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Overview of Talk

Sharp image Reconstruction

Blurred image

Y 4

Forward problem moldo19 s219vnl

e Inverse problems and reconstruction algorithms
e Iterative SIRT methods and their semi-convergence
e Strategies for the relaxation parameter (step size)

e A few results
e If time permits: AIR Tools — a new MATLAB® package
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Inverse Problems

Goal: use measured data to compute “hidden” information.

>l

Blurring process

Sharp image

Our model: Ax = b «—— Data / blurred image
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Tomography = Our Main Application Area

Medical scanning

Image reconstruction

from projections

L NI N
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The Origin of Tomography

Johan Radon, Uber die Bestimmung von Funktionen
durch ihre Integralwerte Langs gewisser Mannings-
faltigkeiten, Berichte Sachsische Akadamie der
Wissenschaften, Leipzig, Math.-Phys. Kl., 69, pp.
262-277, 1917.

Main result:
An object can be perfectly reconstructed from a full set of projections.

NOBELFORSAMLINGEN KAROLINSKA INSTITUTET
THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE
11 October 1979

The Nobel Assembly of Karolinska Institutet has decided today to
award the Nobel Prize in Physiology or Medicine for 1979 jointly to

Allan M Cormack and Godfrey Newbold Hounsfield

for the "development of computer assisted tomography".
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Setting Up the Algebraic Model

Damping of i-th X-ray through domain:

b; = frayi x(s)dl, x(s) = attenuation coef.

f Discretization leads to a large,
X, =X, | X=X, X, =X[|x.=X =X - A
R I / L sparse, ill-conditioned system:
){2=X21 x?':x?E )%XEB x‘l?=x24 X22=)55
- 3k
X3= X5, x8=ny13=X33 X1 = X3y X3 = X5 4 T
X=Xy [Xof Xy X1y = Kyg [X19 = Kyy |Xoq = Xy ‘ -
.. Noise
/ Projections
X5=Xy x1D=X52 X15=X53 XEEI=X54 2(25=X55
Image . .
/ b* = Ax
Geometry
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Analogy: the “Sudoku” Problem — {4

J b 3 1 0 1 O 1 3
— ) 7 1 10 0] x| |4
‘ ‘ 0O 0 1 1 T4 §
4 6
Infinitely many solutions (c € R):
1 2 -1 ] 1
— + C X
3 4 1 | -1
Prior: solution is integer and non-negative
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Some Large-Scale Inversion Algorithms

Transform-Based Methods

The forward problem is formulated as a certain transform —
formulate a stable way to compute the inverse transform.

Example: the inverse Radon transform for tomography.

Krylov Subspace Methods

Use the forward model to produce a Krylov subspace —
Inversion amounts to projecting on this “signal subspace”
& using prior information. Examples: CGLS, RRGMRES.

Algebraic Iterative Methods

Formulate the forward problem as a dlscral.aA problem —
Inversion amounts to solving A X = b using a@
properties of A & using prior information.

8 P. C. Hansen — Semi-Convergence for SIRT Algorithms Schlumberger, April 2012



Some Algebraic Iterative Methods =

ART — Algebraic Reconstruction Techniques
Kaczmarz’'s method + variants.

Sequential row-action methods that update the solution using
one row of A at a time.

SIRT — Simultaneous lterative Reconstruction Techniques
Landweber, Cimmino, CAV, DROP, SART, ...

These methods use all the rows of A simultaneously in one
Iiteration (i.e., they are based on matrixmultiplications).

Making the methods useful
Relaxation parameter (step length) choice.

Stopping rules.
ThiS work

Nonnegativity constraints.
Schlumberger, April 2012
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S | RT Meth OdS Diagonally Relaxed Orthogonal Projection

i

Simultaneous Algebraic Reconstruction Technique

The general form:

e = 2R L AYTATM (b — Az®), k=0,1,2,...
Some methods use the row norms ||a*||s.
Landwebey: /I' =1 and M = 1.
Cimmino: /I'=1and M =D = %diag (m)
ponent averaging method): T = I and
= diag (“ A ) with S = diag(nnz(column j)).
DROP: T = S~ ! and M = mD.

