AB- and BA-GMRES Methods for X-Ray CT with an Unmatched Back Projector

Per Christian Hansen

Technical University of Denmark

Joint work with Ken Hayami, NII, Tokyo Keiichi Morikuni, Univ. Tsukuba Emil Sidky, Univ. Chicago

Prologue: X-Ray CT in 2D - and the Radon Transform

The Principle

Send X-rays through the object f at many angles, and measure the attenuation g.

f = 2D object/image

 $g = \mathcal{R} f = \text{Radon transform of } f$ = sinogram

Prologue: Forward and Back Projections

Forward projection \mathcal{R} , the Radon transform models the scanner physics via integration of the function f along lines $L_{\theta,s}$

$$\mathcal{R}[f](heta,s) = \int_{L_{ heta,s}} f(\xi_1,\xi_2) \, d\ell = g(heta,s) = ext{sinogram} \; .$$

Back projection \mathcal{B} = adjoint(\mathcal{R}), an <u>abstraction</u>, smears g back along $L_{\theta,s}$

Ray/Pixel Driven Discretization Models

Multiplication with $A \leftrightarrow action$ of forward projector \mathcal{R} . Multiplication with $B \leftrightarrow action$ of back projector $\mathcal{B} = adjoint(\mathcal{R})$.

When we can store A (it is *sparse*), then we can use $B = A^T$, and solve the normal equations $A^T A x = A^T b$ associated with the least squares problem, with x = vec(image) and b = vec(sinogram).

But storage can be problematic. 3D example: 1000 projection angles, 1000×1000 detector elements, $1000 \times 1000 \times 1000$ voxels \rightarrow number of non-zeros in *A* is of the order $10^{12} \sim$ several Terabytes of memory.

When A is too large to store, we must use matrix-free multiplications of the forward projector and the back projector – cf. the discr. models.

Ray and pixel driven models $\rightarrow B \neq A^T \rightarrow$ unmatched projector pair.

Solve the Unmatched Normal Equations

Classical iterative methods (e.g., Cimmino, SIRT, CGLS) require $B = A^{T}$. Alternatively, we can solve the **unmatched normal equations**

UNE:
$$BAx = Bb$$
 or $ABy = b$, $x = By$

We will use **GMRES** (Saad, Schultz, 1986), a very efficient iterative method for solving systems

$$Mx = d$$
 with a square and nonsymmetric matrix M .

We skip the implementation details here, and just remind that in the kth step, the iterate x^k of GMRES solves the problem

$$\min_{x} \|Mx - d\|_2 \quad \text{subject to} \quad x \in \mathcal{K}_k(M, d) \;,$$

with the Krylov subspace

$$\mathcal{K}_k(M,d) = \operatorname{span} \{ d, \, Md, \, M^2d, \, \dots, \, M^{k-1}d \}$$
.

AB-GMRES and BA-GMRES

We can formulate *specialized versions* of GMRES for the UNEs:

 $\underline{\mathsf{BA-GMRES}} \text{ solves } \underline{\mathsf{BA}} x = \underline{\mathsf{B}} b.$

<u>AB-GMRES</u> solves A B y = b, x = B y.

Both methods use the same Krylov subspace $\mathcal{K}_k(BA, Bb)$ for the solution, but they use different objective functions.

Advantages:

- both methods always converge,
- no need for relaxation parameter,
- fairly simple to implement \rightarrow next page.

▷ K. Hayami, J.-F. Yin, T. Ito, *GMRES methods for least squares problems*, SIAM J. Matrix Anal. Appl., 31 (2010), 2400–2430.

▷ H, K. Hayami, K. Morikuni, *GMRES methods for tomographic reconstruction with an unmatched back projector*, J. Comp. Appl. Math., 413 (2022), 114352.

The ABBA Algorithms

Algorithm AB-GMRES

Choose initial x_0 $r_0 = b - A x_0$ $w_1 = r_0 / \|r_0\|_2$ for k = 1, 2, ... $a_{\nu} = AB w_{\nu}$ for i = 1, 2, ..., k $h_{i,k} = q_{i}^{\mathsf{T}} w_{i}$ $q_k = q_k - h_{i,k} w_i$ endfor $h_{k+1,k} = \|q_k\|_2$ $w_{k+1} = a_k / h_{k+1,k}$ $y_k = \arg \min_{v} || ||r_0||_2 e_1 - H_k v ||_2$ $x_k = x_0 + B[w_1, w_2, \dots, w_k] y_k$ $r_{\nu} = b - A x_{\nu}$ stopping rule goes here endfor

