Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

John Bardsley, University of Montana

Collaborators:

H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z. Wang

Technical University Denmark, December 2016

Outline

- Nonlinear Inverse Problems Setup
- Randomize-then-Optimize (RTO)
- Test Cases:
 - small # of parameters examples
 - electrical impedance tomography
 - ℓ_1 priors, i.e., TV and Besov priors

Now Consider a Nonlinear Statistical Model

Now assume the non-linear, Gaussian statistical model

$$\mathbf{y} = \mathbf{A}(\mathbf{x}) + \boldsymbol{\epsilon},$$

where

- $\mathbf{y} \in \mathbb{R}^m$ is the vector of observations;
- $\mathbf{x} \in \mathbb{R}^n$ is the vector of unknown parameters;
- $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$ is nonlinear;
- $\epsilon \sim \mathcal{N}(\mathbf{0}, \lambda^{-1}\mathbf{I}_m)$, i.e., ϵ is i.i.d. Gaussian with mean 0 and variance λ^{-1} .

Toy example

Consider the following nonlinear, two-parameter **pre-whitened** model.

$$y_i = x_1(1 - \exp(-x_2t_i)) + \epsilon_i$$
, $\epsilon_i \sim N(0, \sigma^2)$, $i = 1, 2, 3, 4, 5$, with $t_i = 2i - 1$, $\sigma = 0.0136$, and $\mathbf{y} = [.076, .258, .369, .492, .559]$. GOAL: estimate a probability distribution for $\mathbf{x} = (x_1, x_2)$.

Toy example continued: the Bayesian posterior $p(x_1, x_2|\mathbf{y})$

Compute Samples Using Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a framework for sampling from a (potentially un-normalized) probability distribution.

Some Classical MCMC algorithms

- Gibbs sampling (talk 1: for sampling from $p(\mathbf{x}, \lambda, \delta | \mathbf{y})$)
- Metropolis-Hastings
- Adaptive Metropolis (talk 1: for sampling from $p(\lambda, \delta | \mathbf{y})$)
- Inverse Problems: high-dimensional posterior
- Posterior is harder to explore with classical algorithms
- Chains become more correlated, sampling becomes inefficient

Metropolis-Hastings

Definitions:

```
\begin{array}{ll} p(\mathbf{x}|\mathbf{y}) & \text{posterior (target) density} \\ \mathbf{x}^k & \text{random variable of the Markov chain at step } k \\ q(\mathbf{x}^*|\mathbf{x}^k) & \text{proposal density given } \mathbf{x}^k \\ \mathbf{x}^* & \text{random variable from the proposal} \end{array}
```

A chain of samples $\{\mathbf{x}^0, \mathbf{x}^1, \cdots\}$ is generated by:

- 1. Start at \mathbf{x}^0
- 2. For $k = 1, 2, \dots K$
 - 2.1 sample $\mathbf{x}^* \sim q(\mathbf{x}^* | \mathbf{x}^{k-1})$
 - $\text{2.2 calculate } \alpha = \min \left\{ \frac{p(\mathbf{x}^*|\mathbf{y})q(\mathbf{x}^{k-1}|\mathbf{x}^*)}{p(\mathbf{x}^{k-1}|\mathbf{y})q(\mathbf{x}^*|\mathbf{x}^{k-1})}, 1 \right\}$
 - 2.3 $\mathbf{x}^k = \begin{cases} \mathbf{x}^* & \text{with probability } \alpha \\ \mathbf{x}^{k-1} & \text{with probability } 1 \alpha \end{cases}$

Metropolis-Hastings Demonstration:

http://chifeng.scripts.mit.edu/stuff/mcmc-demo/

chifeng.scripts.mit.edu/stuff/mcmc-demo/

Randomize-then-Optimize (RTO): defines a proposal q

Assumption: RTO requires that the posterior to have least squares form, i.e.,

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}\|^2\right).$$

Randomize-then-Optimize (RTO): defines a proposal q

Assumption: RTO requires that the posterior to have least squares form, i.e.,

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}\|^2\right).$$

Given that the likelihood function has the form

$$p(\mathbf{y}|\mathbf{x}) \propto \exp\left(-\frac{\lambda}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2\right),$$

for which priors $p(\mathbf{x})$ will the posterior density function

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x}).$$

have least squares form?

