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Protein sequence models have evolved from simple statistics
of aligned families to versatile foundation models of evolu-
tionary scale. Enabled by self-supervised learning and an
abundance of protein sequence data, such foundation models
now play a central role in protein science. They facilitate rich
representations, powerful generative design, and fine-tuning
across diverse domains. In this review, we trace modeling
developments and categorize them into methodological trends
over the modalities they describe and the contexts they con-
dition upon. Following a brief historical overview, we focus our
attention on the most recent trends and outline future
perspectives.
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Introduction

We have long modeled protein traits statistically. Sta-
tistical modeling aims to generalize from limited
observed data to establish general relationships between
entities of interest and make useful downstream pre-
dictions. To #7ain a statistical model, we need examples
of matching input and output data. In our context, the
input data would be a protein sequence, and output
values could be any measurable quantity of interest, e.g.,

protein stability. Often, our ability to train models is
hampered by only having limited experimental data.
However, this scarcity relates only to the owtpur
values—we typically have an abundance of protein
sequence data available, for which we do not have
corresponding experimental output observations. This
problem of a lack of /abeled data is common to many
domains, and the machine learning community has
developed various techniques for learning models from
only input data. These approaches are typically designed
to learn abstract vector representations or embeddings of the
input data, aiming to capture inherent patterns in the
input, making it easier to subsequently learn the output
trait of interest. The primary technique used for
learning representations is called se/f-supervised learning,
where models are given only partial observations and are
asked to predict the missing parts.

Following developments in natural language processing,
self-supervised models of protein sequences have grown
in complexity and size, requiring months of training
time on large compute clusters [1]. Many varieties of
these models now exist, differing in training objectives
and input modalities. Simultaneously, their applicability
has broadened beyond providing representations. Their
generative capabilities are used directly in protein
design [2], their likelihoods are used for zero-shot pre-
dictions [3]," and they are increasingly fine-tuned before
being used for downstream prediction tasks [4—6]. For
these reasons, the focus has moved from representations
to the large self-supervised models that the represen-
tations can be extracted from. These models have
already shown substantial real-world impact, e.g. in the
field of protein design [7]. They are now often referred
to as foundation models.

In this review, we outline the historical trajectory of
generative protein models, emphasizing the crucial shift
from local models over aligned sequences to global
models over large sets of sequences, culminating in the
ongoing surge of novel foundation models. We discuss
key open questions, such as the role of representations,

! Zero-shot learning refers to the setting where a model is used to make predictions
on a task that it was not trained on. In protein language modeling it is frequently used
to describe the ability of models trained on sequence data to predict variant effects
(e.g., change in stability) through the likelihood.
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the potential for incorporating new modalities, and the
future impact of scaling, to provide a qualitative over-
view of the state-of-the-art and offer perspectives on
future directions.

Early generative models of protein
sequences

Protein foundation models can be designed in different
ways. For pure representation-learning purposes, one
approach is to construct vector representations such that
distances in vector space approximate a meaningful
metric in output space [8], or adhere to contrastive
learning objectives [9,10] whereby models learn to
recognize similar examples as being related while
distinguishing them from dissimilar ones. In the current
literature, foundation models are often defined to entail
the ability to generate sequences. We will follow this
definition in our review. Such generative models are
trained through self-supervised training, e.g. auto-
regressively (one position at a time, conditioned on all
preceding positions) or through masked language
modeling (predicting masked positions conditioned on
unmasked positions). We can think of these models as
approximating a distribution over protein sequences.Z
The difference between such models is how they
define context, i.c., what the probability distribution is
conditioned on.

To understand these differences, it is fruitful to consider
the origins of generative models for protein sequences
(see Figure 1). The simplest of such models focuses on
proteins within a single family and rely on the sequences
being aligned prior to modeling. Once equivalent posi-
tions in related proteins are placed neatly underneath
each other in columns, the statistical modeling of amino
acid propensities involves only simple counting statis-
tics [12]. This leads to site-independent models
(e.g. position-specific scoring matrices), which assign
probabilities to each amino acid at a given position, but
are limited by their assumption that positions evolve
independently. To overcome this, pairwise models
(e.g. Potts models) were introduced to capture co-
evolution between amino acid pairs, offering a more
expressive view of sequences and forming the basis for
contact prediction, which provided insights into the
spatial arrangement of residues in protein structures
[13]. Later, the DeepSequence model [14] demon-
strated that it was possible to capture higher-order
residue dependencies with a variational autoencoder
and provided an early example of learned pro-
tein representations.

