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We usually assume relative

motion

between object and imaging device

is bad.
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Motion Blur
x1 = A(y1) x
(object after movement)
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Motion Blur
x2 = A(y2) x
(object after movement)
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Motion Blur
x3 = A(y3) x
(object after movement)
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Motion Blur
x4 = A(y4) x
(object after movement)
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Motion Blur
x5 = A(y5) x
(object after movement)
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Motion Blur
x6 = A(y6) x
(object after movement)
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Motion Blur
xi = A(yi ) x
(object after movement)

btrue =
m∑
i=1

wixi (noise free)

=
m∑
i=1

wiA(yi )︸ ︷︷ ︸ x
b = A(y) x + noise

y = (y1, y2, . . . , ym)
= registration parameters

Goal: Improve parameters y and
compute x
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Application: Patient Motion in Brain Imaging (PET, MRI)

Head movements during long scan time cause blur.
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Patient Motion in Brain Imaging

To correct for motion artifacts, we need:

Motion information, e.g., registration parameters

y

Mathematical function that relates motion distorted data to pristine
data, e.g.

b = A(y)x + e

Optimization method to “undo” the motion distortion

Often need to include constraints and/or regularization
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But sometimes relative

motion

between object and imaging device

is good.
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Application: Image Digital Super-Resolution

b1 = A(y1) x + e1
(collected low resolution images) 1−th low resolution image
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Application: Image Digital Super-Resolution

b8 = A(y8) x + e8
(collected low resolution images) 8−th low resolution image
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Application: Image Digital Super-Resolution

b15 = A(y15) x + e15
(collected low resolution images) 15−th low resolution image
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Application: Image Digital Super-Resolution

b22 = A(y22) x + e22
(collected low resolution images) 22−th low resolution image
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Application: Image Digital Super-Resolution

b29 = A(y29) x + e29
(collected low resolution images) 29−th low resolution image
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Application: Image Digital Super-Resolution

bj = A(yj) x + ej
(collected low resolution images) b1

...
bm


︸ ︷︷ ︸

=

 A(y1)
...

A(ym)


︸ ︷︷ ︸

x+

 e1
...
em


︸ ︷︷ ︸

b = A(y) x + e

y = registration parameters

Goal: Improve parameters y and
compute x

29−th low resolution image
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Application: Image Digital Super-Resolution

bj = A(yj) x + ej
(collected low resolution images) b1

...
bm


︸ ︷︷ ︸

=

 A(y1)
...

A(ym)


︸ ︷︷ ︸

x+

 e1
...
em


︸ ︷︷ ︸

b = A(y) x + e

y = registration parameters

Goal: Improve parameters y and
compute x

Reconstructed high resolution image
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The Linear Problem: b = Ax + e

The Linear Problem

Assume A = A(y) is known exactly.

We are given A and b, where

b = Ax + e

A is an ill-conditioned matrix, and we do not know e.

We want to compute an approximation of x.

The approximation x inv ≈ A−1b is usually very bad.

Need regularization.
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The Linear Problem: b = Ax + e

Regularization

Basic Idea: Instead of computing x inv = A−1b, use:

xreg = A−1regb

so that

x̂ = A−1regb

= A−1reg (Ax + e)

= A−1regAx + A−1rege

where

A−1regAx ≈ x and A−1rege is not too large

Object Motion and Image Reconstruction J. Nagy, Emory University



The Linear Problem: b = Ax + e

Regularization by Filtering

Some examples:

TSVD: If we can compute the SVD, A = UΣVT ,

xreg = VΣ†kU
Tb =

k∑
i=1

uTi b

σi
vi ,

Tikhonov

min
x

{
‖b− Ax‖22 + λ2‖x‖22

}
⇔ min

x

∥∥∥∥[ b
0

]
−
[

A
λI

]
x

∥∥∥∥2
2

Iterative (e.g., LSQR)

Apply LSQR to the (unregularized) problem, min ‖b− Ax‖2
Stop iteration early, when solution is good.
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The Linear Problem: b = Ax + e

Choosing Regularization Parameters

In each case need to choose regularization parameter:

TSVD – choose truncation index.

