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Motivating Problem: Radiation Oncology 
• Stereotactic Body Radiation Therapy 

(SBRT) - computer controlled delivery 
delivery of extremely-high-doses of 
radiation that conform precisely to 
the irregular shape of a particular 
patient’s tumor.  

• The extreme precision and dose 
conformity of SBRT makes the 
technique particularly susceptible to 
normal, respiratory-induced motion. 

• This can result in under dosing of the 
targeted lesion and overdosing of 
surrounding healthy tissue-Resulting 
in local failure and complications. 
 

 



Motivation – 3D CT Reconstruction 

Fixed-room CT scanner 
• Designed for 3D imaging 
• Fixed/calibrated geometry 
• Immobile, expensive  
 

Mobile C-arm 
• Designed for 2D imaging 
• Variable/uncalibrated geometry 
• Non-isocentric, limited angle 
• Mobile, inexpensive 
• 3D reconstruction rare 
 



 The recent advent of the fast multi slice CT scanners have enabled the development of Respiratory 
Correlated CT  (RCCT) imaging techniques to study organ motion during breathing (i.e. 4D Imaging). 
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Motivating Problem: Radiation Oncology 



Acquisition of such imaging data allows for visualization of a dynamic CT ‘movie loop’ of the patient’s 
unique, internal anatomy. 

•Problem:  How can we effectively use the 4DRCCT data to improve Radiation 
Treatment Planning and Delivery for SBRT of liver malignancies? 
Need to first model anatomical motion. Watching a movie of anatomy is not the 
same as modeling 

Motivating Problem: Radiation Oncology 



Introduction to Diffeomorphisms 

• Diffeomorphisms: one-to-one onto (invertible) and differential 
transformations. Preserve topology.  
 
 
 
 

• Space of all Diffeomorphisms forms a group under composition: 
 

• Space of diffeomorphisms not a vector space. 
 
 
 
 
 
 
 
 
 



Large deformation diffeomorphisms. 

•                     infinite dimensional “Lie Group”.  
• Tangent space: The space of smooth vector velocity fields. 
• Construct deformations by integrating flows of velocity fields. 



Metric on the Group of Diffeomorphisms: 

• Induce a metric via a Sobolev norm on the velocity fields. Distance 
defined as the length of geodesics under this norm.  

• Distance between e, the identity and any diffeomorphism is defined 
via the geodesic equation: (L differential operator in space only) 
 
 
 

• Right invariant distance between any two diffeomorphisms is defined 
as: 



Geodesic Equations 

• Minimum energy paths follow geodesic equations. 
• Evolution equations usually given in terms of momentum 

 
• The Euler-Poincare equations for diffeomorphisms: (EPDIFF) 



Relationship to Fluid Deformations 
• Newtonian fluid flows generate diffeomorphisms: John P. Heller "An Unmixing 

Demonstration," American Journal of Physics, 28, 348-353 (1960).  

 Euler’s equation: Geodesics on Sdiff with L^{2} metric.  
– Mathematical methods of classical mechanics, by Vladimir Arnold (Springer) 
– https://terrytao.wordpress.com/2010/06/07/the-euler-arnold-equation/  



Back to Lungs 









           
 
 
 
 
 
 
 

 
• Goal: find diffeomorphic (bijective and 

smooth) transformations that 
accurately model: 

• Physics (conservation of mass1,2)  
• Physiology (local tissue compressibility) 

        
  

Diffeomorphic registration of lung CT images 

• Rat imaged at 11 time points of breathing cycle using a ventilator  
• CBCT reconstruction using FDK 

1Yin, Hoffman and Lin. Mass preserving non-rigid registration of CT lung images using cubic B-spline. Medical Physics 36(9) 2009. 
2Gorbunova, Sporring, Lo, Loeve, Tiddens, Nielsen, Dirksen, and de Bruijne, Mass preserving image registration for lung CT, Med. Image Anal., 16(4) 2012. 






Diffeomorphic registration of lung CT images 

Full Exhale                Full Inhale 



Linear attenuation coefficient (µ) 

• CT reconstruction estimates µ(x), linear attenuation coefficient 
 

        αm = mass attenuation coefficient (of a material), ρm = mass density 
• The linear attenuation coefficient of a material is proportional to its 

mass density 
• Conservation of mass -> conservation of linear attenuation coefficient  
• Due to the simplified projection model, reconstruction algorithms 

don’t estimate μ(x) directly (X-ray scatter, secondary photons, beam 
hardening, etc.) 

