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Prologue: X-Ray CT in 2D � and the Radon Transform

The Principle

Send X-rays through the ob-
ject f at many angles, and
measure the attenuation g .

f = 2D object/image

g = R f = Radon transform of f

= sinogram
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Prologue: Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics
via integration of the function f along lines Lθ,s

R[f ](θ, s) =

∫
Lθ,s

f (ξ1, ξ2) dℓ = g(θ, s) = sinogram .

Back projection B = adjoint(R), an abstraction, smears g back along Lθ,s

B[g ](ξ1, ξ2) =
∫

2π

0

g(θ, ξ1 cos θ + ξ2 sin θ) dθ .
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Ray/Pixel Driven Discretization Models

Forward line model Back projection model Details here

Ray driven Pixel driven

Forward line model: start from detector element centers.

Back projection model: start from image pixel centers and
interpolate detector element values.
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Projectors and Matrices

Multiplication with A ↭ action of forward projector R.

Multiplication with B ↭ action of back projector B = adjoint(R).

When we can store A (it is sparse), then we can use B = AT , and solve
the normal equations ATAx = ATb associated with the least squares
problem, with x = vec(image) and b = vec(sinogram).

When A is too large to store, we must use matrix-free multiplications of
the forward projector and the back projector � cf. the discr. models.

Ray and pixel driven models → B ̸= AT → unmatched projector pair.

An unmatched transpose also arises in image deblurring with anti-re�ective
boundary conditions, due to di�erent boundary conditions for the blurring
and its adjoint (Donatelli et al. 2006). It is handled by the same approach
as used in this work (Donatelly et al. 2015).
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Solve the Unmatched Normal Equations

Classical iterative methods (e.g., Cimmino, SIRT, CGLS) require B = AT .
Alternatively, we can solve the unmatched normal equations

UNE: BAx = Bb or AB y = b , x = B y

We will use GMRES (Saad, Schultz, 1986), a very e�cient iterative
method for solving systems

M x = d with a square and nonsymmetric matrix M.

We skip the implementation details here, and just remind that in the kth
step, the iterate xk of GMRES solves the problem

min
x

∥M x − d∥2 subject to x ∈ Kk(M, d) ,

with the Krylov subspace

Kk(M, d) = span{d , Md , M2d , . . . , Mk−1d} .
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AB�GMRES and BA�GMRES

We can formulate specialized versions of GMRES for the UNEs:

BA�GMRES solves BAx = Bb.

AB-GMRES solves AB y = b, x = B y .

Both methods use the same Krylov subspace Kk(BA,Bb) for the solution,
but they use di�erent objective functions.

Advantages:

both methods always converge in the absence of noise,

no need for relaxation parameter (as in Cimmino etc.),

fairly simple to implement → next page.

▷ K. Hayami, J.-F. Yin, T. Ito, GMRES methods for least squares problems,
SIAM J. Matrix Anal. Appl., 31 (2010), 2400�2430.

▷ H, K. Hayami, K. Morikuni, GMRES methods for tomographic reconstruction

with an unmatched back projector, J. Comp. Appl. Math., 413 (2022), 114352.
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The ABBA Algorithms

MATLAB and Python software available from PCH at
https://people.compute.dtu.dk/pcha/ABBA

and in TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox
https://github.com/CERN/TIGRE
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Obligatory Slide with Many Equations

Hayami, Yin, Ito (2010), H, Hayami, Morikuni (2022)

AB�GMRES solves miny ∥AB y − b∥2, x = B y

▷ minx ∥Ax − b∥2 = miny ∥AB y − b∥2 holds for all b if an only
if range(AB) = range(A), e.g., if range(B) = range(AT ).

▷ Monotonic decay of ∥Axk − b∥2.
▷ Equivalent to LSQR when B = AT .

BA�GMRES solves minx ∥BAx − Bb∥2
▷ the problems minx ∥Ax − b∥2 and minx ∥BAx − Bb∥2 are

equivalent for all b if and only if range(BTBA) = range(A),
e.g., if range(BT ) = range(A).

▷ Monotonic decay of ∥BAxk − Bb∥2.
▷ Equivalent to LSMR when B = AT .

Conditions are di�cult/impossible to check in a given CT problem.
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Iterative Methods: Noisy Data Gives Semi-Convergence

The right-hand side b (the data) is a sum of noise-free data b̄ = A x̄ from
the ground-truth image x̄ plus a noise component e:

b = A x̄ + e, x̄ = ground truth, e = noise.

∥xk − x̄∥2

In the initial iterations xk approaches the unknown ground truth x̄ .

During later iterations xk converges to the undesired xnaïve = A−1b.

Stop the iterations when the convergence behavior changes.
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ABBA Reconstruction Errors ∥xk − x̄∥2/∥x̄∥2
Image has 420× 420 pixels, 600 projection angles, 420 detector pixels.

A and B generated with GPU-ASTRA software; A is 252 000× 176 400.

Semi-convergence is evident for both methods.

Same minimum reconstruction error ∥xk − x̄∥2/∥x̄∥2 ≈ 0.042 for both.

Slightly fewer iterations for AB�GMRES in this example.

Storage for Krylov bases � AB�GMRES: m × k � BA�GMRES: n × k .
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Error Propagation in BA-GMRES

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

Both errors are monotonic in this example � but no guarantee for this.
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Semi-Convergence of BA�GMRES ⋆ SVD Insight

Recall: b = A x̄ + e, x̄ = ground truth, ∥e∥2/∥b̄∥2 = 0.001 Gaussian.

As k increases we capture more and more SVD components in xk .