SART: T = diag(row sums)~! and M = diag(column sums)~*.
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Semi-Convergence of the SIRT Methods

During the first iterations, the iterates 2% capture the “important”

information in the noisy right-hand side b.
e In this phase, the iterates ¥ approach the exact solution.
At later stages, the iterates starts to capture undesired noise components.

e Now the iterates 2* diverge from the exact solution and they
approach the undesired solution A='b or ATb.

The iteration number k plays the role of the regularization parameter.

This behavior is called semi-convergence.

O F Natterer, The Mathematics of Computerized Tomography (1986)

O A. van der Sluis & H. van der Vorst, SIRT- and CG-type methods for the iterative solution
of sparse linear least-squares problems (1990)

O M. Bertero & P. Boccacci, Inverse Problems in Imaging (1998)
M. Kilmer & G. W. Stewart, Iterative Regularization And Minres (1999)
O H.W. Engl, M. Hanke & A. Neubauer, Regularization of Inverse Problems (2000)

(]
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lllustration of Semi-Convergence

WE
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Another Look at Semi-Convergence
Notation: b= Ax* +e, x* = exact solution, e = noise.

Initial iterations: the error ||z* — 2¥||o decreases.

Later: the error increases as x* — argmin_||Az — ||
Error histories for the DROP method with fixed % Error histories for Cimmino’s method with fixed A
5 w w ‘ 5 v I I '
0.1 0.5 1 15 2 1 5 10 30 50 85
4.5

1000 1500

k

1

The minimum error is indeperident of both A and the method.
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Analysis of Semi-Convergence

e

Let x be the solution to the noise-free problem:

7 = argmin, o l/2| A — B[},

b = pure data

and let z* denote the iterates when applying SIRT to b. Then

|z% — 2*||2 O

We need the SVD:

2" — 2% + 2" — 22 -

Noise error

Iteration error

MY2A=—UXVT

Assume rank(A) = n.

The unprojected case is “easy;” z¥ is a filtered SVD solution:

zh = Z?:l Pi

1
ui M2b [k]

o (%X ©i
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The Behavior of the Filter Factors

Filter factors cp[k] =1-(1- )\af)k

2

10°
107
—_—k=10 L =1
k=20 »=1
........... k=40 7.=1
k=80 »=1
B 5 —k=10 1 =02
st _——==x_
10 10 10

O.
i

The filter factors dampen the “inverted noise” uT (Mze)/o;.

Ao? < 1= gogk] ~ kAo? = k and X play the same role.
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Projected Alg. Noise Error (proof: see paper)

The noise error in projected SIRT is bounded above by

o1\
= 22 0 T W (h) ([ 5]o
OnAk—1
with .
\Ilk()\)E 1—(1—MXoy) |

On

When M\ = A for all £ we obtain

|z% — 25|y 0 2L TR | M26b),,
(0}

n

and as long as Ao2 < 1 we have
2% — Z%|| ~ Nk oy || MY/26b]|2,

showing that k and A play the same role for suppressing the noise.
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Projected Alg. Iteration Error (proof: see paper
The iteration error in projected SIRT is bounded above by
12 =zl 0 0, 2" (A1) [[2° — Z[l2,

with
(1 — )\(7721)’~C

On

Our bound have pessimistic factors, but track well the actual errors:

n = 0.01 n =0.05 n =0.08
_ 10 10’ 10’

NE: actual noise error
NE-b: our bound without . . .

the factor o1/0n, 10 10 10
IE: actual iteration error
IE-b: our bound without 10 —Né NE-b —IE - - :IE-b

0 — | | | |
the factor ||z° — 7|2 0 50 0 50 0 50
lteration number k lteration number k Iteration number k
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Choosing the SIRT Relaxation Parameter

el = gF L N\, TATM(b— Azh), k=0,1,2,...