Algorithm BA-GMRES

```
Choose initial x_0
r_0 = Bb - BAx_0
w_1 = r_0 / \|r_0\|_2
for k = 1, 2, ...
     a_{\nu} = BA w_{\nu}
     for i = 1, 2, ..., k
           h_{i\,k} = q_{k}^{\mathsf{T}} w_{i}
           q_k = q_k - h_{i,k} w_i
     endfor
     h_{k+1 k} = \|q_k\|_2
      w_{k+1} = q_k / h_{k+1,k}
     y_k = \arg \min_{y} || ||r_0||_2 e_1 - H_k y ||_2
     x_k = x_0 + [w_1, w_2, \dots, w_k] y_k
     r_{\nu} = b - A x_{\nu}
     stopping rule goes here
endfor
```

MATLAB and Python software available from PCH at https://people.compute.dtu.dk/pcha/ABBA and in TIGRE: Tomographic Iterative GPU-based Reconstruction Toolbox https://github.com/CERN/TIGRE

Big Data Inverse Problems 2024

AB- and BA-GMRES Methods

Obligatory Slide with Many Equations

Hayami, Yin, Ito (2010), H, Hayami, Morikuni (2022)

<u>AB-GMRES</u> solves $\min_{y} ||ABy - b||_2$, x = By

- $> \min_{x} ||Ax b||_{2} = \min_{y} ||ABy b||_{2} \text{ holds for all } b \text{ if an only}$ if range(AB) = range(A), e.g., if range(B) = range(A^T).
- \triangleright Monotonic decay of $||Ax^k b||_2$.

 \triangleright Equivalent to LSQR when $B = A^T$.

<u>BA-GMRES</u> solves $\min_{x} || BAx - Bb||_{2}$

- ▷ the problems $\min_{x} ||Ax b||_2$ and $\min_{x} ||BAx Bb||_2$ are equivalent for all *b* if and only if $\operatorname{range}(B^T BA) = \operatorname{range}(A)$, e.g., if $\operatorname{range}(B^T) = \operatorname{range}(A)$.
- ▷ Monotonic decay of $||BAx^k Bb||_2$.
- \triangleright Equivalent to LSMR when $B = A^T$.

Conditions are difficult/impossible to check in a given CT problem.

Big Data Inverse Problems 2024

Iterative Methods: Noisy Data Gives Semi-Convergence

The right-hand side b (the data) is a sum of noise-free data $\overline{b} = A\overline{x}$ from the ground-truth image \overline{x} plus a noise component e:

$$b = Ax + e$$
, $x =$ ground truth, $e =$ noise.

- In the initial iterations x^k approaches the unknown ground truth \bar{x} .
- During later iterations x^k converges to the undesired $x^{naive} = A^{-1}b$.
- Stop the iterations when the convergence behavior changes.

ABBA Reconstruction Errors $||x^k - \bar{x}||_2 / ||\bar{x}||_2$

Image has 420×420 pixels, 600 projection angles, 420 detector pixels. *A* and *B* generated with GPU-ASTRA software; *A* is $252\,000 \times 176\,400$.

- Semi-convergence is evident for both methods.
- Same minimum reconstruction error $||x^k \bar{x}||_2 / ||\bar{x}||_2 \approx 0.042$ for both.
- Slightly fewer iterations for AB-GMRES in this example.
- Storage for Krylov bases AB–GMRES: $m \times k$ BA–GMRES: $n \times k$.

Error Propagation in BA-GMRES

Let \bar{x}^k denote the iterates for a noise-free right-hand side. We consider:

Both errors are monotonic in this example – but no guarantee for this.

Semi-Convergence of BA−GMRES ★ SVD Insight

Recall: $b = A\bar{x} + e$, $\bar{x} =$ ground truth, $||e||_2/||\bar{b}||_2 = 0.001$ Gaussian.

• As k increases we capture more and more SVD components in x^k.

• At k = 11 we already capture the first 1000 SVD components.

Big Data Inverse Problems 2024

AB- and BA-GMRES Methods

Semi-Convergence of BA–GMRES ★ Subspaces

In our numerical example, $\|\boldsymbol{B} - \boldsymbol{A}^{\mathsf{T}}\|_{\mathsf{F}} / \|\boldsymbol{B}\|_{\mathsf{F}} \approx 0.15$.

So how come we can still compute good reconstructions?

► Compare the Krylov subspace with the SVD subspace.

