(Un)certainties in Radiation Dosimetry in Breast Imaging

Ioannis Sechopoulos, Ph.D., DABR Associate Professor Advanced X-ray Tomographic Imaging Lab Department of Radiology and Nuclear Medicine Radboud University Medical Center and LRCB – Dutch Reference Centre for Screening Nijmegen, the Netherlands

> advanced x-ray tomographic imaging

dutch reference centre for screening

Acknowledgements

Steve Feng, Ph.D. Greeshma Agasthya, Ph.D. Jessica Rice, B.S. Jessica Paulishen, MPH Ellen D'Orsi, R.T.(R)(M)

Carl J. D'Orsi, M.D. Baowei Fei, Ph.D. Kristina Bliznakova, Ph.D. Emil Sidky, Ph.D.

National Cancer Institute Susan G. Komen Foundation

Alejandro Rodriguez-Ruiz, M.S.

How much radiation dose does a patient get during a mammogram?

...and...

What does that mean?

Mammogram Acquisition

Medio-lateral oblique (MLO) View

CC View Mammograms

MLO View Mammograms

Absorbed Dose

Amount of energy deposited by x-rays in tissue Amount of tissue

Breast Composition

Average Glandular Dose

Amount of energy deposited by x-rays in glandular tissue

Amount of glandular tissue

What can we measure?

Air Kerma (K) → Dose ?

Average Glandular Dose

D = Air Kerma (K) * g c s

Obtained with Monte Carlo simulations

CC View Mammograms

MLO View Mammograms

Standard Breast Shape - CC View

Dance, PMB, 1980; 25(1): 25-37

Wu et al, Radiology, 1991; 179: 143-148

Standardized Breast Shape MLO View

Sechopoulos et al, Med Phys, 2007; 3(1): 221-232 Sechopoulos et al, JACMP, 2008; 9(4): 161-171

And the inside?

Hammerstein et al, Radiology, 1979; 130, 485–491.

Conversion factors

1216

D R Dance

Table 2. The conversion factor g which relates incident air kerma (without backscal dose for the 'standard' breast phantom.

HVL mm Al			$g (mGy mGy^{-1})$ for breast thicknesses of			
	2 cm	3 cm	4 cm	4.5 cm	5 cm	6 cm
0.25	0.339	0.234	0.174	0.155	0.137	0.112
0.30	0.390	0.274	0.207	0.183	0.164	0.135
0.35	0.433	0.309	0.235	0.208	0.187	0.154
0.40	0.473	0.342	0.261	0.232	0.209	0.172
0.45	0.509	0.374	0.289	0.258	0.232	0.192
0.50	0.543	0.406	0.318	0.285	0.258	0.214
0.55	0.573	0.437	0.346	0.311	0.287	0.236

Table 3. *s*-factors for clinically used spe are used.

Spectrum	s-factor	Maximum error (%)
Mo/Mo	1.000	3.1
Mo/Rh	1.017	2.2
Rh/Rh	1.061	3.6
Rh/Al	1.044	2.4
W/Rh	1.042	2.1

Average Glandular Dose

D = Air Kerma (K) * g c s

Phantom (Prospective) Dosimetry

Prospective (phantom) dosimetry

Bouwman et al, PMB, 60 (2015) 7893

Mammography Mean Glandular Dose (mGy)

Breast Thickness (cm)	14.3% Density	50% Density
2	0.313	0.376
5	0.775	1.20
8	1.66	2.28

Tomosynthesis Mean Glandular Dose (mGy)

Breast Thickness (cm)	14.3% Density	50% Density
2	0.735	0.670
5	1.48	1.30
8	3.07	2.64

Mammography and Tomosynthesis Dose

Table 8

Ratio of MGD for DBT (from Table 7) to MGD for FFDM (from Table 6)

Breast Thickness (cm)	1% Glandular Fraction	14.3% Glandular Fraction	25% Glandular Fraction	50% Glandular Fraction	75% Glandular Fraction	100% Glandular Fraction
2	2.45	2.35	1.87	1.76	1.65	1.65
3	2.08	1.67	1.28	1.19	1.14	1.11
4	2.63	2.11	1.86	1.27	1.19	1.16
5	2.36	1.88	1.53	1.08	0.930	0.880
6	1.90	1.83	1.95	1.25	1.12	1.00
7	2.26	1.76	1.39	1.12	0.810	0.700
8	2.13	1.85	1.47	1.16	0.820	0.670

(could we do better?)

