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Prologue: X-Ray CT in 2D — and the Radon Transform

The Principle f = 2D object/image
=

Send X-rays through the ob- =
-

ject f at many angles, and
measure the attenuation g.

g = R f = Radon transform of f

i = sinogram
g
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Prologue: Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics
via integration of the function f along lines L

RIF](0, 5) = /L F(61,6) dl = g(6, ) = sinogram .

Back projection 3 = adjoint(R), an abstraction, smears g back along Ly ¢
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Ray/Pixel Driven Discretization Models

/ XPixel center
Computed Tomography

Algorithms, Insight, and Just
Enough Theory

Detector element Detector elements

Forward line model Back projection model Details here

Ray driven Pixel driven

Forward line model: start from detector element centers.

Back projection model: start from image pixel centers and
interpolate detector element values.
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Projectors and Matrices

Multiplication with A «~ action of forward projector R.

Multiplication with B «~ action of back projector B = adjoint(R).

When we can store A (it is sparse), then we can use B = A', and solve
the normal equations AT Ax = AT b associated with the least squares
problem, with x = vec(image) and b = vec(sinogram).

When A is too large to store, we must use matrix-free multiplications of
the forward projector and the back projector — cf. the discr. models.

Ray and pixel driven models — B # AT — unmatched projector pair.

An unmatched transpose also arises in image deblurring with anti-reflective
boundary conditions, due to different boundary conditions for the blurring

and its adjoint (Donatelli et al. 2006). It is handled by the same approach

as used in this work (Donatelly et al. 2015).
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Solve the Unmatched Normal Equations

Classical iterative methods (e.g., Cimmino, SIRT, CGLS) require B = AT,
Alternatively, we can solve the unmatched normal equations

UNE: oo |ABy=b, x=By

We will use GMRES (Saad, Schultz, 1986), a very efficient iterative
method for solving systems

with a square and nonsymmetric matrix M.

We skip the implementation details here, and just remind that in the kth
step, the iterate x¥ of GMRES solves the problem

min ||M x — d||2 subject to x € K(M, d) ,
with the Krylov subspace
Ki(M,d) = span{d, Md, M?d, ..., M 1d} .
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AB-GMRES and BA-GMRES

We can formulate specialized versions of GMRES for the UNEs:
BA-GMRES solves BAx = Bb.
AB-GMRES solves ABy = b, x = By.

Both methods use the same Krylov subspace (B A, Bb) for the solution,
but they use different objective functions.

Advantages:
@ both methods always converge in the absence of noise,
@ no need for relaxation parameter (as in Cimmino etc.),
@ fairly simple to implement — next page.

> K. Hayami, J.-F. Yin, T. Ito, GMRES methods for least squares problems,
SIAM J. Matrix Anal. Appl., 31 (2010), 2400-2430.

> H, K. Hayami, K. Morikuni, GMRES methods for tomographic reconstruction
with an unmatched back projector, J. Comp. Appl. Math., 413 (2022), 114352.
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The ABBA Algorithms

Algorithm AB-GMRES
Choose initial xq

o = b —AXO
wi = T1o/l[10ll2
fork=1,2,...
qx = ABwy
fori=1,2,...,k
hix = quw
qk = qr — hi g w;
endfor

My = 11qell2
Wi1 = Gi/Mkr1k

Y = argmin, || [Iroll2 €1 — Hey [l

Xk = Xo + Blwi, wo, ..., wi]yk

n=b—Axy

stopping rule goes here
endfor

Algorithm BA-GMRES
Choose initial xq

T'o =Bb—BAXO
wi = 1o/ ll10ll2
fork=1,2,...
qk =BAwy
fori=1,2,...,k
hix = quw
Ak = Qi — hi w;
endfor

h/<+14k = ”qk”2
Wit = Gk/Pk+1.k
Vi = argminy || [[roll2e1 — Hyy Ilo

Xk =Xo + [w1, wa, ..., wilyk

e = b—A Xk

stopping rule goes here
endfor

MATLAB and Python software available from PCH at
https://people.compute.dtu.dk/pcha/ABBA
and in TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox

https://github.com/CERN/TIGRE
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Obligatory Slide with Many Equations

Hayami, Yin, Ito (2010), H, Hayami, Morikuni (2022)

AB-GMRES solves min, |[ABy — b|j2, x =By

> miny [|[Ax — b|l2 = min, [|[ABy — b||2 holds for all b if an only
if range(A B) = range(A), e.g., if range(B) = range(AT).

