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Now Consider a Nonlinear Statistical Model

Now assume the non-linear, Gaussian statistical model
y =A(x) +e

where
e y € R™ is the vector of observations;

e x € R™ is the vector of unknown parameters;

A :R"™ — R™ is nonlinear;

€ ~N(0,\7'1,,,), i.e., € is i.i.d. Gaussian with mean 0 and
variance AL



Toy example
Consider the following nonlinear, two-parameter pre-whitened
model.

yi = x1(1 — exp(—zat;)) + €, €~ N(0,6%), i=1,2,3,4,5,

with t; = 2i — 1, 0 = 0.0136, and y = [.076, .258, .369, .492, .559].
GOAL: estimate a probability distribution for x = (z1, z2).
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Toy example continued: the Bayesian posterior p(z1, z2|y)

p(z1ly) = [, p(z1, z2ly)dze  p(z2ly) = [,, p(z1, 22|y)dz:
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Compute Samples Using Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a framework for sampling
from a (potentially un-normalized) probability distribution.

Some Classical MCMC algorithms

e Gibbs sampling (talk 1: for sampling from p(x, A, J|y))

Metropolis-Hastings

Adaptive Metropolis (talk 1: for sampling from p(A,d|y))

Inverse Problems: high-dimensional posterior

Posterior is harder to explore with classical algorithms

Chains become more correlated, sampling becomes inefficient



Metropolis-Hastings

Definitions:

p(x|y) posterior (target) density

xF random variable of the Markov chain at step k
q(x*|x*) proposal density given x*
x* random variable from the proposal

A chain of samples {x", x!,---} is generated by:

1. Start at xY
2. Fork=1,2,--- K

2.1 sample x* ~ g(x*|x*~1)

p(x* y)g(xF 1 x") 1}
p(xF=1y)q(x*[x*=1)>

23 xk = x* with probability o
' T 1 x*!  with probability 1 — a

2.2 calculate a = min{



Metropolis-Hastings Demonstration:

http://chifeng.scripts.mit.edu/stuff/meme-demo/

» chifeng.scripts.mit.edu/stuff/mcmc-demo/


http://chifeng.scripts.mit.edu/stuff/mcmc-demo/

Randomize-then-Optimize (RTO): defines a proposal ¢

Assumption: RTO requires that the posterior to have least
squares form, i.e.,

p(xly) o exp (51260 - 517)



Randomize-then-Optimize (RTO): defines a proposal ¢

Assumption: RTO requires that the posterior to have least
squares form, i.e.,

1, - _
p(xly) o exp (51260 - 517)
Given that the likelihood function has the form
A 2
p(ylx) ocexp ( —Z[lA() =[],
for which priors p(x) will the posterior density function

p(x]y) o p(y|x)p(x).

have least squares form?



Test Case 1: Uniform prior

In small parameter cases, it is often true that
p(y|x) =0 for x¢ Q.
Then we can choose as a prior p(x) defined by
x ~ U(9),

where U denotes the multivariate uniform distribution.



Test Case 1: Uniform prior

In small parameter cases, it is often true that
p(y|x) =0 for x¢ Q.
Then we can choose as a prior p(x) defined by
x ~ U(),
where U denotes the multivariate uniform distribution.

Then p(x) = constant on €2, and we have

p(xly) o pylx)p(x)
x o (-5 1A6) - yI?).

* Thus can use RTO to sample from p(x|y).



Test Case 2: Gaussian prior

When a Gaussian prior is chosen,

1
p(0) x exp (5  — x0)TLx — x0) )
the posterior can also be written in least squares form:

p(xly) o plylx)p(x)
s exp (<5 1AG0 ¥ - 5x - x0) Lix - x0))



Test Case 2: Gaussian prior

When a Gaussian prior is chosen,

1
p(0) x exp (5  — x0)TLx — x0) )
the posterior can also be written in least squares form:

p(xly) o ply[x)p(x)
s exp (<5 1AG0 ¥ - 5x - x0) Lix - x0))
1 2
=] Lol

2] [
LY/2x L1/2X0

def LA _
S exp (514G - 5.