Test Case 1: Uniform prior

In small parameter cases, it is often true that

$$p(\mathbf{y}|\mathbf{x}) = 0$$
 for $\mathbf{x} \notin \Omega$.

Then we can choose as a prior $p(\mathbf{x})$ defined by

$$\mathbf{x} \sim U(\Omega),$$

where U denotes the multivariate uniform distribution.

Test Case 1: Uniform prior

In small parameter cases, it is often true that

$$p(\mathbf{y}|\mathbf{x}) = 0$$
 for $\mathbf{x} \notin \Omega$.

Then we can choose as a prior $p(\mathbf{x})$ defined by

$$\mathbf{x} \sim U(\Omega),$$

where U denotes the multivariate uniform distribution.

Then $p(\mathbf{x}) = \text{constant on } \Omega$, and we have

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

 $\propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2\right).$

* Thus can use RTO to sample from $p(\mathbf{x}|\mathbf{y})$.

Test Case 2: Gaussian prior

When a Gaussian prior is chosen,

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right),$$

the posterior can also be written in least squares form:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

$$\propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2 - \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right)$$

Test Case 2: Gaussian prior

When a Gaussian prior is chosen,

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right),$$

the posterior can also be written in least squares form:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

$$\propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2 - \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right)$$

$$= \exp\left(-\frac{1}{2}\|\begin{bmatrix}\mathbf{A}(\mathbf{x})\\\mathbf{L}^{1/2}\mathbf{x}\end{bmatrix} - \begin{bmatrix}\mathbf{y}\\\mathbf{L}^{1/2}\mathbf{x}_0\end{bmatrix}\|^2\right)$$

$$\stackrel{\text{def}}{=} \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}\|^2\right),$$

* Thus we can use RTO to sample from $p(\mathbf{x}|\mathbf{y})$.

Extension of optimization-based approach to nonlinear problems: Randomized maximum likelihood

Recall that when $\bar{\mathbf{A}}$ is linear, we can sample from $p(\mathbf{x}|\mathbf{y})$ via:

$$\mathbf{x} = \arg\min_{\boldsymbol{\psi}} \|\bar{\mathbf{A}}(\boldsymbol{\psi}) - (\bar{\mathbf{y}} + \boldsymbol{\epsilon})\|^2, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{m+n}).$$

Comment: For nonlinear models, this is called *randomized* maximum likelihood.

Problem: It is an open question what the probability of x is.

Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping

$$\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n).$$

Extension to nonlinear problems

As in the linear case, we create a nonlinear mapping

$$\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n).$$

What are **Q** and **F**? First, define

$$\mathbf{x}_{\text{MAP}} = \arg\min_{\mathbf{x}} \|\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}\|^2,$$

then first-order optimality yields

$$\mathbf{J}(\mathbf{x}_{\text{MAP}})^T(\bar{\mathbf{A}}(\mathbf{x}_{\text{MAP}}) - \bar{\mathbf{y}}) = \mathbf{0}.$$

So \mathbf{x}_{MAP} is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{A}}(\mathbf{x}) = \mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{y}}.$$

So \mathbf{x}_{MAP} is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{A}}(\mathbf{x}) = \mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{y}}.$$

QR-rewrite: this equation can be equivalently expressed

$$\mathbf{Q}^T \bar{\mathbf{A}}(\mathbf{x}) = \mathbf{Q}^T \bar{\mathbf{y}},$$

where $J(x_{MAP}) = QR$ is the 'thin' QR factorization of $J(x_{MAP})$.

So \mathbf{x}_{MAP} is a solution of the nonlinear equation

$$\mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{A}}(\mathbf{x}) = \mathbf{J}(\mathbf{x}_{\text{MAP}})^T \bar{\mathbf{y}}.$$

QR-rewrite: this equation can be equivalently expressed

$$\mathbf{Q}^T \bar{\mathbf{A}}(\mathbf{x}) = \mathbf{Q}^T \bar{\mathbf{y}},$$

where $\mathbf{J}(\mathbf{x}_{\mathrm{MAP}}) = \mathbf{Q}\mathbf{R}$ is the 'thin' $\mathbf{Q}\mathbf{R}$ factorization of $\mathbf{J}(\mathbf{x}_{\mathrm{MAP}})$.