> Monotonic decay of ||Ax* — bl|5.

> Equivalent to LSQR when B = AT,

BA-GMRES solves miny ||[BAx — Bb||2

> the problems miny |[Ax — bl[> and min, |[BAx — Bb||> are
equivalent for all b if and only if range(B " BA) = range(A),
e.g., if range(BT) = range(A).

> Monotonic decay of ||[BAxK — Bb||>.

> Equivalent to LSMR when B = AT,

Conditions are difficult/impossible to check in a given CT problem.
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Iterative Methods: Noisy Data Gives Semi-Convergence

The right-hand side b (the data) is a sum of noise-free data b = Ax from
the ground-truth image X plus a noise component e:

b=AX+e, X = ground truth, e = noise.
[Ix* = %12

05f ' ' ' ]

04}

03f

20
k=12

W e

o In the initial iterations x¥ approaches the unknown ground truth X.

o During later iterations x¥ converges to the undesired x" = A~1p,
@ Stop the iterations when the convergence behavior changes.
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ABBA Reconstruction Errors ||x* — x||2/[|X]|2

Image has 420 x 420 pixels, 600 projection angles, 420 detector pixels.
A and B generated with GPU-ASTRA software; A is 252 000 x 176 400.
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@ Semi-convergence is evident for both methods.

@ Same minimum reconstruction error ||x* — X||2/||X||2 = 0.042 for both.
@ Slightly fewer iterations for AB-GMRES in this example.
e Storage for Krylov bases - AB-GMRES: m x k — BA-GMRES: n x k.
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Error Propagation in BA-GMRES

Let X% denote the iterates for a noise-free right-hand side. We consider:
K-z = xF-xK 4+ xk-x
N—— N——

total error  noise error iteration error

BA-GMRES relative errors

—Total error
Iteration error
Noise error

102 ‘ : : : :
0 50 100 150 200 250 300

Both errors are monotonic in this example — but no guarantee for this.
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Semi-Convergence of BA-GMRES s SVD Insight

Recall: b= Ax + e, X = ground truth, |le||2/||b||2 = 0.001 Gaussian.

| - Wlal - et

500 1000 0

@ As k increases we capture more and more SVD components in x*.

@ At k = 11 we already capture the first 1000 SVD components.



Semi-Convergence of BA-GMRES s Polynomial Insight

BA-GMRES is a Krylov subspace method, with Krylov subspace
K«(BA, Bb) = span{Bb, BABb, ..., (BA)*~1Bb}

and with associated polynomial Py, which is constructed when applying
BA-GMRES to the noisy right-hand side b.

We can write the BA-GMRES iterates as
xK = Pr(BA) Bb = P(BA) Bb + Pr(BA) Be

where the latter term is the noise error.

How to determine the roots of Py is described in
S. Goossens & D. Roose, Ritz and harmonic Ritz values and the
convergence of FOM and GMRES, NLAA, 6 (1999), 281-293.

Sensitive to rounding errors — don’t know a stable approach (yet).
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Semi-Convergence of BA-GMRES % Subspace Insight

In our numerical example, ||B — AT ||g/|| B¢ ~ 0.15.

So how come we can still compute good reconstructions?

» Compare the Krylov subspace with the SVD subspace.

We are working on it ...
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PCH and Keiichi Morikuni in snowy Tokyo
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Stopping Rules

We must terminate the iterations at the point of semi-convergence.

e Discrepancy principle (DP): terminates the iterations as soon as the
residual norm is smaller than the noise level:

kpp = the smallest k for which ||b — Ax¥|2 < 7]e|2

where 7 > 1 = safety factor when we have a rough estimate of ||e||».

o NCP criterion: uses the Normalized Cumulative Periodogram to per-
form a spectral analysis of the residual vector b — Ax* and identifies
when the residual is close to being white noise — which indicates that
all available information has been extracted from the noisy data.

@ L-curve criterion: locates the “corner” of the L-shaped point set
(log[b—Axk|l2, log [[x*||2).
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Stopping Rules in Action

AB-GMRES stopping rules BA-GMRES stopping rules

0.3 0.3
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Both the discrepancy principle and the NCP criterion stop too early.