Tikhonov – choose λ

Iterative – choose stopping iteration.

Lots of choices: Generalized Cross Validation (GCV), L-curve, discrepancy
principle, ...
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The Linear Problem: b = Ax + e

Choosing Regularization Parameters

In each case need to choose regularization parameter:

TSVD – choose truncation index.

Tikhonov – choose λ

Iterative – choose stopping iteration.

Lots of choices: Generalized Cross Validation (GCV), L-curve, discrepancy
principle, ...

GCV and Tikhonov: Choose λ to minimize

GCV(λ) =

n
n∑

i=1

(
uTi b

σ2i + λ2

)2

(
n∑

i=1

1

σ2i + λ2

)2
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x inv.
Quality of reconstruction depends on λ.
But λ depends on A and b.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x inv.
Quality of reconstruction depends on λ.
But λ depends on A and b.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x inv.
Quality of reconstruction depends on λ.
But λ depends on A and b.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x inv.
Quality of reconstruction depends on λ.
But λ depends on A and b.
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The Linear Problem: b = Ax + e

Filtering for Large Scale Problems

Some remarks:

For large matrices, computing SVD is expensive.

SVD algorithms do not readily simplify for structured or sparse
matrices.

Alternative for large scale problems: LSQR iteration
(Paige and Saunders, ACM TOMS, 1982)
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The Linear Problem: b = Ax + e

Lanczos Bidiagonalization (LBD)

Given A and b, for k = 1, 2, ..., compute

Wk =
[
w1 w2 · · · wk wk+1

]
, w1 = b/||b||

Zk =
[
z1 z2 · · · zk

]

Bk =


α1

β2 α2

. . .
. . .

βk αk

βk+1


where Wk and Zk have orthonormal columns, and

ATWk = ZkB
T
k + αk+1zk+1e

T
k+1

AZk = WkBk
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The Linear Problem: b = Ax + e

LBD and LSQR

At kth LBD iteration, use QR to solve projected LS problem:

min
x∈R(Zk )

‖b− Ax‖22 = min
f
‖WT

k b− Bk f‖22 = min
f
‖βe1 − Bk f‖22

where xk = Zk f

For our ill-posed inverse problems:

Singular values of Bk converge to k largest sing. values of A.

Thus, xk is in a subspace that approximates a subspace spanned by
the large singular components of A.

For k < n, xk is a regularized solution.
xn = x inv = A−1b (bad approximation)
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : f = Bk \Wkb

xk = Zk f
is a regularized reconstruction.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : f = Bk \Wkb

xk = Zk f
is a regularized reconstruction.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for later iterations k : f = Bk \Wkb

xk = Zk f
is a noisy reconstruction.
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for later iterations k : f = Bk \Wkb

xk = Zk f
is a noisy reconstruction.
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The Linear Problem: b = Ax + e

Lanczos Based Hybrid Methods

To avoid noisy reconstructions, embed regularization in LBD:

O’Leary and Simmons, SISSC, 1981.

Björck, BIT 1988.

Björck, Grimme, and Van Dooren, BIT, 1994.

Larsen, PhD Thesis, 1998.

Hanke, BIT 2001.

Kilmer and O’Leary, SIMAX, 2001.

Kilmer, Hansen, Español, SISC 2007.

