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Abstract. Generative models are popular for medical imaging tasks such
as anomaly detection, feature extraction, data visualization, or image
generation. Since they are parameterized by deep learning models, they
are often sensitive to distribution shifts and unreliable when applied to
out-of-distribution data, creating a risk of, e.g. underrepresentation bias.
This behavior can be flagged using uncertainty quantification methods
for generative models, but their availability remains limited. We propose
SLUG: A new UQ method for VAEs that combines recent advances in
Laplace approximations with stochastic trace estimators to scale gracefully
with image dimensionality. We show that our UQ score – unlike the VAE’s
encoder variances – correlates strongly with reconstruction error and racial
underrepresentation bias for dermatological images. We also show how
pixel-wise uncertainty can detect out-of-distribution image content such
as ink, rulers, and patches, which is known to induce learning shortcuts
in predictive models.
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1 Introduction

Generative modeling is widely used in medical imaging due to its broad ap-
plications and impressive results [5]. Variational Autoencoders (VAEs) [18,27]
remain popular due to their semantic, low-dimensional latent spaces, which are
often used to analyze and manipulate key characteristics of high-dimensional
data, e.g. for data visualization [10], data generation [19], and anomaly detection
[30]. Furthermore, VAEs can be combined with other generative models to map
high-dimensional data to a lower dimensional space as in Stable Diffusion [28].

Despite these advantages, generative models are parameterized with modern
Deep Neural Networks (DNNs), which struggle out-of-distribution (OOD) [26].
To tackle OOD performance in predictive models, uncertainty quantification (UQ)
has emerged as an important tool [20], where the prediction is endowed with an
associated uncertainty. This has proven useful for detecting silent failures and
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Fig. 1: Performance correlates with skin tone representation when training der-
matological VAEs (left). However, the VAE’s standard deviations do not detect
this bias, illustrating why we need better UQ for generative models (right).

ensuring that unexpected outcomes do not occur. While UQ techniques have been
proposed and studied with promising success for discriminative models [1], their
applicability to generative models such as VAEs is underexplored. Fig.1 illustrates
the inability of VAEs to diagnose OOD with their inherent sample-wise standard
deviations, as previously reported in [22]. The adoption of a Bayesian approach
can help address this issue; however, current Bayesian generative models tend to
be computationally expensive, difficult to tune, or rely on uncorrelated posterior
approximations [24,9].

We propose a novel epistemic UQ method for VAEs building on the Sketched
Lanczos Uncertainty (SLU) algorithm recently proposed for discriminative mod-
els [23]. SLU computes a rank-k approximation of the generalized Gauss-Newton
(GNN) matrix, which captures the epistemic uncertainty according to a Laplace
approximation [15]. However, SLU scales quadratically with the output dimen-
sion, which is intractable in image-generative models. Our proposed Sketched
Lanczos Uncertainty Global (SLUG) measure overcomes this challenge using
scalable stochastic trace estimators [14] to produce a per-image score.

We demonstrate SLUG’s ability to detect underrepresentation bias and
OOD content in dermatological images. It is well known that dark skin tones
are severely underrepresented in public datasets and that AI systems tend to
reproduce and amplify this bias [12,22]. Furthermore, OOD image content such
as rulers, stickers or ink are well-known sources of shortcut learning problems as
they correlate with the clinical condition [4]. Our experiments show that SLUG
strongly correlates with the performance of the VAE and can serve to flag both
bias and out-of-distribution image content.

In short, we contribute a novel UQ method for VAEs that capture out-of-
distribution data both on pixel- and image level and demonstrate its utility in
flagging errors, underrepresentation bias, and out-of-distribution content using
three publicly available real-world dermatology datasets.
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2 Background and related work

2.1 Dermatological datasets help understanding AI errors

Racial bias is a known challenge for dermatological AI, often attributed to
an underrepresentation of darker skin tones in clinical data [3,16,2]. Previous
work [22] indicates, as also shown in Fig. 1, that this is not the only cause of bias:
Even models trained on dark skin perform better on light skin. This highlights
the need to flag high risk of underperformance, regardless of training data.