The L-curve criterion stops too late.
A topic for further research, related to all iterative regularization methods.
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7th International Conference on Image Formation in X-Ray
Computed Tomography, June 12-16, 2022, Baltimore, USA

Computational experiments with real data by:

Emil Y. Sidky, Department of Radiology, University of Chicago.

@ Cone-beam CT data from an Epica Pegaso veterinary CT scanner.

180 projections taken uniformly over one circular rotation. .

Physical “quality assurance” (QA) phantom —— d’, :
\w o
Detector: 1088 x 896 pixels of size (0.278mm)2. N =

3D reconstruction: 1024 x 1024 x 300 voxel grid.

Ray-driven projector A. Two choices of B:
@ By, = voxel-driven back projection, linear interpolation on detector.
@ Bpgp = BynF = filtered back-projection, where F = ramp filter.
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“Reconstruction Error”

Real data from a physical phantom = no ground truth Xx.

Instead we use a high-quality FBP reconstruction xggp.

||Xk — xrBP |2
| I | —BA-GMRESB: ﬁm
—BA-GMRES B = Bppp

0.040

0.035

0.030

0.025

0.020

0.015} 1

0.010 4

0.005 | R

0.000 . ! L . . . .
5 10 15 20 25 30 35 40

iterations

With both B-matrices we observe semi-convergence.
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Reconstruction, Mid-Slice Region of Interest

Top left: reference xpgp = FBP reconstructed image from 720 views.
Top right: FBP reconstructed images from 180 views.
Bottom left: BA-GMRES image, B = Byn, k = 29 iterations, 180 views.
Bottom right: BA-GMRES image, B = Bggp, k = 4 iterations, 180 views.
P. C. Hansen 20 /22



Epilogue: Restart of the ABBA Methods

Must compute and store the orthonormal basis for the Krylov subspace.
But orthonormalization is time consuming, and storage may be prohibitive.

Restart solves these problems; more iterations are necessary, but the
computing time does not deteriorate.

Convergence of BA-GMRES for Tan Beam Geometry
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~ —No restart
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M. Knudsen, ABBA lterative Methods for X-Ray Computed Tomography,
MSc Thesis, DTU, 2023 link

SIAM 1S24 GMRES Methods for Unmatched Proj. P. C. Hansen 21/22


https://people.compute.dtu.dk/pcha/ABBA/MasterThesis_s171246.pdf

Conclusion

Unmatched projector pairs*
o Need efficient iterative reconstruction methods for unmatched pairs.
e Modify a classical method, e.g., as in the Shifted BA lteration.
@ Use a method that solves the unmatched normal equations — ABBA.

* New matched pair: K. Bredies & R. Huber, Convergence analysis of pixel-driven
Radon and fanbeam transforms, SIAM J. Numer. Anal., 59 (2021), 1399-1432.

Convergence
@ Good understanding of convergence for noise-free data.

@ Emerging: understanding of semi-convergence for noisy data.

Future

@ More theory about semi-convergence for GMRES.
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Appendix: Semi-Convergence % Technical Insight

Semi-convergence of CGLS is well understood; but only few results have
been obtained for GMRES.

e Calvetti, Lewis, Reichel (2002): if the noise-free data lies in a
finite-dimensional Krylov subspace, and if GMRES is equipped with a
suitable stopping rule, then the GMRES-solution tends towards the
exact solution X as the noise goes to zero.

e Gazzola, Novati (2016): if the discrete Picard condition (DPC) is
satisfied and if the left singular vectors of the Hessenberg matrices of
two consecutive GMRES steps resemble each other — then the
Hessenberg systems in GMRES also satisfy the DPC.

The difficulty is that we cannot analyze GMRES by means of the SVD of A.

A complete understanding has not emerged yet. Here we rely on some
preliminary analysis and insight from numerical experiments.
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Appendix: Comparison with CGLS/LSQR and LSMR

If B= AT then AB-GMRES = CGLS/LSQR and BA-GMRES = LSMR.

AB-GMRES and CGLS relative errors BA-GMRES and LSMR relative errors

[~-=-CGLSILSaR| | —-=-LSMR
0'25, ——AB-GMRES | | 025 | ——BA-GMRES

Recall: for large-scale problems we do not have a choice; we must use B.

The good news is that the reconstruction error does not deteriorate,
compared with using AT (in this example, the error is slightly smaller).
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