iteration error 

The convergence theory for ART is well established and en-
sures that the iteration error ¹xk ¡ ¹x goes to zero.

Our concern here is the noise error eN
k = xk ¡ ¹xk. We wish to

establish that it increases, and how fast.
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A Word on the Iteration Error 

With random selection of the rows, the expected behavior is:

µ
1¡ 2k

cond(A)2

¶
k¹x0 ¡ ¹xk22 ·

E
¡
k¹xk ¡ ¹xk22

¢
·
µ

1¡ 1

cond(A)2

¶k
k¹x0 ¡ ¹xk22:

Note: AAT = diagonal matrix ) convergence in one sweep!

Strohmer & Vershynin (2009): Known estimates of convergence rates 
are based on quantities of A that are hard to compute and difficult to 
compare with convergence estimates of other iterative methods. 
What numerical analysts would like to have is estimates of the conver-
gence rate with respect to standard quantities such as ||A|| and ||A-1||. 
The difficulty: the rate of convergence for ART depends on the ordering 
of the equations, while ||A|| and ||A-1|| are independent of the ordering. 
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Sidetrack: Noise Error for SIRT 

The unprojected case:
xk is a ¯ltered SVD solution:

With projection an SVD analysis is not possible; we obtain:

kxk ¡ ¹xkk2 ·
¾1

¾n

(1¡ !¾2
n)k

¾n
kM1=2±bk2

and for ! ¾2
n ¿ 1 we have:

kxk ¡ ¹xkk2 ¼ ! k ¾1kM1=2±bk2:

xk =
Pn

i=1 '
[k]
i

uTi M
1=2b

¾i
vi

'
[k]
i = 1¡

¡
1¡ ! ¾2

i

¢k
:

Filter factors '
[k]
i = 1¡

¡
1¡ ! ¾2

i

¢k

Elfving, H, 
Nikazad, 2012 
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Noise Error for ART – No Projection 

We also introduce

e = b¡ ¹b = noise in data; Q = I ¡ !ATM A :

Recall: ART is equivalent to applying SOR to A AT y = b, x = AT y.
We introduce the splitting:

AAT = L + D + LT ; M = (D + !L)¡1;

where L is strictly lower triangular and D = diag(kaik22). Then:

xk+1 = xk + !ATM (b¡A xk) :

Then simple manipulations show that the noise error is given by

eN
k = xk ¡ ¹xk = Q eN

k¡1 + !ATM e = !
k¡1X

j=1

QjATM e :
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Noise Error Analysis - I 

Let P = projection matrix on range(AT ) and u = ATMe; then:

Qku = QkPu = (I ¡ !B)(I ¡ !B) ¢ ¢ ¢ (I ¡ !B)Pu

= (I ¡ !B)P (I ¡ !B)P ¢ ¢ ¢ (I ¡ !B)Pu = (QP )ku:

Hence

eN
k = !

k¡1X

j=0

QjATMe = !

k¡1X

j=0

(QP )jATMe

and, with q = kQPk2 and ± = kATM ek2,

keN
k k2 · ! ±

°°°
Pk¡1

j=0 (QP )j
°°°

2
· ! ±

k¡1X

j=0

qj = ! ±
1¡ qk

1¡ q
:
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Noise Error Analysis - II 
Lemma

q2 = 1¡¹!¾2
r ; ¹! = !(2¡!); ¾r = smallest nonzero s.v. of D1=2MA:

Taylor

q =
p

1¡ ¹!¾2
r = 1¡ 1

2 ¹!¾2
r + O(¾4

r)

1¡ qk

1¡ q
=

1¡ (1¡ 1
2 ¹!¾2

r + O(¾4
r))

k

1
2 ¹!¾2

r + O(¾4
r))

=
1¡ (1¡ k 1

2 ¹!¾2
r + O(¾4

r))
1
2 ¹!¾2

r + O(¾4
r))

= k + O(¾2
r):

These results lead to the bound

keN
k k2 · !±

1¡ qk

1¡ q
= ! ± k + O(¾2

r):
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ªk for ! = 1

¾r
¾r
¾r
¾r

k

Noise Error Analysis – A Tighter Bound 
Further analysis (see the paper) shows that the noise error in
ART is bounded above as:

keN
k k2 ·

±

¾r
ªk +O(¾2

r); ªk =
1¡ (1¡ !¾2

r)
k

¾r
:

As long as !¾2
r < 1 we have

ªk ·
p

!
p

k

and thus

keN
k k2 ·

p
!±

¾r

p
k +O(¾2

r):

This also holds for projected ART
provided that A and P satisfy

y 2 R(AT ) ) P(y) 2 R(AT ).
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Numerical Results (‘paralleltomo’ from AIR Tools) 

Test problem: 

• 200×200 phantom, 
• 60 projections at 
• 3°,6°,9°,…,180°, 
 m = 15,232, 
 n = 40,000. 

We estimate
p

!±=¾r ¼ 107:

Hence our bound is a
wild over-estimate but
it correctly tracks the
noise error.

The point of semi-convergence arises when noise error ≈ iteration error. 

1% noise 

5% noise 

1% noise 

5% noise 
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More Insight: SVD Analysis 

We consider two speci¯c SIRT and ART algorithms.

Cimmino is an unprojected SIRT method:

x Ã x + ¸ ATMC(b¡A x); MC = diag(kaik¡2
2 ) :

Symmetric ART is an unprojected ART method

x Ã x + !
bi ¡ aTi x

kaik22
ai

with the speci¯c row ordering i = 1; 2; 3; : : : ; n; n¡1; n¡2; :::; 1; 2; 3; : : :
which can be expressen in \SIRT form" with

MS = (2¡ !) (D + !LT )¡1D (D + !L)¡1 :

We can perform an SVD analysis of M1=2A for both methods.
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SVD Analysis – How To 

We need this SVD:
M1=2A = U § V T :

Then

xk =

nX

i=1

Á
(k)
i

uTi v

¾i
vi ;

with the ¯lter factors

Á
(k)
i = 1¡ (1¡ !¾2

i )
k; i = 1; 2; : : : ; n :

The iterates correspond to \spectral ¯ltering."
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Singular Values 

The singular values of A and those of M
1=2
C A and M

1=2
S A associated

with Cimmino and Symmetric ART (¸ = 1):

Resembles the 
singular values 
of A. 

Large cluster of 
singular values 
equal to one! 
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Singular Vectors 

Some singular vectors of A, M
1=2
C A and M

1=2
S A, shown as 2D images:

Cimmino gives ”smooth” solutions, similar to Tikhonov and Truncated SVD. 
Symmetric ART can give solutions with fine-grained structure. 

Tikhonov, 
TSVD, etc. 

Cimmino 

Sym. ART 
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Conclusions 

 Semi-convergence is well established for SIRT and CGLS. 
 We provide a first step toward ditto for ART: 

 Analysis of the convergence of the noise error – we give 
an upper bound for the noise error (lower bound = ???). 

 Insight into structure of the singular values and vectors. 
 More details + block methods: see our paper. 

 Next steps: more insight, choice of relaxation parameter ω. 
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