Efforts to address racial bias in dermatology have led to the creation of
large-scale image datasets that include metadata on skin tone, typically measured
using the Fitzpatrick Skin Type (FST) scale, which ranges from 1 (lightest) to
6 (darkest). The Fitzpatrick17k dataset is a key reference for assessing racial
bias in dermatology, covering FST 1–6 [12]. However, this dataset is imbalanced,
with underrepresentation of darker skin tones (FST 4–6), and studies have shown
that AI models in dermatology tend to underperform on these darker skin tones
[12]. The Diverse Dermatology Images dataset also highlighted similar biases [8].
The PASSION dataset [11], focusing on individuals from Sub-Saharan countries,
includes FST 3–6 and aims to address the limitations of datasets that primarily
focus on lighter skin tones.

Another popular dermatological dataset is the ISIC challenge dataset [6,29,7]
with skin lesions and cancer diagnoses. As ISIC does not report skin color and
primarily contains dermoscopic images of lighter skin tones, it is not useful for
assessing bias, but it has been used to highlight another type of AI error: Special
image content, such as rulers, ink, and patches, directly correlates with the diag-
nostic label [25]. These non-lesion features can be used as shortcuts by diagnostic
models, and it would be useful for an OOD method to highlight them [4].

2.2 Uncertainty quantification in VAEs

VAEs can estimate the density of high-dimensional data, such as images. However,
the predicted uncertainty depends on the quality of the likelihood estimated by the
DNNs parameterizing the VAE, which are poorly calibrated and often inaccurate.
To address this, some UQ methods have been proposed. Deep ensembles are
considered the gold standard but are computationally expensive [21], while Monte
Carlo dropout is easy to implement but has poor empirical performance [17].

Some studies have made efforts toward a scalable full Bayesian approach,
where a distribution over the weights of the VAE is computed. Daxberger et
al. [9] proposed a Bayesian VAE that replaced the decoder point estimate with
samples from the posterior using stochastic gradient Markov Chain Monte Carlo
(MCMC). Miani et al. [24] introduced a Laplace approximation to construct a
variational distribution over the weights of a VAE. These two works demonstrated
an improved capability to detect OOD data with VAEs. Our work aligns more
closely with the latter, as we aim to estimate post-hoc an approximation of the
Hessian of the loss function to compute uncertainty.



4 M. López-Pérez et al.

3 Method

Let fϕ,θ : RW×H×C → RW×H×C be a VAE decoder trained to generate images
of size W × H × C, parameterized by ϕ, θ ∈ Rp. We denote by J{ϕ,θ}(x) =

∇ϕ,θfϕ,θ(x) ∈ R(W×H×C)×p its Jacobian w.r.t. the parameters, evaluated at a
given image x ∈ RW×H×C . The Generalized Gaussian-Newton (GNN) matrix is
then defined as

G{ϕ,θ} =

n∑
i=1

J{ϕ,θ}(xi)
TH(xi)J{ϕ,θ}(xi), (1)

where H(xi) is the Hessian of the loss with respect to the neural network output.
The GGN commonly appears as the inverse covariance of the linearized

Laplace approximation (LLA) to the true posterior [15]. Currently, LLA is the
most promising Bayesian posterior approximation [15], but it is, unfortunately,
intractable for generative models as its computational cost scales quadratically
with the generated data dimension, specifically O((WHC)2p) for a network with
p parameters.

Recently, Miani et al. [23] developed a sketching-based algorithm to evaluate
the associated predictive uncertainty, which scales logarithmically with p. The
resulting Sketched Lanczos Uncertainty (SLU) algorithm, however, still scales
quadratically with the image dimension, making it impractical for VAEs. Our
approach extends SLU to scale gracefully to large images.

3.1 Generative model: Variational Autoencoder

A VAE is a probabilistic generative model with an autoencoder-like architecture
combining a stochastic encoder qϕ(x|z) (parameterized by ϕ), and a stochastic
decoder pθ(x|z) (parameterized by θ). VAEs utilize amortized variational inference
to learn these probability distributions by parameterizing them with DNNs, thus,
the uncertainty of this probability distribution does not generalize well out of
distribution.

The optimal variational parameters of the probability distributions, {θ, ϕ},
are computed by maximizing the marginal log-likelihood lower bound (ELBO):

ELBO(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]− KL(qϕ(z|x)||p(z)), (2)

where KL(qϕ(z|x)||p(z)) is the Kullback-Leibler (KL) divergence between the
approximate posterior qϕ(z|x) and the prior N (z|0, I). The first term in Eq. 2
corresponds to the mean square error (MSE) because we utilize a Gaussian
likelihood. To estimate the distribution pθ(z|x), we utilize the reparameterization
trick to obtain samples of the latent variable z = µ(x) + ϵ⊙ σ(x), ϵ ∼ N (0, I).