* Thus we can use RTO to sample from p(x|y).



Extension of optimization-based approach to nonlinear
problems: Randomized maximum likelihood

Recall that when A is linear, we can sample from p(x|y) via:

x=argmin [AW) ~ (¥ + I €~ N0 Lnia)

Comment: For nonlinear models, this is called randomized
mazximum likelihood.

Problem: It is an open question what the probability of x is.



Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping

x=F1(v), v~N(@Q'y.L).



Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping
x=F1(v), v~N(QTy 1,).
What are Q and F? First, define
XMAP = argmin IA(x) — ¥,
then first-order optimality yields

J(xmap)” (A(xmap) — ¥) = 0.



So Xpmap is a solution of the nonlinear equation

J(XMAP)TA(X> = J(XMAP)T}_/.



So Xpmap is a solution of the nonlinear equation
J(xpap) A (x) = J(xpmap) ' y.
QR-rewrite: this equation can be equivalently expressed
Q'A(x)=Q'y,

where J(xpap) = QR is the ‘thin” QR factorization of J(xpap).



So Xpmap is a solution of the nonlinear equation
J(xpap) A (x) = J(xpmap) ' y.
QR-rewrite: this equation can be equivalently expressed
Q'A(x)=Q'y,
where J(xpap) = QR is the ‘thin” QR factorization of J(xpap).
Nonlinear mapping: define F def QTA and

x = F1(QT(y+e), €~N(0,Lnin)
def gt (v), v~ N(QTvan)'



RTO: use optimization to compute x = F~1(v)

Compute a sample x from the RTO proposal ¢(x):
1. Randomize: compute v ~ N(QTy,1,,);

2. Optimize: solve

3. Reject x when v is not in the range of F.



RTO: use optimization to compute x = F~1(v)

Compute a sample x from the RTO proposal ¢(x):
1. Randomize: compute v ~ N(QTy,1,,);

2. Optimize: solve

3. Reject x when v is not in the range of F.

Comment: steps 1 & 2 can be equivalently expressed

x=argmin [Q(AW) ~ (7 + DI €~ N0, Tnin).



PDF for x = F 1 (v), v ~ N (Q7y,1,)

First, v ~ N(Q7y, 1,) implies py(v) o exp (—3[[v - Q7y|?).



PDF for x = F 1 (v), v ~ N (Q7y,1,)

First, v ~ N(Q7y, 1,) implies py(v) o exp (—3[[v - Q7y|?).

Next we need -LF(x) € R™" to be invertible. Then

det (CZ(F(X))

= Jaet (Q7300) o (L 1Q7 (A~ 9)1?)

q(x) o pv(F(x))



PDF for x = F 1 (v), v ~ N (Q7y,1,)

First, v ~ N(Q”y,1,,) implies py(v) o exp (—%Hv — QT}_/H2> .

Next we need -LF(x) € R™" to be invertible. Then

q(x) o |det (dXF(x))

= c(x)p(x]y),

where the columns of Q are orthonormal and C(Q) L C(Q).



Theorem (RTO probability density)

Let A : R" — R™" 5 € R™" and assume
e A is continuously differentiable;
o J(x) € RUMMX" G5 rank n for every x;
o QTJ(x) is invertible for all relevant x.

Then the random variable
x=F(v), v~N(@Q'y L),
has probability density function
q(x) o< c(x)p(x]y),
where

c(x) = |det(QT3(x))exp (5197 (5~ AGx)) ).

where the columns of Q are orthonormal and C(Q) L C(Q).