Goal: fast semi-convergence to the minimum error.

Error histories for Cimmino’s method with fixed

Training. Using a noisy test problem, | \
find the fized A\ = X that gives fastest k

semi-convergence to the minimum error. L\ %‘“

0 500 1000 1500 2000
k

Line search (Dos Santos, Appleby & Smolarski, Dax).
Minimize the error ||z¥ — 2*||» in each iteration — must as-
sume that Ax = b is consistent. When T' = I we get:

Ao = (P T M | AT MR, rF=b— Azt
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Preparation for More Insight ...

The function (which appears in the analysis)

ge-1(y) = 2k — )y — (" 2+ . +y+1)

has a unique real root {; € (0,1). The roots satisfy

0 < (p < (pe1 <1 and lim =1
k— o0
k Ck k Ck k Gk k Ck k Ck
2 03333 | 7 08156 | 12 0.8936 | 17 0.9252 | 22 0.9424
3 05583 | 8 0.8392 | 13 0.9019 | 18 0.9294 | 23 0.9449
4 06719 | 9 0.8574 | 14 0.9090 | 19 0.9332 | 24 0.9472
5 0.7394 | 10 0.8719 | 15 0.9151 | 20 0.9366 | 25 0.9493
6 0.7840 | 11 0.8837 | 16 0.9205 | 21 0.9396 | 26 0.9513
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Parameter-Choice: Limit the Noise Error

Assume that 0 < \;_; 00 X\; in steps 1,...,k — 1; then
o1ho  1—¢f

ko =k 1/2
r" — ] M-="=6b
e = LR

! Strategy ¥;: choose A\g = A\; = v/2/0? and I
|

2 I

| )\k:—Q(l—Ck), k:2,3,... I

01 :
|

....................................... l

| Strategy Wy choose A\ = A1 = v2/0f and |

|

2 1-—

| Ay = G k=23,... |

| |
|

Both are diminishing: Ay — 0 such that >, A\ = oo.
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Our New Strategies: What we Achieve

As a result:

2

Un\/_l_

2% — Z1 |2 — G |MY26b||y  for strategy ¥y

2 k\2
k- oido (1 — () 1/2
€T T ] M"45b for strategv W

50 T I T T T T
uuuuu (1- CY(1-¢)
(1- G- ¢,
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Error Histories for Cimmino Example

Cimmino
0.85 w

—e—fixed A
— ‘P2 strategy

08l —e—|ine search ||

0.65r

All three strategies give fast semi-convergence:

e The fixed A requires training and thus a realistic test problem.
e The Dos Santos line search often gives a ‘zig-zag’ behavior.

e Our new strategy clearly controls the noise propagation.
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Numerical Results (SNARK model problem)

23

P-Cimmino, n = 0.01 P-Cimmino, n =0.05

100

0.6 0.6
S 5 |
¢ 0.4 S 0.4
g g !
E 0.2 E 0.2
g0 g0
0 0
0 50 100 0 50
lteration number [teration number
P-DROP, n =0.01 P-DROP, n =0.05
0.6 0.6
S S
o 0.4 T 0.4
) ) \
= =
8 0.2 s 0.2
g0 2 02 \gzome=m
0 0
0 50 100 0 50

lteration number [teration number
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Relative error

Relative error

P-Cimmino, n = 0.08

0.6

0.4 “

0

0.2 \é-,/

0

50 100
lteration number

P-DROP, 1 =0.08

0.6

0.4 i

0.2 \5/

0
0

50 100
[teration number
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Conclusions

O We have verified the observed simiconvergence of the standard
and the projected SIRT methods.

O We proposed two new strategies for choosing A,.

(]

Our strategies control the noise component of the error.

=
—
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O In case of noise-free data our strategies give convergence to the

problem mingec ||Az —b||3, .

O Our strategies also work for consistent and inconsistent systems,

for rank-deficient matrices, and SIRT methods with T = I.
O They are implemented in the MATLAB package AIR Tools.
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