Nonlinear mapping: define $\mathbf{F} \stackrel{\text{def}}{=} \mathbf{Q}^T \bar{\mathbf{A}}$ and

$$\mathbf{x} = \mathbf{F}^{-1} \left(\mathbf{Q}^{T} (\bar{\mathbf{y}} + \boldsymbol{\epsilon}) \right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{m+n})$$

$$\stackrel{\text{def}}{=} \mathbf{F}^{-1} \left(\mathbf{v} \right), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^{T} \bar{\mathbf{y}}, \mathbf{I}_{n}).$$

RTO: use optimization to compute $\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v})$

Compute a sample x from the RTO proposal q(x):

- 1. Randomize: compute $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$;
- 2. Optimize: solve

$$\mathbf{x} = \arg\min_{\boldsymbol{\psi}} \|\mathbf{F}(\boldsymbol{\psi}) - \mathbf{v}\|^2$$

3. Reject \mathbf{x} when \mathbf{v} is not in the range of \mathbf{F} .

RTO: use optimization to compute $\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v})$

Compute a sample x from the RTO proposal q(x):

- 1. Randomize: compute $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$;
- 2. Optimize: solve

$$\mathbf{x} = \arg\min_{\boldsymbol{\psi}} \|\mathbf{F}(\boldsymbol{\psi}) - \mathbf{v}\|^2$$

3. Reject \mathbf{x} when \mathbf{v} is not in the range of \mathbf{F} .

Comment: steps 1 & 2 can be equivalently expressed

$$\mathbf{x} = \arg\min_{\boldsymbol{\psi}} \|\mathbf{Q}^T(\bar{\mathbf{A}}(\boldsymbol{\psi}) - (\bar{\mathbf{y}} + \boldsymbol{\epsilon}))\|^2, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{m+n}).$$

PDF for $\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$

First, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$ implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

PDF for $\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$

First,
$$\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$$
 implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

Next we need $\frac{d}{d\mathbf{x}}\mathbf{F}(\mathbf{x}) \in \mathbb{R}^{n \times n}$ to be invertible. Then

$$q(\mathbf{x}) \propto \left| \det \left(\frac{d}{d\mathbf{x}} \mathbf{F}(\mathbf{x}) \right) \right| p_{\mathbf{v}}(\mathbf{F}(\mathbf{x}))$$

$$= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{x}) \right) \right| \exp \left(-\frac{1}{2} \| \mathbf{Q}^T (\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}) \|^2 \right)$$

PDF for $\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v})$, $\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$

First,
$$\mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n)$$
 implies $p_{\mathbf{v}}(\mathbf{v}) \propto \exp\left(-\frac{1}{2} \|\mathbf{v} - \mathbf{Q}^T \bar{\mathbf{y}}\|^2\right)$.

Next we need $\frac{d}{d\mathbf{x}}\mathbf{F}(\mathbf{x}) \in \mathbb{R}^{n \times n}$ to be invertible. Then

$$q(\mathbf{x}) \propto \left| \det \left(\frac{d}{d\mathbf{x}} \mathbf{F}(\mathbf{x}) \right) \right| p_{\mathbf{v}}(\mathbf{F}(\mathbf{x}))$$

$$= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{x}) \right) \right| \exp \left(-\frac{1}{2} \| \mathbf{Q}^T (\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}) \|^2 \right)$$

$$= \left| \det \left(\mathbf{Q}^T \mathbf{J}(\mathbf{x}) \right) \right| \exp \left(\frac{1}{2} \| \bar{\mathbf{Q}}^T (\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}) \|^2 \right)$$

$$= \exp \left(-\frac{1}{2} \| \bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}} \|^2 \right)$$

$$= c(\mathbf{x}) p(\mathbf{x}|\mathbf{y}),$$

where the columns of $\bar{\mathbf{Q}}$ are orthonormal and $C(\bar{\mathbf{Q}}) \perp C(\mathbf{Q})$.

Theorem (RTO probability density)

Let $\bar{\mathbf{A}}: \mathbb{R}^n \to \mathbb{R}^{m+n}$, $\bar{\mathbf{y}} \in \mathbb{R}^{m+n}$, and assume

- $\bar{\mathbf{A}}$ is continuously differentiable;
- $\mathbf{J}(\mathbf{x}) \in \mathbb{R}^{(m+n) \times n}$ is rank n for every \mathbf{x} ;
- $\mathbf{Q}^T \mathbf{J}(\mathbf{x})$ is invertible for all relevant \mathbf{x} .

