Collaboration between Industry and DTU Compute

Presentation given at Prof. Per Christian Hansens 40th anniversary Oscar Borries 26. August 2022

TICRA & me

- TICRA sells simulation software for antenna design. Our primary niche is the space segment.
- Industrial foundation. Around 50 mio DKK in revenue. 7 years ago we were ~20 employees, now we are ~40 people with ~25 phd's.
- Oscar: Mathematical engineer from DTU and Industrial Ph.D. with DTU & TICRA
 - (2006): First met Per Christian Hansen (PCH).
 - (2010): Took the CSI course with PCH as teacher.
 - (2011): Master thesis with TICRA and PCH as advisors.
 - (2012-2014): Industrial Ph.D. with TICRA and PCH as advisors.
 - (2014-Now): TICRA: Head of Mathematics & AI Team, Chairman of the Board
- Now: 2 quick slides on TICRA as a company.
- The rest of the talk: How colloboration with PCH (and SciComp team!) has helped shape TICRAs products over the last >12 years.

Applications

Planck Space Telescope

Eutelsat 9B (Ku)

NASA TDRS (S, Ku, Ka)

SKA

NASA SMAP(L)

Reflectarray

Helios Cmd. Station In Weilheim (S, Ka)

Key Customers

Satellite Manufacturers

LOCKHEED MARTIN We never forget who we're working for™

Satellite Operators

Space Agencies

12 years of collaboration in 25 minutes – please excuse the lack of details!

Design of antennas

Part 1 – Simulation

EM Simulation of a scattering problem

- Scattering analysis:
- An electromagnetic field is incident on a structure. How does the structure respond?
 - Platform scattering
 - Antenna coupling
 - Antenna interference
- Of main interest are reflector antennas, e.g. mounted on satellite platforms.
- Obtaining the induced current requires the solution of a large linear system of N equations.
- When we double the frequency, we require 16 to 64 times the computer resources: N² or N³
- Worked with PCH to reduce to N log N.

Planck Space Telescope

-50

--55

-65 -70 -75

Eutelsat-9B satellite in the Airbus Defense & Space anechoic test chamber.

Full simulation of a Telecom Satellite

Frequency	12 GHz
Electrical size	167,762 λ ²
Patches	105,436
Smallest patch	λ/200
Largest patch	2.2 λ
HO Unknowns	4,475,955
Equiv. RWG unknowns	22,000,000
Iterations	90
Runtime (2*Xeon @2.9 GHz)	2:50 hours
Memory	122 GB

Ku-band payload antenna

Planck Space Telescope

Full-wave simulation of the Planck Space Telescope

ESA's Planck Space Telescope

Frequency	30 GHz	44 GHz
Electrical size	168,477λ ²	362,413λ ²
HO Unknowns	5,337,075	11,397,375
Equiv. RWG unknowns	25 million	55 million
Iterations	101	139
Runtime (2*Xeon @2.9 GHz)	2:22 hours	7:09 hours
Memory	51 GB	125 GB

Part 2 – Optimisation

Optimisation

• General implementation ideas:

Applications

Application – Optimisation of antennas for GEO satellites

DTU

Application – Optimisation of antennas for GEO satellites

• Joint work with Anders Eltved & Martin S. Andersen, DTU Compute

$$\min_{\overline{X}} F(\overline{X}) = \max\left(\gamma_1 - F_1(\overline{X}), \gamma_2 - F_2(\overline{X}), \dots, \gamma_m - F_m(\overline{X})\right),$$

s.t. $\overline{\overline{A}} \overline{X} \le \overline{B}$

Part 3 – Uncertainty quantification

What is Uncertainty Quantification?

Result 1: Reflectarray for Cubesat

 Feed angle changes => full wave solution of platform scattering obtained in each UQ iteration

- Uncertainty on angles of deployed panels (\pm 0.2 deg.)
 - Root hinge
- Uncertainty on substrate permittivity and thickness
- Polynomial chaos expansion is used
 - 3 variables
 - 99% Confidence interval reported

Result 1: Reflectarray for Cubesat - Substrate Tolerance

Part 4 – Diagnosis + Inverse problems

TICRA

Background and motivation

Background

- Source reconstruction = *Find the currents that radiate a given electromagnetic field*
- Source reconstruction is of high relevance in a number of application areas:
 - antenna diagnostics
 - · near-field to far-field transformations and filtering
 - antenna placement investigations
 - radiation analyses of 5G devices

Motivation

- TICRA has, for the last decade, worked on expanding software to handle:
 - electrically large antennas
 - antennas on large scattering platforms
 - antenna arrays with hundreds or thousands of elements
 - high frequency antennas
- Still a challenging task

Software development projects (with PCH as advisor during projects)

• Development of Diagnostics tool

Commercially available source reconstruction software

DIATOOL

 Source reconstruction antenna diagnostics software by TICRA

- First version released in 2011, after PCH collaboration.
- Used CGLS applied to standard—form transformed problem.