Despite an abundance of successful applications in
bioinformatics, the reliance on aligned sequences con-
stitutes a substantial modeling limitation. It restricts

% Although masked language modeling does not trivially correspond to a maximum
likelihood over protein sequences, it has been shown to be an approximation [11].

models to consider only proteins that are relatively
similar, preventing generalization beyond single protein
families. Furthermore, for proteins with few known rel-
atives, it can be expensive or even impossible to find
homologous sequences, making it difficult to find pat-
terns for proteins that are functionally similar but
divergent in sequence. Sequentia/ models were proposed
as a potential remedy to these issues. The first examples
were hidden Markov models (HMMs). The HMM-
framework provides efficient algorithms for evaluating
conditional probabilities, for sampling, and for calcu-
lating most probable representations (state sequences),
making it an attractive model class. Initially, these
models were employed for single protein families [15],
where they defined discrete states for the amino acid
composition at each position and for insertions and de-
letions. HMMs were since developed for broader fam-
ilies such as transmembrane proteins and proteins with
signal peptides (see, e.g. Ref. [16], for a review). In later
work, the predefined state connectivity was replaced
with learned transition probabilities, making it possible
to scale to larger state spaces and allowing for expressive
probabilistic models of local protein sequence and
structure [17,18]. As the number of discrete states in
these models increased, they became increasingly
decoupled from predefined interpretations and more
reminiscent of the abstract learned representations of
current foundation models.

The Markov property3 of HMM s is both a blessing and a
curse. On one hand, the assumption results in a flexible
and convenient model class providing grammatical rigor,
interpretability, and feasibility for small datasets. On the
other hand, it places strong limitations on the expres-
sivity of the model. The rise of deep learning brought
ways to expand the contextual information. Early
methods such as ProtVec [19] directly predicted amino
acid propensities in the context of a surrounding £-mer,
and later, recurrent neural networks such as UniRep [20]
provided consistent models for entire sequences,
replacing HMMs as the preferred sequential modeling
architecture. A further expansion of context was seen in
models that conditioned on 3D structure; early efforts in
this direction used convolutional neural networks of the
structural environment around a site to predict its amino
acid propensities [21,22] This was later extended to
entire sequences in werse folding models [23,24].
Common to these methods was that they were trained
on large databases of diverse proteins. This made it
possible to consider the internal vectors within these
models as universal protein representations, which could
be used as input when training prediction algorithms for
downstream tasks. With these developments, it became
natural to invest compute resources to prefrain a model
once, and then make it available as a resource to the

3 The Markov property dictates that the context at one position in the chain can
only depend on the context at the previous position.
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Comparison of protein models based on parameter count. To facilitate comparison, we imagine a scenario where family-specific, alignment-based models
are trained on all known protein families, thus constituting the equivalent of a foundation model. In doing so, we assume an average protein length of 200
amino acids and a number of families as given by Pfam at 1998 (lower bar) and 2021 (upper bar). This illustrates that non-Markovian alignment-based
models like the Potts model and the DeepSequence model are as “overparameterized” as many current protein language models.

community, thus laying the groundwork for the notion of
a foundation model.

Foundation models of protein sequences
The last few years have produced a wealth of new self-
supervised models of proteins. While potentially over-
whelming, they can generally be understood as natural
extensions of the earlier trends presented above. We will
describe the main directions below and refer to Figure 1
for an overview.

Protein sequences as sentences

Protein language models (pLMs) have emerged from
developments in the rich natural language processing
literature and have proved to be both powerful and
flexible alternatives to traditional statistical approaches.
Considering protein sequences as sentences and indi-
vidual amino acids as words, these models are typically
tasked with either predicting amino acids masked at
random or causally masked.” Compared with the UniRep
model described above, the main developments concern
the choice of neural network architecture. While UniRep
summarizes the amino acid sequence into a single rep-
resentation, transformer-based models specifically refer
to other parts in the sequence through an azzention
mechanism. Notable early transformer-based pLMs
include ProtTrans [25], ProteinBert [26], and the first
iteration of the ESM series of models [3,27,28]. These
demonstrate impressive capabilities across multiple
domains, from capturing biophysical features to

* Auto-regressive models typically employ a causal masking strategy, where the
model is trained to predict the next sequence element, conditioned on preceding ones.

encoding remote homology and predicting protein
properties and variant effects.

Subsequent advances for protein language models
include training on larger and more diverse sets of pro-
tein sequences and increasing model capacity as visu-
alized from the sequence models of Figure 2. Examples
are ESM-2 [1] and ProGen2, where the latter is also
trained on sequences from the BFD metagenomic
database in addition to non-redundant sets from
UniProtKB [2]. Pushing the envelope of model capacity,
recent protein language models with up to 100 billion
parameters are being introduced, such as xTrimoPGLM
[29] and ESM-3 [30], achieving improved performance
across various discriminative and generative tasks.