RTO Metropolis-Hastings

Definitions:

p(x|y) posterior (target) density

xF random variable of the Markov chain at step k
¢(x*)  RTO (independence) proposal density
x* random variable from the proposal

A chain of samples {x", x!,---} is generated by:

1. Start at xY
2. Fork=1,2,--- K

2.1 sample x* ~ ¢(x*) from the RTO proposal density
p(x*ly)a(x""1) 1}
p(xF~1y)q(x*)”
23 xk — {X* with probability o
' xF=1 with probability 1 — o

2.2 calculate a = min{



Metropolis-Hastings using RTO

k—1

Given x"~! and proposal x* ~ ¢(x), accept with probability

where recall that

= |det(QT I (x))| exp (;HQT(Y _ A(x))|2)_



Metropolis-Hastings using RTO, Cont.

T The RTO Metropolis-Hastings Algorithm

1. Choose x°

= xpap and number of samples V. Set k = 1.
2. Compute an RTO sample x* ~ ¢(x*).

3. Compute the acceptance probability

= min C(inl)
r= <1, o) )

4. With probability 7, set x¥ = x*, else set x* = x
5. If k < N, set k =k + 1 and return to Step 2.

k—1



Understanding RTO (thanks to Zheng Wang)

Consider the simple, scalar ‘inverse problem’:

forward model
~ =

\gi/:f(x)—i—\e/, x~N(0,1), e~ N(0,1)

observation noise

paly) x e (=3 (F(2) = )* ) exp (- 52°)

~——r 2 2
posterior
e 1P 2
A2l @) T v
W—/ v
A(x) y



Understanding RTO

Least-squares form:
p(zly) o

(3] [e] - []

2)

A(x) y

p(z|y) is the height of the path
A(l) = []J, j<a‘)]T 05

on the Gaussian s

Al

output
~




Understanding RTO
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Algorithm’s task: sample from the posterior



Understanding RTO

posterior posterior

output

0 5.4 0

Algorithm’s task: sample from the posterior

output



Understanding RTO

posterior posterior
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Understanding RTO
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Understanding RTO

posterior posterior
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Understanding RTO

posterior posterior
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Understanding RTO

posterior posterior
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Understanding RTO
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Understanding RTO
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Understanding RTO
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Randomize-then-optimize

Generate RTO samples {z¥}:

output

density

posterior




Randomize-then-optimize

Generate RTO samples {z*}:
1. Compute xpap.




Randomize-then-optimize

Generate RTO samples {z*}:

1. Compute xpap.
2. Compute Q =
J(@nap)/ (I (@marp)-

output

o




Randomize-then-optimize

Generate RTO samples {z*}:
1. Compute xpap.
2. Compute Q = )
J(@riap) /|19 (zriap) |l
3 Fork=1,2,--- K
3.1 Sample € ~ N (y,1,) ’




Randomize-then-optimize

Generate RTO samples {z*}:
1. Compute xpap.

2. Compute Q =
J(zyap)/ (I (zyap)|-

3. Fork=1,2,--- | K
3.1 Sample & ~ N (y,12)
3.2 Compute z* = arg min,

Q" (A(x) - €)||".




Randomize-then-optimize

Generate RTO samples {z*}:
1. Compute xpap.
2. Compute Q =
J(zyap)/ (I (zyap)|-
3 Fork=1,2,--- K

3.1 Sample & ~ N (y,12)
3.2 Compute z* = arg min,

|Q" (Ax) - &)
RTO proposal density:
q(z*) oc |QTI (")
= 2
exp (1 Q7 (A" -3)|)

output




Uniform prior test cases

Choose prior p(x) defined by
X~ U(Q)a

where U is a multivariate uniform distribution on 2. Then
p(x) = constant on €2, and we have

pxly) o exp (—5l1AG0 - yI?).

* Thus can use RTO to sample from p(x|y).



BOD, Good: A(z1,x2) = 21(1 — exp(—xat))
e t = 20 linearly spaced observations in 1 < x < 9;
oy = A(x1,72) + €, where € ~ N(0,0%I) with o = 0.01;
e [v1,29] = [1,0.1]T.
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BOD, Bad: A(x1,22) = z1(1 — exp(—ast))

e t = 20 linearly spaced observations in 1 < z < 5;
oy = A(x1,132) + €, where € ~ N(0, 0%I) with ¢ = 0.01;
o [x1,72] = [1,0.1]T.