Patient (Retrospective) Dosimetry

DICOM header

0018,0060 KVp: 31 0018,1000 Device Serial Number: 6250 0018,1020 Software Versions(s): VB41A(VX16B) (SL6: 0018,1030 Protocol Name: TOMO PROJ 0018,1110 Distance Source to Detector: 650 0018,1111 Distance Source to Patient: 633 0018,1114 ---: 1.0268562401264 0018,1138 ---: 0 0018,113A ---: NONE 0018,1147 Field of View Shape: RECTANGLE 0018,1149 Field of View Dimensions(s): 305\239 0018,1150 Exposure Time: 88 0018,1151 X-ray Tube Current: 121 0018,1152 Exposure: 11 0018,1153 Exposure in uAs: 10640 0018,1156 Rectification Type: CONST POTENTIAL 0018,1164 Imager Pixel Spacing: 0.085\0.085 0018,1166 Grid: FOCUSED\PARALLEL 0018,1190 Focal Spot(s): 0.3 0018,1191 Anode Target Material: TUNGSTEN 0018,11A0 Body Part Thickness: 72

IXT

Bouwman et al, Phys. Med. Biol. 60 (2015) 7893 Hendrick et al, AJR. 194 (2010) 362

Bouwman et al, Phys. Med. Biol. 60 (2015) 7893 Hendrick et al, AJR. 194 (2010) 362

DIXI

Bouwman et al, Phys. Med. Biol. 60 (2015) 7893 Hendrick et al, AJR. 194 (2010) 362

DIXI

Are these final?

After software upgrade...

So where are the uncertainties?

Standard Breast Shape - CC View

Dance, PMB, 1980; 25(1): 25-37

Wu et al, Radiology, 1991; 179: 143-148

Standardized Breast Shape MLO View

Sechopoulos et al, Med Phys, 2007; 3(1): 221-232 Sechopoulos et al, JACMP, 2008; 9(4): 161-171

Can we be more objective?

Principal Component Analysis

2D Model: From 1000 mammograms

Feng, Patel and Sechopoulos, Medical Physics, 2013, 40(3), 031902-1 - 12 Rodriguez-Ruiz et al, Medical Physics, under review

PCA Model Parameter Characterization

Clinical Distribution of PCA Parameter Values

Average CC view 0 5 10 15 0 Medial side ← Joint-model $Area = 155.4 \text{ cm}^2$ ← Feng et al. 2013 5 $\alpha = -0.884$ Patient average:¹ $\beta = 0.489$ 10 $\gamma = 0.403$ $Area = 157.3 \text{ cm}^2$ $\delta = 0.479$ $\epsilon = -0.114$ $\zeta = 0.00878$ 15 $\eta = 0.279$ $\theta = 0.0689$ $\iota = 0.0157$ $\kappa = 0.0514$ 20 $\lambda = 0.0802$ $\nu = -0.0591$ Lateral side CC average 25

Average MLO view

How about the 3rd dimension?

characterize this?

Acquisition of 3-D breast shape

http://www.david-3d.com/?section=Gallery

Patient scans

Agasthya et al, AAPM 2015

But what do these values of AGD mean?

Hammerstein et al, Radiology, 1979; 130, 485–491.

What the average human will look like in 2050 according to National Geographics.

So...

"detailed information will have to be obtained on the amount and distribution of gland tissue in many individual cases" before individual risk estimates can be made.

Hammerstein et al, Radiology, 1979

What is the error introduced by the homogeneous tissue approximation in breast dosimetry?

Courtesy of Koning Corp.

Automated Tissue Classification

Mechanical Breast Compression

Zyganitidis et al, Med. Biol. Eng. Comput. 2007, 45, 661-669.

Monte Carlo simulations

Sechopoulos et al, Medical Physics, 2012, 39(8), 5050-5059

Model-based Confirmation (N=219)

Mo anode: -35.3% (SD = 4.1) W anode: -24.2% (SD = 3.0)

Glandular tissue distribution

Huang et al, Med. Phys. 38(4), 2180, 2011

10.3

Sechopoulos et al, Medical Physics, 2012, 39(8), 5050-5059

Patient-Specific Breast Dosimetry

10.3

Sechopoulos et al, Medical Physics, 2012, 39(8), 5050-5059

DIGITAL BREAST TOMOSYNTHESIS

https://www.youtube.com/watch?v=qju-rw8MmHs

Courtesy of Hologic Inc.

Courtesy of Hologic Inc.

Patient-Specific Breast Dosimetry

Need a tomosynthesis image classification algorithm

Automated Tissue Classification

Image in the "wrong" direction

Option 1

Classify the reconstructed tomosynthesis image

Representative Classification - Fuji

Tomography

Gold Standard

Classification

Representative Classification -Phillips

Tomography

Gold Standard

Classification

Reconstruct to a binary (trinary?) image

Local tomography

Density maps

Patient-Specific Breast Dosimetry

4-year project
funded by the
Susan G. Komen
Foundation for the
Cure

How does dose translate to risk?

In short...

Breast dosimetry for QA/QC is well understood So are its shortcomings Patient-specific dose Possible with (pseudo-)3D imaging