As a complement to these high-capacity models, several
recent works [31—34] examine the training methodol-
ogy of pLMs and provide guidance on including bio-
logically aligned modeling assumptions (izductive biases),
whereas others investigate compute-optimality [35,36];
Ankh [37] notably provided state-of-the-art results
while decreasing model size.

Other innovations include language models over entire
multiple sequence alignments with the MSA trans-
former [28], inference-time retrieval for improved zero-
shot fitness predictions with Tranception [38], and more
recently, sequences-of-sequences modeling of whole
protein families with retrieval-augmented capabilities
with PoET [39]. To handle long sequences, ProtHyena
[40] and linear state-space approaches like PTM-
Mamba [41] aim to develop efficient alternatives to
attention. While these models currently do not reach

Current Opinion in Structural Biology 2025, 91:103004
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the state-of-the-art in established protein evaluation
settings, they may prove essential for scaling to longer
proteins or other biological sequences like DNA [42].

Finally, after diffusion-based models have become
ubiquitous in the image domain (and in the protein 3D
structure domain—see below), we now see such models
applied to protein sequences [43—45]. While diffusion
models display competitive performance in generation,
they generally lack explicit extraction of representa-
tions, currently making them less generally applicable as
foundation models. However, recent models such as
DPLM [46] have proposed potential solutions to this
problem, and we are likely to see further exploration of
this model class in the immediate future.

From structure to sequence

With the advent of AlphaFold2 [47], the availability of
structural data has sharply increased, converting struc-
tures from a scarce data modality into a standard feature
for protein modeling. As a consequence, structure-based
self-supervised learning can now be conducted on a
scale similar to that of sequence-based models. Many
models follow the inverse folding strategy, letting
structure serve as the context for sequence prediction,
including ProteinMPNN [48] and ESM-IF1 [49]. Newer
instances of inverse folding models such as KW-Design
[50] and MIF-ST [51] incorporate pretrained pLLMs for
improved performance, while others use a recycling
method similar to that of AlphaFold2 for refining
sequence generation, e.g. CarbonDesign [52].

How best to combine sequence and structure is an open
area of research [53—57]. Recent models [30,58,59]
incorporate 3D structure by expanding the amino acid
vocabularies with structural tokens such as those of
FoldSeek’s 3Di vocabulary [60]. A notable example is
the SaProt model [59], which is the current state-of-
the-art for both zero-shot predictions and supervised
training of downstream tasks.

Joint sequence-—structure models

Constructing generative models of 3D protein structure
was long considered a highly challenging problem, due
to the many angular and distance constraints in such
systems. Diffusion models have in the last few years
proven themselves as an elegant solution to this prob-
lem, making it possible to generate coherent protein
backbone structures. When combined with a pretrained
inverse folding model, this provides a path toward joint
distribution of protein sequence and structure. Promi-
nent early examples of this approach include the
Chroma [61] and RFdiffusion [62] models.

More recent methods in &¢ novo protein generation
jointly generate structure and sequence (coined “co-
design”). This emerging area of research has produced a
number of recent contributions. One example is

Foundation models of protein sequences Bjerregaard etal. 5

ProteinGenerator [63] which offers flexible sequence
conditioning as a natural complement to the structure
guidance capabilities of models like Chroma and RFdif-
fusion by gradually denoising the sequence and itera-
tively predicting the structure with a folding component.
Other examples are Protpardelle [64] that denoise the
structure and iteratively predicts the sequence with an
inverse folding model, while Multifiow [65] combines
them with a discrete flow-based approach.

Multi-modal protein models

New modalities beyond primary and tertiary structures
are increasingly being explored, such as the combination
of protein language modeling with knowledge graphs of
gene ontologies [66,67]. Other approaches utilize
alternate modalities for conditioning, for example
ZymCTRL [68] that directly conditions on enzyme
commission numbers for guided generation. Several
recent models combine protein language models with
sequence- and residue-level annotations from databases
like Swiss-Prot [69] for additional context during
training and inference. These methods often utilize
separate text encoders like SCIBERT [70] to embed the
textual protein descriptions. The embeddings are sub-
sequently combined with protein sequence represen-
tations either via contrastive approaches such as in
ProtST [71], ProteinDT [72], and ProTrek [73] or
protein language modeling frameworks such as in PAIR
[74] and Prot2Text [75]. Inspired by current trends in
multi-modal language processing, the recent ESM-3
model [30] fuses distinct modality tracks into a single
latent space, providing rich representations while
maintaining a high degree of flexibility.