Then the random variable

$$\mathbf{x} = \mathbf{F}^{-1}(\mathbf{v}), \quad \mathbf{v} \sim \mathcal{N}(\mathbf{Q}^T \bar{\mathbf{y}}, \mathbf{I}_n),$$

has probability density function

$$q(\mathbf{x}) \propto c(\mathbf{x})p(\mathbf{x}|\mathbf{y}),$$

where

$$c(\mathbf{x}) = \left| \det(\mathbf{Q}^T \mathbf{J}(\mathbf{x})) \right| \exp\left(\frac{1}{2} \|\bar{\mathbf{Q}}^T (\bar{\mathbf{y}} - \bar{\mathbf{A}}(\mathbf{x}))\|^2\right),$$

where the columns of $\bar{\mathbf{Q}}$ are orthonormal and $C(\bar{\mathbf{Q}}) \perp C(\mathbf{Q})$.

RTO Metropolis-Hastings

Definitions:

```
p(\mathbf{x}|\mathbf{y}) posterior (target) density \mathbf{x}^k random variable of the Markov chain at step k q(\mathbf{x}^*) RTO (independence) proposal density \mathbf{x}^* random variable from the proposal
```

A chain of samples $\{\mathbf{x}^0, \mathbf{x}^1, \cdots\}$ is generated by:

- 1. Start at \mathbf{x}^0
- 2. For $k = 1, 2, \dots K$
 - 2.1 sample $\mathbf{x}^* \sim q(\mathbf{x}^*)$ from the RTO proposal density
 - 2.2 calculate $\alpha = \min \left\{ \frac{p(\mathbf{x}^*|\mathbf{y})q(\mathbf{x}^{k-1})}{p(\mathbf{x}^{k-1}|\mathbf{y})q(\mathbf{x}^*)}, 1 \right\}$
 - 2.3 $\mathbf{x}^k = \begin{cases} \mathbf{x}^* & \text{with probability } \alpha \\ \mathbf{x}^{k-1} & \text{with probability } 1 \alpha \end{cases}$

Metropolis-Hastings using RTO

Given \mathbf{x}^{k-1} and proposal $\mathbf{x}^* \sim q(\mathbf{x})$, accept with probability

$$r = \min\left(1, \frac{p(\mathbf{x}^*|\mathbf{y})q(\mathbf{x}^{k-1})}{p(\mathbf{x}^{k-1}|\mathbf{y})q(\mathbf{x}^*)}\right)$$

$$= \min\left(1, \frac{p(\mathbf{x}^*|\mathbf{y})c(\mathbf{x}^{k-1})p(\mathbf{x}^{k-1}|\mathbf{y})}{p(\mathbf{x}^{k-1}|\mathbf{y})c(\mathbf{x}^*)p(\mathbf{x}^*|\mathbf{y})}\right)$$

$$= \min\left(1, \frac{c(\mathbf{x}^{k-1})}{c(\mathbf{x}^*)}\right),$$

where recall that

$$c(\mathbf{x}) = \left| \det(\mathbf{Q}^T \mathbf{J}(\mathbf{x})) \right| \exp\left(\frac{1}{2} \|\bar{\mathbf{Q}}^T (\bar{\mathbf{y}} - \bar{\mathbf{A}}(\mathbf{x}))\|^2\right).$$

Metropolis-Hastings using RTO, Cont.

T The RTO Metropolis-Hastings Algorithm

- 1. Choose $\mathbf{x}^0 = \mathbf{x}_{\text{MAP}}$ and number of samples N. Set k = 1.
- 2. Compute an RTO sample $\mathbf{x}^* \sim q(\mathbf{x}^*)$.
- 3. Compute the acceptance probability

$$r = \min\left(1, \frac{c(\mathbf{x}^{k-1})}{c(\mathbf{x}^*)}\right).$$

- 4. With probability r, set $\mathbf{x}^k = \mathbf{x}^*$, else set $\mathbf{x}^k = \mathbf{x}^{k-1}$.
- 5. If k < N, set k = k + 1 and return to Step 2.

