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Enforcing known constraints in data models often provides more faithful
data representations and stronger results than simple Euclidean approaches.
Constraints lead to nonlinear data spaces such as Riemannian manifolds or
more general metric spaces. Data types typically modeled this way include
shapes, DTI tensors, symmetric positive definite matrices, human poses,
probability distributions and graphs. However, data analysis methods in
nonlinear spaces often suffer from lack of computational efficiency, accu-
racy or both. Motivated by this, a recent trend in computer vision has been
to define kernel methods in nonlinear data spaces. A popular way to gen-
erate kernels on nonlinear data spaces is through exponential kernels k(x,y)
which only rely on geodesic distances d(x,y) between observations:

k(x,y) = exp(−λ (d(x,y))q) , λ ,q > 0. (1)

For q = 2 this gives a geodesic generalization of the Gaussian kernel, and
q = 1 gives the geodesic Laplacian kernel. While this idea has an appealing
similarity to familiar Euclidean kernel methods, we show that it is highly
limited if the metric space is curved. In Theorem 1 of this paper we prove
that geodesic Gaussian kernels on metric spaces are positive definite
(PD) for all λ > 0 only if the metric space is flat.

Theorem 1 Let (X ,d) be a geodesic metric space, and assume that k(x,y)=
exp(−λd2(x,y)) is a PD geodesic Gaussian kernel on X for all λ > 0. Then
(X ,d) is flat in the sense of Alexandrov.

This is a negative result, in the sense that most metric spaces of interest
are not flat. As a straightforward consequence of Theorem 1, we show that
geodesic Gaussian kernels on Riemannian manifolds are PD for all λ >
0 only if the Riemannian manifold is a Euclidean space:

Theorem 2 Let M be a complete, smooth Riemannian manifold with its
associated geodesic distance metric d. Assume, moreover, that k(x,y) =
exp(−λd2(x,y)) is a PD geodesic Gaussian kernel for all λ > 0. Then the
Riemannian manifold M is isometric to a Euclidean space.

These two theorems raise several points. The first and main point is
that defining geodesic Gaussian kernels on Riemannian manifolds or other
geodesic metric spaces has limited applicability as most relevant spaces are
curved. In particular, on Riemannian manifolds the kernels will generally
only be PD if the original data space is Euclidean, in which case the geodesic
Gaussian kernel is just the standard Gaussian kernel.

Second, this result is not surprising: Curvature cannot be captured by
a flat space, and the classical Schönberg theorem indicates a strong connec-
tion between PD Gaussian kernels and linearity of the employed distance
measure. This is made explicit by Theorems 1 and 2.

Third, do these results depend on the choice q = 2 in Equation (1)? For
Riemannian manifolds, a higher power q > 2 never leads to a PD kernel for
all λ > 0:

Theorem 3 Let M be a Riemannian manifold with its associated geodesic
distance metric d, and let q > 2. Then there is some λ > 0 so that the kernel
in Equation (1) is not PD.
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Extends to general
Kernel Metric spaces Riemannian manifolds
Gaussian (q = 2) No (only if flat) No (only if Euclidean)
Laplacian (q = 1) Yes, iff metric is CND Yes, iff metric is CND
Geodesic exp. (q > 2) Not known No

Table 1: Overview of results: For a geodesic metric, when is the geodesic
exponential kernel in Equation (1) positive definite for all λ > 0?

Geodesic metric
Chordal metricGeodesic metric

Chordal metric Figure 1: The sphere Sd ⊂ Rd+1 is an ex-
ample of a popular manifold data space
parametrizing e.g. SIFT features or proba-
bility distributions. The Euclidean chordal
metric on Sd ⊂ Rd+1 is measured directly
in Rd+1 and therefore relies on the embed-
ding, while the geodesic metric is measured
along Sd .

The existence of a λ > 0 such that the kernel is not PD may seem inno-
cent, but this means that the kernel bandwidth parameter cannot be learned.

In contrast, the choice q = 1 in Equation (1), giving a geodesic Lapla-
cian kernel, leads to a more positive result: The geodesic Laplacian kernel
will be positive definite if and only if the distance d is conditionally nega-
tive definite (CND). This provides a PD kernel framework which, for sev-
eral popular Riemannian data manifolds, takes advantage of the geodesic
distance.

Theorem 4 i) The geodesic distance d in a geodesic metric space (X ,d)
is CND if and only if the corresponding geodesic Laplacian kernel is
PD for all λ > 0.

ii) In this case, the square root metric d√ (x,y) =
√

d(x,y) is also a
distance metric, and (X ,d√ ) can be isometrically embedded as a
metric space into a Hilbert space H.

iii) The square root metric d√ is not a geodesic metric, and d√ cor-
responds to the chordal metric in H, not the intrinsic metric on the
image of X in H.

In Theorem 4, for φ : X → H, the chordal metric ‖φ(x)−φ(y)‖H mea-
sures distances directly in H rather than intrinsically in the image φ(X)⊂H,
see also Fig. 1.

We study PD’ness of Laplacian kernels in several popular data spaces;
see Table 2. Part ii) of Theorem 4 illustrates that any geodesic metric space
whose geodesic Laplacian kernel is always PD must necessarily have strong
linear properties: Its square root metric is isometrically embeddable in a
Hilbert space. This illustrates an intuitively simple point: A PD kernel has
no choice but to linearize the data space through the reproducing kernel
Hilbert space. Therefore, its ability to capture the original data space geom-
etry is deeply connected to the linear properties of the original metric.

Space Distance metric PD Gaussian PD Laplacian
kernel? kernel?

Rn Euclidean metric X X
Rn, n > 2 lq-norm ‖ · ‖q, q > 2 ÷ ÷
Sphere Sn classical intrinsic ÷ X

Real projective space Pn(R) classical intrinsic ÷ ÷
Grassmannian classical intrinsic ÷ ÷

Sym+
d Frobenius X X

Sym+
d Log-Euclidean X X

Sym+
d Affine invariant ÷ ÷

Sym+
d Fisher information metric ÷ ÷

Hyperbolic space Hn classical intrinsic ÷ X
1-dimensional normal distributions Fisher information metric ÷ X

Metric trees tree metric ÷ X
Geometric graphs (e.g. kNN) shortest path distance ÷ ÷

Strings string edit distance ÷ ÷
Trees, graphs tree/graph edit distance ÷ ÷

Table 2: For a set of popular metric and manifold data spaces and metrics,
we record whether the metric is a geodesic metric, and whether its corre-
sponding Gaussian and Laplacian kernels are PD.
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