DRAM
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MONOD: A (z1,x9) = x1t/(z9 + t)

t = [28,55,83,110,138,225,375]"
y = [0.053,0.060,0.112,0.105,0.099, 0.122,0.125]7.
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Autocorrelation plots for z1 for Good and Bad BOD
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Gaussian prior test case

When a Gaussian prior is chosen,

() x exp (5 6x — x0)"Lx - x0) ).

the posterior can be written in least squares form:

p(xy) o exp (<5 1AG) ¥ - 5x - x0) Lix - x0))

2
( ; 2)
= eXp|— 5

l A(x) ] B l y
L1/2x Ll/2X0

def 1, = _
S exp (51800 - 51%).

* Thus we can use RTO to sample from p(x|y).



Electrical Impedance Tomography Seppéanen, Solonen, Haario, Kaipio

V.- (xVp)=0, e
g0+zg;c%://(, ree, £=1,...,L
felraﬂdS Iy, £=1,....L
:Eg“f =0, 7T€IN\UL, e

o v =u(r) & ¢ = ¢(F): electrical conductivity & potential.
e 7 € (): spatial coordinate.

e ¢y: area under the fth electrode.

e z;: contact impedance between fth electrode and object.

o y, & I;: amplitudes of the electrode potential and current.
e 77: outward unit normal

e [: number of electrodes.



EIT, Forward/Inverse Problem (image by Siltanen)

=

b

Left: current I and electrode potential y; Right: conductivity x.
Forward Problem: Given the conductivity x, compute
y=1f(x)+e

Evaluating f(x) requires solving a complicated PDE.

Inverse Problem: Given y, construct the posterior density p(x|y).



RTO Metropolis-Hastings applied to EIT example
True Conductivity = Realization from Smoothness Prior
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RTO Metropolis-Hastings applied to EIT example
True Conductivity = Internal Structure #1
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ms om”!



RTO Metropolis-Hastings applied to EIT example
True Conductivity = Internal Structure #2
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Laplace (Total Variation and Besov) Priors

Finally, we consider the ¢; prior case:

p(x) oc exp (=6[|Dxl|1),

where D is an invertible matrix. Then the posterior then takes
the form

plxly) o exp (5 1A Ge) v~ S[Dx )

Note that total variation in one-dimension and the Besov
By 1-space priors in one- and higher-dimensions have this form.



Laplace (Total Variation and Besov) Priors

Finally, we consider the ¢; prior case:
p(x) o exp (=0 Dx|[1),

where D is an invertible matrix. Then the posterior then takes
the form

plxly) o exp (5 1A Ge) v~ S[Dx )

Note that total variation in one-dimension and the Besov
By 1-space priors in one- and higher-dimensions have this form.

* But p(x|y) does not have least squares form.



Prior Transformation for ¢; Priors

Main idea: Transform the problem to one that RTO can solve
e Define a map between a reference parameter u and the
physical parameter x.
e Choose the mapping so that the prior on u is Gaussian.

e Sample from the transformed posterior, in u, using RTO,
then transform the samples back.

S:u—x

%/\




Prior Transformation for ¢; Priors

Main idea: Transform the problem to one that RTO can solve
e Define a map between a reference parameter u and the
physical parameter x.
e Choose the mapping so that the prior on u is Gaussian.

e Sample from the transformed posterior, in u, using RTO,
then transform the samples back.

S:u—x

NN




The One-Dimensional Transformation

The prior transformation is analytic and is defined

v=Su) EF L (p(w),

where
o F

(

e ¢ is the CDF of a standard Gaussian.