To ensure high-fidelity images, we train the VAE with a perceptual loss [13].
Instead of summing per-pixel losses, the perceptual loss is computed in the feature
space of a pretrained neural network Φ. The idea is that the feature space loss
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is perceptually more meaningful than the per-pixel MSE. The total loss of the
VAE is then

L({ϕ, θ}) = ELBO+
1

2ClW lH l

Cl∑
c=1

W l∑
w=1

Hl∑
h=1

(Φ(x)lc,w,h − Φ(fθ(x))c,w,h)
2, (3)

where Cl, H l,W l are the channels, height, and width of the l-th feature map of
the network, respectively.

3.2 Scaling to VAEs: Sketched Lanczos Uncertainty Global score
(SLUG)

We based our proposed score on the SLU algorithm [24], which we briefly review.
Let U denote the matrix containing the leading eigenvectors of the GGN (1),
then the SLU approximates the predictive variance of the linearized Laplace
approximation with I−UU⊤ is covariance, i.e.

SLU(x) = Tr(Jθ∗(x) (I−UU⊤) Jθ∗(x)⊤). (4)

SLU approximates this predictive uncertainty using several tricks from randomized
numerical linear algebra. These are essential to build a scalable approximation,
but, from our perspective, they can be treated as ‘black box’ and we refer the
reader to the original paper for the details [23].

Unfortunately, even SLU does not scale to neural networks with high-dimensional
outputs like those in generative models. Producing one predictive variance per
generated pixel requires O(WHC) SLU invocations, which is practically pro-
hibitive.

Our main interest is in measuring a scalar uncertainty score for a generated
image, and we choose the sum of per-pixel predictive variances, which we denote
the Sketched Lanczos Uncertainty Global (SLUG) score,

SLUG(x) =
∑
w,h,c

SLU(xw,h,c). (5)

As a naive implementation requires O(WHC) SLU invocations, we propose to
use a stochastic trace estimator [14] to approximate the sum,

SLUG(x) = Tr(Jθ∗(x) · (I−UU⊤) · Jθ∗(x)⊤) (6)

= Eϵ∼p(ϵ)

[
ϵJθ∗(x) (I−UU⊤) Jθ∗(x)⊤ϵ⊤

]
(7)

≈ 1

S

S∑
s=1

ϵsJθ∗(x) (I−UU⊤) Jθ∗(x)⊤ϵ⊤s ,

where ϵs ∼ N (0, I). This can be implemented using only S invocations of SLU.
A near-identical estimator of per-pixel variances can be constructed by replacing
the stochastic trace estimate with a stochastic estimate of the matrix diagonal,
which, again, can be realized using S SLU invocations.
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4 Experiments

Datasets. In our experiments, we use three real-world datasets from dermatology.
For all experiments, we train a VAE on the Fitzpatrick17k dataset [12], which
is a large publicly available dataset under license (CC BY-NC-SA), consisting of
16,577 images from two dermatological atlases with corresponding FST labels.
To assess the influece of skin tone representation in the training set, we divide
this dataset in lighter skin tones (FST 1-2) and darker skin tones (FST 5-6), and
independently sample three different datasets for each run, which are defined as
follows: The ‘Dataset A – Light’ has 100% of lighter images, the ‘Dataset B –
Mixed’ set has 50/50, and the ‘Dataset C – Black’ set has 100% of darker images,
with total size of 1668 samples each of them. We also sample two test sets for
lighter and darker skin tones with 512 samples each. We utilize the PASSION
dataset [11], publicly available under license (CC BY-NC), for external validation
to assess the racial bias of the model. This publicly available dataset includes
4,901 dermatology images from different Subsaharian countries with darker skin
tones (from FST3 to FST6). We utilize the ISIC dataset [6,29,7], publicly
available, where one subset is under license (CC BY-NC), and the remainder
under (CC0), to validate the pixelwise OOD detection in dermatology. This
dataset contains dermatological lesions as well as some OOD elements.

VAE architecture and implementation details. The encoder and decoder
are composed of residual blocks, along with down-sampling and up-sampling
paths, respectively. Each convolutional block employs batch normalization and
ELU activation. We train the models for 1000 epochs, after which we observe
convergence in the training loss. The optimizer used was Adam, with a cosine
decay scheduler. Training was performed using mini-batches of 64 samples. We
resize all images to 128 × 128 and perform 10 independent runs. For the un-
certainty quantification score, we utilize S = 500 samples. The experiments
were implemented with JAX 4.37, Flax 0.10.2, CUDA 12.7, and executed on an
NVIDIA Tesla V100 with 32 GB of memory.