At k = 11 we already capture the �rst 1000 SVD components.
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Semi-Convergence of BA�GMRES ⋆ Polynomial Insight

BA�GMRES is a Krylov subspace method, with Krylov subspace

Kk(BA,Bb) = span{Bb,BABb, . . . , (BA)k−1Bb}

and with associated polynomial Pk , which is constructed when applying
BA�GMRES to the noisy right-hand side b.

We can write the BA�GMRES iterates as

xk = Pk(BA)Bb = Pk(BA)Bb̄ + Pk(BA)Be ,

where the latter term is the noise error.

How to determine the roots of Pk is described in

S. Goossens & D. Roose, Ritz and harmonic Ritz values and the

convergence of FOM and GMRES, NLAA, 6 (1999), 281�293.

Sensitive to rounding errors � don't know a stable approach (yet).
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Semi-Convergence of BA�GMRES ⋆ Subspace Insight

In our numerical example, ∥B − AT∥F/∥B∥F ≈ 0.15.

So how come we can still compute good reconstructions?

▶ Compare the Krylov subspace with the SVD subspace.

We are working on it . . .

PCH and Keiichi Morikuni in snowy Tokyo
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Stopping Rules

We must terminate the iterations at the point of semi-convergence.

Discrepancy principle (DP): terminates the iterations as soon as the
residual norm is smaller than the noise level:

kDP = the smallest k for which ∥b − Axk∥2 ≤ τ ∥e∥2

where τ ≥ 1 = safety factor when we have a rough estimate of ∥e∥2.

NCP criterion: uses the Normalized Cumulative Periodogram to per-
form a spectral analysis of the residual vector b − Axk and identi�es
when the residual is close to being white noise � which indicates that
all available information has been extracted from the noisy data.

L-curve criterion: locates the �corner� of the L-shaped point set(
log ∥b − Axk∥2 , log ∥xk∥2

)
.
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Stopping Rules in Action

Both the discrepancy principle and the NCP criterion stop too early.

The L-curve criterion stops too late.

A topic for further research, related to all iterative regularization methods.
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7th International Conference on Image Formation in X-Ray
Computed Tomography, June 12�16, 2022, Baltimore, USA

Computational experiments with real data by:

Emil Y. Sidky, Department of Radiology, University of Chicago.

Cone-beam CT data from an Epica Pegaso veterinary CT scanner.

180 projections taken uniformly over one circular rotation.

Physical �quality assurance� (QA) phantom −−−−−−−−−−→
Detector: 1088× 896 pixels of size (0.278mm)2.

3D reconstruction: 1024× 1024× 300 voxel grid.

Ray-driven projector A. Two choices of B :

Bun = voxel-driven back projection, linear interpolation on detector.

BFBP = BunF = �ltered back-projection, where F = ramp �lter.
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�Reconstruction Error�

Real data from a physical phantom ⇒ no ground truth x̄ .

Instead we use a high-quality FBP reconstruction xFBP.

∥xk − xFBP∥2

With both B-matrices we observe semi-convergence.
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Reconstruction, Mid-Slice Region of Interest

Top left: reference xFBP = FBP reconstructed image from 720 views.
Top right: FBP reconstructed images from 180 views.
Bottom left: BA�GMRES image, B = Bun, k = 29 iterations, 180 views.
Bottom right: BA�GMRES image, B = BFBP, k = 4 iterations, 180 views.

SIAM IS24 GMRES Methods for Unmatched Proj. P. C. Hansen 20 / 22



Epilogue: Restart of the ABBA Methods

Must compute and store the orthonormal basis for the Krylov subspace.
But orthonormalization is time consuming, and storage may be prohibitive.

Restart solves these problems; more iterations are necessary, but the
computing time does not deteriorate.

M. Knudsen, ABBA Iterative Methods for X-Ray Computed Tomography,
MSc Thesis, DTU, 2023 link
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Conclusion

Unmatched projector pairs⋆

Need e�cient iterative reconstruction methods for unmatched pairs.

Modify a classical method, e.g., as in the Shifted BA Iteration.

Use a method that solves the unmatched normal equations → ABBA.
⋆New matched pair: K. Bredies & R. Huber, Convergence analysis of pixel-driven

Radon and fanbeam transforms, SIAM J. Numer. Anal., 59 (2021), 1399�1432.

Convergence

Good understanding of convergence for noise-free data.

Emerging: understanding of semi-convergence for noisy data.

Future

More theory about semi-convergence for GMRES.
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Appendix: Semi-Convergence ⋆ Technical Insight

Semi-convergence of CGLS is well understood; but only few results have
been obtained for GMRES.

Calvetti, Lewis, Reichel (2002): if the noise-free data lies in a
�nite-dimensional Krylov subspace, and if GMRES is equipped with a
suitable stopping rule, then the GMRES-solution tends towards the
exact solution x̄ as the noise goes to zero.

Gazzola, Novati (2016): if the discrete Picard condition (DPC) is
satis�ed and if the left singular vectors of the Hessenberg matrices of
two consecutive GMRES steps resemble each other � then the
Hessenberg systems in GMRES also satisfy the DPC.

The di�culty is that we cannot analyze GMRES by means of the SVD of A.

A complete understanding has not emerged yet. Here we rely on some
preliminary analysis and insight from numerical experiments.
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Appendix: Comparison with CGLS/LSQR and LSMR

If B = AT then AB�GMRES = CGLS/LSQR and BA�GMRES = LSMR.

Recall: for large-scale problems we do not have a choice; we must use B .

The good news is that the reconstruction error does not deteriorate,
compared with using AT (in this example, the error is slightly smaller).
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