) is the inverse-CDF of the L'-type prior p(x);



The One-Dimensional Transformation

The prior transformation is analytic and is defined

def —
r=5(u) = Fp(i«) (o(u)),
where
o F;(i) is the inverse-CDF of the L'-type prior p(x);
e ¢ is the CDF of a standard Gaussian.
Then the posterior density p(x|y) can be expressed in terms of 7:

p(S(ly) o exp (~5(F (S) —v)? - 5

1|[ £ (S)
- (5[ ]3]




Prior Transformation: 1D Laplace Prior

Transformation 6 =g(u)

p(z) o
exp (—Alz])

= 0

p(u) o<
exp (—%u o

05
05

LA

-4 0 4
u

For multiple independent z;, transformation is repeated



2D Laplace Prior

linear model linear model
Gaussian prior Li-type prior Transformed

prior

likelihood

posterior

Transformation moves complexity from prior to likelihood



Laplace Priors in Higher-Dimensions

1. Define a change of variables
Dx = S(u)

such that the transformed prior is a standard Gaussian, i.e.,

p(D5(w) o exp (3 ul3)



Laplace Priors in Higher-Dimensions

1. Define a change of variables
Dx = S(u)
such that the transformed prior is a standard Gaussian, i.e.,
p(D5(w) o exp (3 ul3)
2. Sample from the transformed posterior, with respect to u,

p(D7'S(u)ly) x p(y D~'S(u))p(D~'S(u));



Laplace Priors in Higher-Dimensions

1. Define a change of variables
Dx = S(u)
such that the transformed prior is a standard Gaussian, i.e.,
p(D5(w) o exp (3 ul3)
2. Sample from the transformed posterior, with respect to u,

p(D7'S(u)ly) x p(y D~'S(u))p(D~'S(u));

3. Transform the samples back via x = D~1S(u).



Test Case 3, L!-type priors: High-Dimensional Problems

The transformed posterior, with D an invertible matrix, takes

the form
p(D7Sly) x exp (57 (D78 (w) ~ 3P - o)

5 >
[ A(D’:S(u)) 1 ~ H

where

as defined above.



Test Case 3, L!-type priors: High-Dimensional Problems

The transformed posterior, with D an invertible matrix, takes

the form
p(D7Sly) x exp (57 (D78 (w) ~ 3P - o)

5 >
[ A(D’:S(u)) 1 ~ H

where

as defined above.

x p(D~1S(u)y) is in least squares form with respect to u so we
can apply RTO!



RTO Metropolis-Hastings to Sample from p(D~1S(u)|y)

T The RTO Metropolis-Hastings Algorithm

1. Choose u’ = uppap = arg ming p(D~1S(u)|y) and number
of samples N. Set k = 1.

2. Compute an RTO sample u* ~ g(u*).
3. Compute the acceptance probability

— min C(Uk_l)
T = (1, (o) )

4. With probability r, set u* = u*, else set u* = u
5. If k < N, set k =k + 1 and return to Step 2.

k—1



Deconvolution of a Square Pulse w/ TV Prior

True signal

0.5
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x € R y € R32

A
p(xly) o exp (3 |Ax - | - 5| Dx
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Measurements



Deconvolution of a Square Pulse w/ TV Prior

MCMC chain
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2D elliptic PDE inverse problem

—V - (exp(a(1))Vy(t)) = h(t), te€[0,1)%,
with boundary conditions

exp(a(8)) Vy(t) - il(t) = 0.
After discretization, this defines the model

y = A(x).
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2D PDE inverse problem: mean and STD
Use RTO-MH to sample from the transformed posterior:
_ A _
p(D7!S(w)ly) o exp (-5 IAD S (@) - yI5 - )

where D is a wavelet transform matrix, then transform the
samples back via x = D715(u).

Conditional Mean Standard Deviation

1 6 1 1
n
55
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45 06
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2D PDE inverse problem: Samples




Conclusions/ Takeaways

e The development of computationally efficient MCMC
methods for nonlinear inverse problems is challenging.

e RTO was presented as a proposal mechanism within
Metropolis-Hastings.

e RTO was described in some detail and then test on several
examples, including EIT and ¢; priors such as total
variation.