Racial bias in the Fitzpatrick17k dataset. On Dataset B – Mixed, we
compute the correlation between our proposed SLUG score and the VAE’s
performance error (see Fig. 4). These are strongly correlated, meaning that the
SLUG score serves as a proxy for detecting errors. Fig. 2 demonstrates that this
relation also remains on the skin tone subgroup level, meaning that SLUG also
captures racial bias – in strong contrast to the VAE’s latent uncertainty.

Racial bias in the external PASSION dataset. We calculate the MSE and
SLUG score in the external dataset PASSION for each training configuration. In
this dataset, we find a similar bias as the performance worsens as the skin tone
is darker (see Fig. 3). We observe that the SLUG score is also able to capture
this racial bias in the external dataset.
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Fig. 2: On Fitzpatrick17k, the performance on light and dark skin tones changes
with their representation. The VAE encoder uncertainty is a poor indicator, while
SLUG follows performance across groups and training scenarios.

Fig. 3: On the external PASSION dataset, we see again how reduced MSE is
flagged by increased SLUG uncertainty across dark skin tone groups.

OOD image content detection in the external ISIC dataset. We qualita-
tively analyze the ability of our SLUG score to detect OOD content in dermatology
images, see four illustrative examples in Fig. 4. The MSE and UQ maps are
computed by normalizing the pixel-wise uncertainties to the [0-1] interval and
displayed as RGB images. Note that the rulers, ink and patch are all highlighted
well. An interesting observation is that in B and C, the lesion also exhibits high
uncertainty, but lower than that of the OOD objects. On the other hand, as the
VAE reconstructs the OOD objects well, the MSE is unable to flag them.

5 Discussion and Conclusion

This work highlights the urgent need for precise and scalable UQ for generative
models. Despite the widespread use of generative AI, we still lack a reliable
mechanism to ensure its trustworthiness. We demonstrate that epistemic UQ can
warn of performance loss, highlight biases, and detect OOD image content.
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Fig. 4: Left: On Fitzpatrick17k (Dataset B – Mixed), our SLUG score strongly cor-
relates with the MSE. Center: On Fitzpatrick17k, removing samples with higher
uncertainty results in consistent improvements. Right: On ISIC, the VAE recon-
structs OOD data, but SLU detects the OOD content in dermatological images.

SLUG detects bias. As shown by [22], generative models such as VAEs can
suffer from racial bias in dermatology imaging, and the intrinsic latent standard
deviation of the VAE is unable to capture this bias. Our proposed SLUG score,
conversely, strongly correlates with VAE performance in reconstructing images,
also on skin tone subgroups in the Fitzpatrick17k and PASSION datasets. This
shows the SLUG score’s ability to capture racial bias.

Our results insinuate that this bias arises partially from subgroup represen-
tation – but representation does not explain all: Both MSE error and SLUG
uncertainty are consistently higher for dark skin tones even when the VAE is
trained exclusively on images of dark skin. Moreover, when training on exclusively
dark skin images, performance is lower for all skin tone groups in both test sets
than when training on a balanced selection of skin tones. This suggests that
something else is at play. We hypothesize that a potential explanation could
be higher variability and hence more complex image distribution for the dark
skinned images – this could e.g. happen if inclusion criteria are relaxed for a
potentially harder-to-recruit black population. Discovering the true causes of bias
therefore remains an important open challenge. Meanwhile, we note that even if
we do not know the complete cause of bias, our SLUG score is still able to warn
against it when deployed in clinical practice.

SLUG detects OOD image content. We have demonstrated that our
epistemic UQ, when applied pixelwise, is useful for detecting OOD content within
dermatology images. These OOD elements could include items such as a ruler,
which does not contain diagnostic information but correlates with the diagnosis
and may serve as a shortcut for discriminative models. The uncertainty map’s
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ability to highlight this OOD image content could prove useful also for avoiding
shortcut problems.

The main limitation of our work is that the computation of pixelwise
uncertainty does not scale well, posing a bottleneck for high-resolution or 3D
images. In summary, however, our model and results highlight that UQ for
generative models show excellent potential for safeguarding their
utilization.
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