We are working on it ...

We must terminate the iterations at the point of semi-convergence.

• **Discrepancy principle (DP):** terminates the iterations as soon as the residual norm is smaller than the noise level:

 k_{DP} = the smallest k for which $\|b - Ax^k\|_2 \le \tau \|e\|_2$

where $\tau \geq 1 =$ safety factor when we have a rough estimate of $\|e\|_2$.

- NCP criterion: uses the Normalized Cumulative Periodogram to perform a spectral analysis of the residual vector $b - Ax^k$ and identifies when the residual is close to being white noise – which indicates that all available information has been extracted from the noisy data.
- L-curve criterion: locates the "corner" of the L-shaped point set $(\log \|b Ax^k\|_2, \log \|x^k\|_2).$

Stopping Rules in Action

Both the discrepancy principle and the NCP criterion stop too early. The L-curve criterion stops too late.

A topic for further research, related to all iterative regularization methods.

Computational experiments with real data by:

Emil Y. Sidky, Department of Radiology, University of Chicago.

- Cone-beam CT data from an Epica Pegaso veterinary CT scanner.
- 180 projections taken uniformly over one circular rotation.
- Physical "quality assurance" (QA) phantom -----
- Detector: 1088×896 pixels of size $(0.278 \text{ mm})^2$.
- 3D reconstruction: $1024 \times 1024 \times 300$ voxel grid.

Ray-driven projector A. Two choices of B:

- $B_{un} = voxel-driven$ back projection, linear interpolation on detector.
- $B_{\text{FBP}} = B_{\text{un}}F$ = filtered back-projection, where F = ramp filter.

"Reconstruction Error"

Real data from a physical phantom \Rightarrow no ground truth \bar{x} . Instead we use a high-quality FBP reconstruction x_{FBP} .

With both *B*-matrices we observe semi-convergence.

Big Data Inverse Problems 2024

Reconstruction, Mid-Slice Region of Interest

Top left: reference $x_{FBP} = FBP$ reconstructed imagefrom 720 views.Top right: FBP reconstructed imagesfrom 180 views.Bottom left: BA-GMRES image, $B = B_{un}$, k = 29 iterations,180 views.Bottom right: BA-GMRES image, $B = B_{FBP}$, k = 4 iterations,180 views.

Big Data Inverse Problems 2024

AB- and BA-GMRES Methods

Epilogue: Restart of the ABBA Methods

Must compute and store the orthonormal basis for the Krylov subspace. But orthonormalization is time consuming, and storage may be prohibitive.

Restart solves these problems; more iterations are necessary, but the computing time does not deteriorate.

M. Knudsen, *ABBA Iterative Methods for X-Ray Computed Tomography*, MSc Thesis, DTU, 2023 <u>link</u>

Big Data Inverse Problems 2024

Unmatched projector pairs*

- Need efficient iterative reconstruction methods for unmatched pairs.
- Modify a classical method, e.g., as in the Shifted BA Iteration.
- Use a method that solves the unmatched normal equations ightarrow ABBA.

*New matched pair: K. Bredies & R. Huber, *Convergence analysis of pixel-driven Radon and fanbeam transforms*, SIAM J. Numer. Anal., 59 (2021), 1399–1432.

Convergence

- Good understanding of convergence for noise-free data.
- Emerging: understanding of semi-convergence for noisy data.

Future

• More theory about semi-convergence for GMRES.

Semi-convergence of CGLS is well understood; but only few results have been obtained for GMRES.

- Calvetti, Lewis, Reichel (2002): if the noise-free data lies in a finite-dimensional Krylov subspace, and if GMRES is equipped with a suitable stopping rule, then the GMRES-solution tends towards the exact solution \bar{x} as the noise goes to zero.
- Gazzola, Novati (2016): if the discrete Picard condition (DPC) is satisfied and if the left singular vectors of the Hessenberg matrices of two consecutive GMRES steps resemble each other – then the Hessenberg systems in GMRES also satisfy the DPC.

The difficulty is that we cannot analyze GMRES by means of the SVD of A.

A complete understanding has not emerged yet. Here we rely on some preliminary analysis and insight from numerical experiments.

Appendix: Comparison with CGLS/LSQR and LSMR

If $B = A^T$ then AB-GMRES = CGLS/LSQR and BA-GMRES = LSMR.

Recall: for large-scale problems we do not have a choice; we must use B. The good news is that the reconstruction error does not deteriorate, compared with using A^{T} (in this example, the error is slightly smaller).