Chung, N, O’Leary, ETNA 2007
(HyBR Implementation)
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The Linear Problem: b = Ax + e

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

min
f

∥∥∥∥[ βe1
0

]
−
[

Bk

λI

]
f

∥∥∥∥2
2

Note: Bk is very small compared to A, so

Can use “expensive” methods to choose λ (e.g., GCV)

Can also use GCV information to estimate stopping iteration
(Björck, Grimme, and Van Dooren, BIT, 1994).
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

f = Bk \Wkb f =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zk f xk = Zk f
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

f = Bk \Wkb f =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zk f xk = Zk f
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

f = Bk \Wkb f =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zk f xk = Zk f
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The Linear Problem: b = Ax + e

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

f = Bk \Wkb f =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zk f xk = Zk f
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The Linear Problem: b = Ax + e

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

min
f

∥∥∥∥[ βe1
0

]
−
[

Bk

λI

]
f

∥∥∥∥2
2

Problems choosing regularization parameters:

Very little regularization is needed in early iterations.

GCV tends to choose too large λ for bidiagonal system.
Our remedy: Use a weighted GCV (Chung, N, O’Leary, 2007)

Can also use WGCV information to estimate stopping iteration
(approach similar to Björck, Grimme, and Van Dooren, BIT, 1994).
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The Linear Problem: b = Ax + e

Weighted GCV

If GCV tends to over or under smooth for class of problems, use:

GCV (λ) =
n||(I − AA†λ)b||2[

trace(I − ωAA†λ)
]2

ω = 1 ⇒ standard GCV

ω > 1 ⇒ smoother solutions

ω < 1 ⇒ less smooth solutions

Weighted GCV used in:

Friedman, Silverman (Technometrics, 1989)

Nychka, et al. (FUNFITS statistical toolbox, 1998)

Cummins, Filloon, Nychka (J. Am. Stat. Assoc., 2001)

Kim, Gu (Royal Stat. Soc. B, 2004)
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The Linear Problem: b = Ax + e

Interpretations of Modified GCV

Weighted “leave-one-out” prediction method.

trace
(
I − ωAA†λ

)
=

n∑
i=1

(1− φi ) + (1− ω)
n∑

i=1

φi ,

where φi =
σ2i

σ2i + λ2
(Tikhonov SVD filter factors)

If ω > 1, modified GCV function has poles when
n∑

i=1

φi =
n

ω
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The Linear Problem: b = Ax + e

How to choose ω?

GCV chooses too large λk at each iteration.

If we know λk,opt , find ω by solving

∂

∂λ
[G (ω, λ)]

∣∣∣∣
λ=λk,opt

= 0

At early iterations, we need little or no regularization, so

0 ≤ λk,opt ≤ σmin (Bk)

Adaptive approach:
Find ω̂k corresponding to λk,opt = σmin (Bk)
Use ωk =mean{ω̂1, ω̂2, . . . , ω̂k}

Object Motion and Image Reconstruction J. Nagy, Emory University



The Linear Problem: b = Ax + e

Examples: Regularization Tools, phillips
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The Linear Problem: b = Ax + e

Examples: Regularization Tools, shaw
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The Linear Problem: b = Ax + e

Examples: Regularization Tools, deriv2
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The Linear Problem: b = Ax + e

Examples: Regularization Tools, baart
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The Linear Problem: b = Ax + e

Examples: Regularization Tools, heat
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Application: Motion Correction in Brain Imaging

Example: Patient Motion in Medical Imaging

PET motion correction for brain imaging:

Head moves during data acquisition ⇒ reconstructed
brain image, b is distorted by motion blur.

Attach “cap” with fixed markers to patient head.

Motion detection camera records position of patient head.

Construct large, sparse matrix A from position
information.

Solve linear inverse problem, b = Ax + η.
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Application: Motion Correction in Brain Imaging

Example: Patient Motion in Medical Imaging

To construct matrix A:

Assume position at time t` is known.

Position information used to construct A` = A(y`), where

b` = A`x

is (unknown) image at time t`.