 
 



Monte-Carlo Simulations 



Conservation of mass 

• Using nominal densities from CBCT 



Volume, Density, Mass 

• Using µ = µ̂2  



Analysis of 10 Human 4D-RCCT Data Sets 
• Imperially estimate the power 

transformation from the data. 
• Optimal power transformation is 

1.64  



Our Method 

• View problem as density matching instead of image matching1 
• Place physiological constraint on lung mechanics 

• Lungs/air is compressible  
• Mixture of soft tissue and air 

• Rest of the body is incompressible (essentially divergence free) 

• Use a Left (Right) invariant metric on Diff and a Left ( Right ) action on 
Densities.  
 

• Fundamentally different than LDDMM: Right invariant metric and Left 
action. 

1Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM Journal on Imaging 
Sciences 8 (3), 1718-1751 



Density 

• A density µ is a volume form on Ω 
• Non-negative function with a volume element 

 
 
 
 

• The space of densities, Dens(Ω), is an infinite-dimensional Fréchet 
manifold 



Diffeomorphism group action 

L2 image action  Density action 
 

Right action: composition  Right action: pushforward on volume forms 
 
 

 
Left action: composition  Left action: pullback on volume forms 
 

 
 

 



 
 
 

 
Change of variables 

Conservation of mass 



Fisher-Rao metric on densities 

 
 
• Using the W-map  

• isometry between Dens(Ω) and S∞(Ω) 

 
 

• Since distances and geodesics are explicit on the sphere, the 
Fisher-Rao distance is the distance on the sphere 



Fisher-Rao distance 

• Fisher-Rao distance  
• Geodesic distance on S∞ 

 
• Geodesics on S∞ are explicit: 

 
 

• For infinite volume, the geodesic distance becomes the chord distance, 
or Hellinger distance 
 
 



Fisher-Rao distance 

• The Fisher-Rao metric is the unique1 Riemannian metric on the space 
of densities that is invariant under the action of a diffeomorphism 
 

1Bauer, M., Bruveris, M., Michor, P.W.: Uniqueness of the Fisher–Rao metric on the space of smooth densities. 
http://arxiv.org/abs/1411.5577, submitted (2015) 



Descending Metric on Diff 
div-free 

curl-free 

The infinitesimal action of a vector field 
on a density (Lie derivative) is  
 
 

By Helmholtz-Hodge the vertical (div-
free) and horizontal (curl-free) vector 
fields are orthogonal 

The information metric on Diff descends 
to the Fisher-Rao metric on Dens 
 
 



Riemannian submersion 

 
 
 
 

• Horizontal geodesics on Diff descend to Fisher-Rao geodesics on Dens 
• There is a unique horizontal lift of curves in Dens to curves in Diff  



Left invariant penalty using Fisher-Rao 

• Distance between L2 image action and density action for positive 
functions 
 
 
 
 

• Since the information metric descends to the Fisher-Rao, we define 
the metric on Dens and then horizontally lift to Diff 
 



Energy functional 

• Minimization problem on the product space Dens(Ω) x Dens(Ω) using 
the product distance 
 



Energy functional 

 
 
 

• E1 is the regularity measure 
• Weighted by f 

• E2 is the matching term 
 

 



Energy functional 

• Minimizers of E1 are not unique 
• The functional is invariant under volume preserving diffeomorphisms   

• Strategy: 
• The fact that the metric is descending with respect to the metric on Diff can 

be used to ensure that the gradient flow is infinitesimally optimal, i.e., always 
orthogonal to the null-space (horizontal lift of the density flow to diff) 

 



Final Algorithm 

 



Weighting density 

• Use a soft threshold on image values 
  



Results (Rat) 



Results (Rat) 



Results (Human) 
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Jacobian Determinants 



 



   Ground Truth                Estimated 






Motivation – 3D CT Reconstruction 

Fixed-room CT scanner 
• Designed for 3D imaging 
• Fixed/calibrated geometry 
• Immobile, expensive  
 

Mobile C-arm 
• Designed for 2D imaging 
• Variable/uncalibrated geometry 
• Non-isocentric, limited angle 
• Mobile, inexpensive 
• 3D reconstruction rare 
 



Mobile C-arm Reconstruction 






• Problem statement: given multiple X-ray projection images, solve for 
the 3D volume of linear attenuation coefficients 

• “Forward problem” is easy 
• Attenuation due to Compton scattering and photoelectric effect 
• Beer-Lambert law: 