Understanding RTO (thanks to Zheng Wang)

Consider the simple, scalar 'inverse problem':

forward model
$$y = f(x) + \epsilon$$
, $x \sim N(0, 1)$, $\epsilon \sim N(0, 1)$

$$\underbrace{p(x|y)}_{\text{posterior}} \propto \exp\left(-\frac{1}{2}\left(f(x) - y\right)^2\right) \exp\left(-\frac{1}{2}x^2\right)$$

$$\propto \exp\left(-\frac{1}{2}\left\|\underbrace{\begin{bmatrix}x\\f(x)\end{bmatrix}}_{\bar{\mathbf{A}}(x)} - \underbrace{\begin{bmatrix}0\\y\end{bmatrix}}_{\bar{\mathbf{y}}}\right\|^2\right)$$

$$\propto \exp\left(-\frac{1}{2}\left\|\bar{\mathbf{A}}(x) - \bar{\mathbf{y}}\right\|^2\right)$$

Least-squares form:

$$p(x|y) \propto$$

$$\exp\left(-\frac{1}{2}\left\|\underbrace{\begin{bmatrix}x\\f(x)\end{bmatrix}}_{\bar{\mathbf{A}}(x)} - \underbrace{\begin{bmatrix}0\\y\end{bmatrix}}_{\bar{\mathbf{y}}}\right\|^2\right)$$

p(x|y) is the height of the path

$$\bar{\mathbf{A}}(x) = [x, f(x)]^T$$

on the Gaussian

$$\mathcal{N}\left(\left[\begin{array}{c}0\\y\end{array}\right],\mathbf{I}_{2}\right).$$

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Algorithm's task: sample from the posterior

Generate RTO samples $\{x^k\}$:

1. Compute x_{MAP} .

- 1. Compute x_{MAP} .
- 2. Compute $\mathbf{Q} = \mathbf{J}(x_{\text{MAP}})/\|\mathbf{J}(x_{\text{MAP}})\|.$

- 1. Compute x_{MAP} .
- 2. Compute $\mathbf{Q} = \mathbf{J}(x_{\text{MAP}})/\|\mathbf{J}(x_{\text{MAP}})\|.$
- 3. For $k = 1, 2, \dots, K$ 3.1 Sample $\boldsymbol{\xi} \sim \mathcal{N}(\bar{\mathbf{y}}, \mathbf{I}_2)$

- 1. Compute x_{MAP} .
- 2. Compute $\mathbf{Q} = \mathbf{J}(x_{\text{MAP}})/\|\mathbf{J}(x_{\text{MAP}})\|.$
- 3. For $k = 1, 2, \dots, K$
 - 3.1 Sample $\boldsymbol{\xi} \sim \mathcal{N}(\bar{\mathbf{y}}, \mathbf{I}_2)$
 - 3.2 Compute $x^k = \arg \min_x \|\mathbf{Q}^T \left(\bar{\mathbf{A}}(x) \boldsymbol{\xi}\right)\|^2$.

Generate RTO samples $\{x^k\}$:

- 1. Compute x_{MAP} .
- 2. Compute $\mathbf{Q} = \mathbf{J}(x_{\text{MAP}})/\|\mathbf{J}(x_{\text{MAP}})\|.$
- 3. For $k = 1, 2, \dots, K$
 - 3.1 Sample $\boldsymbol{\xi} \sim \mathcal{N}\left(\bar{\mathbf{y}}, \mathbf{I}_2\right)$
 - 3.2 Compute $x^k = \arg\min_x \|\mathbf{Q}^T \left(\bar{\mathbf{A}}(x) \boldsymbol{\xi}\right)\|^2$.

RTO proposal density: $q(x^k) \propto |\mathbf{Q}^T \mathbf{J}(x^k)|$

$$\exp\left(-\frac{1}{2}\left\|\mathbf{Q}^T\left(\bar{\mathbf{A}}(x^k)-\bar{\mathbf{y}}\right)\right\|^2\right)$$

Uniform prior test cases

Choose prior $p(\mathbf{x})$ defined by

$$\mathbf{x} \sim U(\Omega),$$

where U is a multivariate uniform distribution on Ω . Then $p(\mathbf{x}) = \text{constant}$ on Ω , and we have

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2\right).$$

* Thus can use RTO to sample from $p(\mathbf{x}|\mathbf{y})$.