Motion blurred image is modeled as:

b =
m∑
`=1

w`b` + η

w` is normalization weight for the `th image (e.g, w` = 1
m ),

So, matrix modeling motion blur is

A =
m∑
`=1

w`A`.
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Application: Motion Correction in Brain Imaging

2D Simulations: Little Movement

b = Ax+ η x =HyBR(A, b)

0 10 20 30 40 50 60
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Iteration

A
lp

h
a

Object Motion and Image Reconstruction J. Nagy, Emory University



Application: Motion Correction in Brain Imaging

2D Simulations: More Movement

b = Ax+ η x =HyBR(A, b)
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Application: Motion Correction in Brain Imaging

2D Simulations: Large Movement

b = Ax+ η x =HyBR(A, b)
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Application: Motion Correction in Brain Imaging

Practical Issue: Cost of constructing A =
m∑
`=1

w`A`

Images are 3D, so each A` = A(y`) is at least 106 × 106.

Motion detection collects 20 position quaternions per
second.

Scan time ranges from 20 - 30 minutes.

Thus, there are m = 24,000 - 36,000 position quaternions.

To reduce setup cost, find bins with little movement:

Use average position quaternion in each bin.
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Application: Motion Correction in Brain Imaging

Multithreaded Java Implementation with ImageJ Plugin

http://sites.google.com/site/piotrwendykier/software
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The Nonlinear Problem: b = A(y) x + e

The Nonlinear Problem

Until this point, we consider:

b = A(y) x + e

with y assumed known.

Now assume y is not known.

Object Motion and Image Reconstruction J. Nagy, Emory University



The Nonlinear Problem: b = A(y) x + e

The Nonlinear Problem

We want to find x and y so that

b = A(y)x + e

With Tikhonov regularization, solve

min
x,y

∥∥∥∥[ A(y)
λI

]
x−

[
b
0

]∥∥∥∥2
2

As with linear problem, choosing a good regularization parameter λ is
important.

Problem is linear in x, nonlinear in y.

Often y ∈ Rp, x ∈ Rn, with p � n.
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The Nonlinear Problem: b = A(y) x + e

Solving Nonlinear Least Squares Problem

Options to solve nonlinear least squares problem:

Fully coupled approach:

xk , yk = arg min
x,y

{
‖A(y)x− b‖22 + λ‖x‖22

}
Decoupled approach: Block coordinate descent

xk = arg min
x

∥∥ ‖A(yk)x− b‖22 + λ2k‖x‖22
}

yk+1 = arg min
y

{
‖A(y)xk − b‖22 + λ2k‖xk‖22

}
Partially coupled approach: Variable Projection

yk = arg min
y

{
‖A(y)A†(y)b− b‖22 + λ2k‖A†(y)b‖22

}
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The Nonlinear Problem: b = A(y) x + e

Variable Projection

Variable Projection Method:

Implicitly eliminate linear term.

Optimize over nonlinear term.

Some general references:

Golub and Pereyra, SINUM 1973 (also IP 2003)
Kaufman, BIT 1975
Osborne, SINUM 1975 (also ETNA 2007)
Ruhe and Wedin, SIREV, 1980

How to apply to inverse problems?
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The Nonlinear Problem: b = A(y) x + e

Gauss-Newton Algorithm

choose initial y0

for k = 0, 1, 2, . . .

xk = arg min
x

∥∥∥∥[ A(yk)
λk I

]
x−

[
b
0

]∥∥∥∥
2

rk = b− A(yk) xk

dk = arg min
d
‖Jψd− rk‖2

yk+1 = yk + dk

end
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The Nonlinear Problem: b = A(y) x + e

Gauss-Newton Algorithm with HyBR

And we use HyBR to solve the linear subproblem:

choose initial y0

for k = 0, 1, 2, . . .

xk =HyBR(A(yk),b)

rk = b− A(yk) xk

dk = arg min
d
‖Jψd− rk‖2

yk+1 = yk + dk

end
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Examples

Example: Digital Super-Resolution

Basic idea:

Capture several images of a moving object: b1,b2, . . . ,bm

Combine different bi to get one (better) image: x

The problem is modeled as: b = A(y)x + e

b =

 b1
...
bm


A(y) describes geometric distortion on x to get bi

y defines geometric distortion (e.g., affine transformation)
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Examples