 
 

• “Inverse problem” is hard 

Background: X-ray Computed Tomography (CT) 



Cone-beam System 



Background 

• Fixed-room systems 
• GE Innova CT, Siemens Artis Zeego DynaCT 

• Mobile C-arms 
• Select few have 3D imaging 

• All isocentric with specialized hardware 

• Most are restricted to 2D fluoroscopic imaging 
• Geometric parameters change from scan to scan 

 
 



Uncertain Geometry 

• Possible solution 
• Improve the hardware (high precision components, 

optical/RF tracking) 
• Proposed solution 

• Design reconstruction framework that is robust to variable 
geometry  

• In practice 
• Somewhere in between? 



Proposed Solution 

• Traditional CT problem: estimate 3D image given projection data 
• Mobile C-arm CT problem: estimate 3D image and geometric 

parameters 
• Iterative update: alternate between image updates and 

parameter updates 



Image Update 

• Image update 
• Ordered subset expectation maximization (OSEM) with total 

variation (TV) regularization 
 
 
 
 

• Maximizes the log posterior of the 3D image given the projection 
data 

 



Iterative Reconstruction Methods 



Geometric Parameters (9 per Projection) 

       3D translation              3D rotation  Piercing point and SID 

Extrinsic parameters:  
Rigid transformation of C-arm 

Intrinsic parameters: 
Internal characteristics of C-arm 



• Maximize correspondence between 2D data      and projection of the current 
estimate of 3D image 

• Local normalized cross-correlation 
 

 

• Analytically solve for gradient of projection operator with respect to all geometric 
parameters 
 
 
 

• Update parameters by taking a gradient ascent step 

 

Geometry Update 



Implementation 

• Challenges 
• Gradient ascent: no guarantee of global convergence 
• Implementing gradient operations is computationally expensive 

• Multiscale 
• Start estimation on downsampled data, progress to full-resolution data 
• Lower scales: estimate image and parameters 
• Full-resolution scale: estimate image only 

• GPU implementation  
• Parallelization of forward and backward projections as well as parameter 

gradient calculations 
 

 



Algorithm Validation 
Ground truth parameter dataset 

• Used RF tracking to get “ground truth” 
extrinsic/intrinsic parameters of a full 
C-arm scan 

• Using these parameters, I created a 
dataset using a digital skull phantom 

• University of North Carolina Volume 
Rendering Test Data Set 



Testing  
• Created nominal trajectory (initial estimate of geometry) 

• Circular, equal angular spacing, fixed intrinsic parameters 

• 3 Scenarios 
• Ground truth static image reconstruction 
• Nominal trajectory static image reconstruction 
• Joint image and geometry estimation (given nominal trajectory) 

 Ground Truth     Nominal Trajectory 



Results 
Ground Truth              Nominal Trajectory           Estimated 
            (Initial Estimate) 



Static reconstruction  
(given ground truth 
parameters) 
L2 error: 10.5 

Static reconstruction   
(given nominal parameters) 
L2 error: 233.2 

Joint image and geometry 
estimation  
(given nominal parameters) 
L2 error: 13.0 





Cadaver Hand Dataset 

• Acquisition scan using a full-size development mobile C-arm with flat 
panel detector (GE Healthcare) 

• RF trackers placed on table and detector, source location and intrinsic 
parameters estimated using markers 



Cadaver  
Dataset 

 
RF Tracking 
 
 

 
 
Nominal 
 
 

 
 
Joint Estimation 






Physical Knee and Skull Phantoms 
No ground truth image/parameters available 

 
 
Static  
Reconstruction 
 
 
 
Joint Estimation 



Conclusion 

• Joint reconstruction and motion estimation framework allows for 3D 
reconstruction on mobile C-arms 

• Reconstruction results show greatly improved image quality 
• GPU/Multiscale implementation allows for clinically feasible 

reconstruction times 
• Reconstruction timing (single Nvidia Titan Z) 

• 2563 volume: static =  2 min, proposed method =  4 min 
• 5123 volume: static = 10 min, proposed method = 16 min 

 



Questions? 



Cone-beam Coordinate Systems 



Joint Reconstruction Convergence 



Simulated Cone-beam Dataset 

 



Iterative  
Reconstruction 

 



Physical Knee and Skull Phantoms 
No ground truth image/parameters available 

 
 
Static  
Reconstruction 
 
 
 
Joint Estimation 
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