BOD, Good: $A(x_1, x_2) = x_1(1 - \exp(-x_2 \mathbf{t}))$

- $\mathbf{t} = 20$ linearly spaced observations in $1 \le x \le 9$;
- $\mathbf{y} = \mathbf{A}(x_1, x_2) + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma = 0.01$;
- $\bullet [x_1, x_2] = [1, 0.1]^T.$

BOD, Bad: $\mathbf{A}(x_1, x_2) = x_1(1 - \exp(-x_2 \mathbf{t}))$

- $\mathbf{t} = 20$ linearly spaced observations in $1 \le x \le 5$;
- $\mathbf{y} = \mathbf{A}(x_1, x_2) + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ with $\sigma = 0.01$;
- \bullet $[x_1, x_2] = [1, 0.1]^T$.

MONOD: $A(x_1, x_2) = x_1 \mathbf{t}/(x_2 + \mathbf{t})$

 $\mathbf{t} = [28, 55, 83, 110, 138, 225, 375]^{T}$ $\mathbf{y} = [0.053, 0.060, 0.112, 0.105, 0.099, 0.122, 0.125]^{T}.$

Autocorrelation plots for x_1 for Good and Bad BOD

Gaussian prior test case

When a Gaussian prior is chosen,

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right),$$

the posterior can be written in least squares form:

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2 - \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathbf{L}(\mathbf{x} - \mathbf{x}_0)\right)$$

$$= \exp\left(-\frac{1}{2}\|\begin{bmatrix}\mathbf{A}(\mathbf{x})\\\mathbf{L}^{1/2}\mathbf{x}\end{bmatrix} - \begin{bmatrix}\mathbf{y}\\\mathbf{L}^{1/2}\mathbf{x}_0\end{bmatrix}\|^2\right)$$

$$\stackrel{\text{def}}{=} \exp\left(-\frac{1}{2}\|\bar{\mathbf{A}}(\mathbf{x}) - \bar{\mathbf{y}}\|^2\right).$$

* Thus we can use RTO to sample from $p(\mathbf{x}|\mathbf{y})$.

Electrical Impedance Tomography Seppänen, Solonen, Haario, Kaipio

$$\begin{split} \nabla \cdot (\mathbf{x} \nabla \varphi) &= 0, \quad \vec{r} \in \Omega \\ \varphi + z_{\ell} \mathbf{x} \frac{\partial \varphi}{\partial \vec{n}} &= \mathbf{y}_{\ell}, \quad \vec{r} \in e_{\ell}, \ \ell = 1, \dots, L \\ \int_{e_{\ell}} \mathbf{x} \frac{\partial \varphi}{\partial \vec{n}} \mathrm{d}S &= I_{\ell}, \quad \ell = 1, \dots, L \\ \mathbf{x} \frac{\partial \varphi}{\partial \vec{n}} &= 0, \quad \vec{r} \in \partial \Omega \backslash \cup_{\ell=1}^{L} e_{\ell} \end{split}$$

- $x = x(\vec{r}) \& \varphi = \varphi(\vec{r})$: electrical conductivity & potential.
- $\vec{r} \in \Omega$: spatial coordinate.
- e_{ℓ} : area under the ℓ th electrode.
- z_{ℓ} : contact impedance between ℓ th electrode and object.
- $y_{\ell} \& I_{\ell}$: amplitudes of the electrode potential and current.
- \vec{n} : outward unit normal
- L: number of electrodes.

EIT, Forward/Inverse Problem (image by Siltanen)

Left: current ${\bf I}$ and electrode potential ${\bf y}$; Right: conductivity ${\bf x}$.

Forward Problem: Given the conductivity \mathbf{x} , compute

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\epsilon}.$$

Evaluating f(x) requires solving a complicated PDE.

Inverse Problem: Given y, construct the posterior density $p(\mathbf{x}|\mathbf{y})$.

RTO Metropolis-Hastings applied to EIT example True Conductivity = Realization from Smoothness Prior

Upper images: truth & conditional mean. Lower images: 99% c.i.'s & profiles of all of the above.

RTO Metropolis-Hastings applied to EIT example True Conductivity = Internal Structure #1

Upper images: truth & conditional mean.

Lower images: 99% c.i.'s & profiles of all of the above.

RTO Metropolis-Hastings applied to EIT example True Conductivity = Internal Structure #2

Upper images: truth & conditional mean.

Lower images: 99% c.i.'s & profiles of all of the above.