Software features

- Uses measured antenna radiation field data as input, amplitude and phase information required
- Reconstructs near-fields and surface currents of an antenna under test → Antenna diagnostics through visual inspection
- Field transformation engine → Compute the radiation from an antenna under test at different locations in space
- Filter undesired radiation from measured radiated fields

Implementation of new source reconstruction solver

• The basis for source reconstruction is the equivalence principle:

Sources and scatterers enclosed inside a reconstruction surface (S), can be replaced by an equivalent set of surface current densities M $_{\rm S}$, J $_{\rm S}$ on S, such that these currents radiate the same fields E $^{\rm ext}$, H $^{\rm ext}$ outside the surface

Based on these surface current densities, a data equation can be set up, linking measurements and the equivalent currents:

• The solution to (1) is non-unique, which implies that a second condition is needed to find the unique currents:

Love's condition: $E^{int} = H^{int} = 0$ inside S , expressed as a boundary condition to (1)

$$- \left(\hat{\boldsymbol{n}} \times \mathcal{K} + \frac{1}{2} \right) \boldsymbol{J}_{S} - j\omega\epsilon_{o}\hat{\boldsymbol{n}} \times \mathcal{L}\boldsymbol{M}_{S} = 0 \\ -j\omega\mu_{o}\hat{\boldsymbol{n}} \times \mathcal{L}\boldsymbol{J}_{S} + \left(\hat{\boldsymbol{n}} \times \mathcal{K} + \frac{1}{2} \right) \boldsymbol{M}_{S} = 0 \end{cases} \begin{cases} \text{for} \\ \boldsymbol{R} \to S^{-} \end{cases}$$
(2)

- The solution to (1) and (2) are the sought after unique currents
- Most previous works are based on solving the coupled system of equations in (1) and (2). This approach is computationally expensive, and regularization is needed to balance the two conditions

Application case: defect slotted array antenna

- Antenna near-field measured by MI-Technologies in spherical range
- Operating at 9.4 GHz, antenna side length 0.5 m
- Faulty elements introduced by adding conductive tape to two of the radiating slots
- Same project analysed using both the SCGLS and Calderón reconstruction method

Solver Comp. time **Required memory** Number of unknowns [hh:mm] [GB] Pre-PCH 31 680 ? ? SCGLS 31 680 01:22 50.60 Calderón 31 680 00:05 0.87

- Good agreement in reconstructed currents achieved by the two methods
- Calderón method offers significant reduction in allocated memory and computation time

Application case: electrically large reflector antenna

- Operating at 12 GHz, reflector diameter (D) 1.6 m = 64λ , focal length (f) 1.6 m, clearance (D') 0.2 m
- Cut-outs of reflector rim for attachment points
- Circular hole in reflector with diameter of 0.1 m representing a surface defect
- Simulated in TICRA Tools framework, using the MoM/MLFMM solver in ESTEAM
- Antenna far-field computed over full sphere
- Random noise manually added to data corresponding to a signal-to-noise ratio of 60 dB

Source reconstruction problem

- Antenna far-field in amplitude and phase as input
- Rectangular box reconstruction surface enclosing the reflector
- Isolate the reflector surface defect and the impact of the reflector rim cut-outs

Reflector antenna in TICRA Tools

Reconstruction surface in DIATOOL

Application case: electrically very large reflector antenna

Solver	Number of unknowns	Comp. time [hh:mm]	Required memory [GB]
SCGLS	2 070 200	:	175 921
Calderón	2 070 200	02:14	27

- Reconstruction problem scaled up in electrical size: $D = 3.3 \text{ m} = 128\lambda$, f = 3.3 m, D' = 0.2 m, frequency = 12 GHz
- Inverse MoM solver in DIATOOL 1.1 would require over 170 TB of RAM!
- Calderón method only requires 27 GB RAM
- Defects clearly visible in reconstructed currents

Thank you

TICRA

Tel. +45 3312 4572

E-mail: info@ticra.com

Follow us on LinkedIn (in)