Example: Digital Super-Resolution

Measured Images
1−th low resolution image
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Examples

Example: Digital Super-Resolution

Measured Images
8−th low resolution image
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Examples

Example: Digital Super-Resolution

Measured Images
15−th low resolution image
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Examples

Example: Digital Super-Resolution

Measured Images
22−th low resolution image
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Examples

Example: Digital Super-Resolution

Measured Images
29−th low resolution image
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Examples

Example: Digital Super-Resolution

Measured Images
29−th low resolution image
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Examples

Example: Digital Super-Resolution

Gauss-Newton Iteration History

Fixed λ = 0.01 Fixed λ = 0.45 HyBR, variable λ

G-N Iteration ∆y λ ∆y λ ∆y λ
0 0.1182 0.01 0.1182 0.45 0.1182 0.1324
1 0.1024 0.01 0.0841 0.45 0.0876 0.1127
2 0.0921 0.01 0.1337 0.45 0.0745 0.1062
3 0.0854 0.01 0.2028 0.45 0.0680 0.1052
4 0.0811 0.01 0.2742 0.45 0.0641 0.1040
5 0.0783 0.01 0.3451 0.45 0.0614 0.1036
6 0.0764 0.01 0.4146 0.45 0.0593 0.1034
7 0.0750 0.01 0.4826 0.45 0.0576 0.1034
8 0.0740 0.01 0.5490 0.45 0.0575 0.1034
9 0.0733 0.01 0.6140 0.45 0.0575 0.1034

10 0.0726 0.01 0.6774 0.45 0.0574 0.1034
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Examples

Example: Digital Super-Resolution

True Image One Measured Image Reconstructed Image

Object Motion and Image Reconstruction J. Nagy, Emory University



Examples

Discussion Points

Advantages of variable projection:

Eliminate degrees of freedom associated with the image
⇒ low-dimensional reduced optimization problem.

Effective when the linear least squares problem can be solved
efficiently and to high accuracy.

Disadvantages of variable projection:

May not be able to solve linear least squares problem efficiently.

Adding constraints on the image intensities is more difficult.
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Examples

Discussion Points

Current work:

Applying ideas to MRI motion correction.

Fully coupled approach seems to behave better for this application.

Challenge: Hessian is much more complicated.

Remedy: Use PCG to solve Hessian system.

Challenge: Find a good preconditioner for Hessian.

Remedy: Some ideas, but not ready for prime time.
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Examples

MRI Motion Correction

MRI Motion Correction Problem: Given a set of MRI data sampled in
Fourier space b = (b1,b2, . . . ,bm), retrieve the motion parameters
y = (y1, y2, . . . ym) and a complex image x by solving a non-linear
optimization problem

min
x ,ω

1

2

m∑
k=1

‖DkFST (yk)x− bk‖22 +
α

2
R(x) (1)

where

Dk is block diagonal matrix representing the data sampling

F is block-diagonal matrix of 2D FFTs

S represents the coil sensitivities of the MRI machine

T (yk) is an interpolation matrix

R is a regularizer
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Examples

MRI Motion Correction

Figure: The top row displays the real part of the MRI data with the real part of
the reconstructed image on the far right, while the bottom row show the
imaginary part of both the data and reconstructed image. This reconstruction
used 16 samples and a random sampling pattern of the Fourier data.
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Concluding Remarks

Take Home Points

Motion can be good or bad.

In bad case, with some additional information and proper
mathematical models, we can effectively correct motion distortions.

In good case, can use additional information to improve resolution.

Some software:

MATLAB Software:
http://www.mathcs.emory.edu/∼nagy/RestoreTools
http://www.math.vt.edu/people/jmchung/hybr.html

Java Software, with ImageJ plugins:
http://sites.google.com/site/piotrwendykier/software
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