Laplace (Total Variation and Besov) Priors

Finally, we consider the ℓ_1 prior case:

$$p(\mathbf{x}) \propto \exp\left(-\delta \|\mathbf{D}\mathbf{x}\|_1\right),$$

where \mathbf{D} is an invertible matrix. Then the posterior then takes the form

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2 - \delta\|\mathbf{D}\mathbf{x}\|_1\right).$$

Note that total variation in one-dimension and the Besov $B_{1,1}^s$ -space priors in one- and higher-dimensions have this form.

Laplace (Total Variation and Besov) Priors

Finally, we consider the ℓ_1 prior case:

$$p(\mathbf{x}) \propto \exp\left(-\delta \|\mathbf{D}\mathbf{x}\|_1\right),$$

where \mathbf{D} is an invertible matrix. Then the posterior then takes the form

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\|\mathbf{A}(\mathbf{x}) - \mathbf{y}\|^2 - \delta\|\mathbf{D}\mathbf{x}\|_1\right).$$

Note that total variation in one-dimension and the Besov $B_{1,1}^s$ -space priors in one- and higher-dimensions have this form.

* But $p(\mathbf{x}|\mathbf{y})$ does <u>not</u> have least squares form.

Prior Transformation for ℓ_1 Priors

Main idea: Transform the problem to one that RTO can solve

- Define a map between a **reference** parameter u and the **physical** parameter x.
- Choose the mapping so that the prior on u is Gaussian.
- Sample from the transformed posterior, in u, using RTO, then transform the samples back.

Prior Transformation for ℓ_1 Priors

Main idea: Transform the problem to one that RTO can solve

- Define a map between a **reference** parameter u and the **physical** parameter x.
- Choose the mapping so that the prior on u is Gaussian.
- Sample from the transformed posterior, in u, using RTO, then transform the samples back.

The One-Dimensional Transformation

The prior transformation is analytic and is defined

$$x = S(u) \stackrel{\text{def}}{=} \mathcal{F}_{p(x)}^{-1} (\varphi(u)),$$

where

- $F_{p(x)}^{-1}$ is the inverse-CDF of the L^1 -type prior p(x);
- φ is the CDF of a standard Gaussian.

The One-Dimensional Transformation

The prior transformation is analytic and is defined

$$x = S(u) \stackrel{\text{def}}{=} \mathcal{F}_{p(x)}^{-1} (\varphi(u)),$$

where

- $F_{n(x)}^{-1}$ is the inverse-CDF of the L^1 -type prior p(x);
- φ is the CDF of a standard Gaussian.

Then the posterior density p(x|y) can be expressed in terms of r:

$$p(S(u)|y) \propto \exp\left(-\frac{1}{2}(f(S(u)) - y)^2 - \frac{1}{2}u^2\right)$$
$$= \exp\left(-\frac{1}{2} \left\| \begin{bmatrix} f(S(u)) \\ u \end{bmatrix} - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2\right)$$

Prior Transformation: 1D Laplace Prior

For multiple independent x_i , transformation is repeated

2D Laplace Prior

Transformation moves complexity from prior to likelihood

Laplace Priors in Higher-Dimensions

1. Define a change of variables

$$\mathbf{D}\mathbf{x} = S(\mathbf{u})$$

such that the transformed prior is a standard Gaussian, i.e.,

$$p(\mathbf{D}^{-1}S(\mathbf{u})) \propto \exp\left(-\frac{\delta}{2}\|\mathbf{u}\|_{2}^{2}\right).$$

Laplace Priors in Higher-Dimensions

1. Define a change of variables

$$\mathbf{D}\mathbf{x} = S(\mathbf{u})$$

such that the transformed prior is a standard Gaussian, i.e.,

$$p(\mathbf{D}^{-1}S(\mathbf{u})) \propto \exp\left(-\frac{\delta}{2}\|\mathbf{u}\|_{2}^{2}\right).$$

2. Sample from the transformed posterior, with respect to ${\bf u},$

$$p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{D}^{-1}S(\mathbf{u}))p(\mathbf{D}^{-1}S(\mathbf{u}));$$

Laplace Priors in Higher-Dimensions

1. Define a change of variables

$$\mathbf{D}\mathbf{x} = S(\mathbf{u})$$

such that the transformed prior is a standard Gaussian, i.e.,

$$p(\mathbf{D}^{-1}S(\mathbf{u})) \propto \exp\left(-\frac{\delta}{2}\|\mathbf{u}\|_{2}^{2}\right).$$

2. Sample from the transformed posterior, with respect to \mathbf{u} ,

$$p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{D}^{-1}S(\mathbf{u}))p(\mathbf{D}^{-1}S(\mathbf{u}));$$

3. Transform the samples back via $\mathbf{x} = \mathbf{D}^{-1}S(\mathbf{u})$.

Test Case 3, L^1 -type priors: High-Dimensional Problems

The transformed posterior, with \mathbf{D} an invertible matrix, takes the form

$$p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y}) \propto \exp\left(-\frac{1}{2}(f\left(\mathbf{D}^{-1}S(\mathbf{u})\right) - \mathbf{y})^2 - \frac{1}{2}\mathbf{u}^2\right)$$

$$= \exp\left(-\frac{1}{2}\left\|\begin{bmatrix}\mathbf{A}\left(\mathbf{D}^{-1}S(\mathbf{u})\right)\\\mathbf{u}\end{bmatrix} - \begin{bmatrix}\mathbf{y}\\\mathbf{0}\end{bmatrix}\right\|^2\right),$$

where

$$S(\mathbf{u}) = (S(u_1), \dots, S(u_n))$$

as defined above.

Test Case 3, L^1 -type priors: High-Dimensional Problems

The transformed posterior, with \mathbf{D} an invertible matrix, takes the form

$$p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y}) \propto \exp\left(-\frac{1}{2}(f\left(\mathbf{D}^{-1}S(\mathbf{u})\right) - \mathbf{y})^2 - \frac{1}{2}\mathbf{u}^2\right)$$

$$= \exp\left(-\frac{1}{2}\left\|\begin{bmatrix}\mathbf{A}\left(\mathbf{D}^{-1}S(\mathbf{u})\right)\\\mathbf{u}\end{bmatrix} - \begin{bmatrix}\mathbf{y}\\\mathbf{0}\end{bmatrix}\right\|^2\right),$$

where

$$S(\mathbf{u}) = (S(u_1), \dots, S(u_n))$$

as defined above.

* $p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y})$ is in least squares form with respect to \mathbf{u} so we can apply RTO!

RTO Metropolis-Hastings to Sample from $p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y})$

T The RTO Metropolis-Hastings Algorithm

- 1. Choose $\mathbf{u}^0 = \mathbf{u}_{\text{MAP}} = \arg\min_{\mathbf{u}} p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y})$ and number of samples N. Set k = 1.
- 2. Compute an RTO sample $\mathbf{u}^* \sim q(\mathbf{u}^*)$.
- 3. Compute the acceptance probability

$$r = \min\left(1, \frac{c(\mathbf{u}^{k-1})}{c(\mathbf{u}^*)}\right).$$

- 4. With probability r, set $\mathbf{u}^k = \mathbf{u}^*$, else set $\mathbf{u}^k = \mathbf{u}^{k-1}$.
- 5. If k < N, set k = k + 1 and return to Step 2.

Deconvolution of a Square Pulse w/ TV Prior

Deconvolution of a Square Pulse w/ TV Prior

2D elliptic PDE inverse problem

$$-\nabla \cdot (\exp(x(t))\nabla y(t)) = h(t), \quad t \in [0, 1]^2,$$

with boundary conditions

$$\exp(x(t))\nabla y(t)\cdot \vec{n}(t) = 0.$$

After discretization, this defines the model

$$y = A(x)$$
.

 $\mathbf{x}_{\mathrm{true}}$ h \mathbf{y}

2D PDE inverse problem: mean and STD

Use RTO-MH to sample from the transformed posterior:

$$p(\mathbf{D}^{-1}S(\mathbf{u})|\mathbf{y}) \propto \exp\left(-\frac{\lambda}{2}\|\mathbf{A}(\mathbf{D}^{-1}S(\mathbf{u})) - \mathbf{y}\|_{2}^{2} - \delta\|\mathbf{u}\|^{2}\right),$$

where **D** is a wavelet transform matrix, then transform the samples back via $\mathbf{x} = \mathbf{D}^{-1} S(\mathbf{u})$.

2D PDE inverse problem: Samples

Conclusions/Takeaways

- The development of computationally efficient MCMC methods for nonlinear inverse problems is challenging.
- RTO was presented as a proposal mechanism within Metropolis-Hastings.
- RTO was described in some detail and then test on several examples, including EIT and ℓ_1 priors such as total variation.