Multi-modal foundation models belong to a nascent
model category and have yet to be tested as extensively
and rigorously as earlier models, in part due to the va-
riety of novel problems they aim to solve. However, they
have already begun to show competitive results across
diverse tasks and will likely dominate in the
coming years.

Discussion and future perspectives

Changing perspective from representations to
foundation models

The focus of the community is shifting from representa-
tions to the foundation models that harbor them as illus-
trated in the overview above. Five years ago, embeddings
from pretrained models were envisioned as wniversal
representations of proteins [20], and the ubiquitous
applicability of representations has indeed been
confirmed by the wealth of openly available foundation
models and downstream tools. However, rather than
static representations of proteins, it seems more fruitful
today to think of them as baselines or priors that can be
optimized further for downstream tasks and specific
subdomains. This trend is particularly evident in

www.sciencedirect.com
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supervised transfer learning, where fine-tuning methods
have become the @ facto standard, showing significant
quantitative improvements when compared with fixed
embeddings [4—6]. The likelihoods and generative ca-
pabilities of foundation models themselves are also
increasingly used as a goal in itself [61,62] rather than as
a means to obtain an informative representation.

Despite the focus on foundation models, we should not
understate the usefulness of the notion of a protein
representation. Even static representations will remain
of interest as low-cost, strong baselines for downstream
predictions tasks, and they can provide functionality
that is difficult to obtain otherwise, e.g. for remote ho-
mology detection or interpretability through visualiza-
tion. However, if we are to take representations
seriously, it could require actively considering the
properties that we desire from them, rather than
extracting them in an « /oc fashion from the layers of a
foundation model. We have previously argued that it
might be beneficial to construct representations that
support a predefined set of useful operations [76],
which relates to discussions of disentangled and
decomposed representations [77]. As a field, it would be
useful to consider which features in protein space can be
meaningfully disentangled.

Managing richer contexts

Although current foundation models encompass many
aspects of proteins, they are not yet complete descriptions
of proteins. There are multiple features annotated in
databases that are not yet systematically incorporated
into the models. Examples include posttranslational
modifications or information about binding partners. We
begin to see such features incorporated in pretrained
models [41] and anticipate many more models with rich
combinations of modalities. It has been intriguing to
observe that predictions of 3D structure have been placed
on almost equal footing as experimental data for the
purpose of training foundation models [30,59]. It will be
interesting to see whether a similar approach will be
helpful for other modalities that are expensive to probe
experimentally. One example could be structural dy-
namics, which is currently largely ignored in foundation
models, but for which MD simulations could provide
simulated data. In particular for multi-conformer pro-
teins, providing the full thermodynamical ensemble as a
context for the amino acid propensity will likely
prove beneficial.

The role of scaling

Protein foundation models are well-known for their vast
number of parameters. However, it is important to note
that this is primarily a consequence of the ambition to
model all protein families in a single model, and that
earlier family-specific models would have comparable
parameters counts if they were trained on all families

(Figure 2). Nevertheless, we have seen that the ad-
vances in foundation models over the last years have
been closely related to scaling. This growth goes beyond
what can be explained by the simultaneous exponential
growth in the size of sequence databases, and one might
reasonably ask if we can expect these trends to continue.

The answer is not clear as the relationship between model
scaling and its impact on model performance remains
underexplored. It has been shown that test set perplexity,
ameasure of a protein language model’s ability to describe
the underlying data distribution of protein sequences,
systematically improves with model scaling [1,2,78].
While the resulting higher fidelity representations can
lead to improved downstream performance for supervised
tasks [6,25,78], the opposite has been observed in the
unsupervised setting, where smaller, less flexible models
tend to outperform their scaled counterparts [2,79]. A
recent study further showed that downstream perfor-
mance in both supervised and unsupervised settings is
uncoupled from pretraining efforts [80], emphasizing the
need for novel pretraining methods.

While the largest models currently available do still
show benefits over earlier models, such as the increasing
emergence of structure [1], there are signs that we are
entering a phase of diminishing returns from scaling
alone—even in terms of perplexity—as demonstrated in
recent works on compute-optimal pLMs [35,36]. To
obtain substantial leaps in performance in the coming
years, we will therefore likely require dramatic gains in
data availability, entirely new modalities, or architec-
tures that more explicitly incorporate our biological
priors. As scaling continues, the rising computational
costs of fine-tuning and inference poses a potential
challenge to accessibility and utility. It is crucial that we
continue to develop and adapt efficient fine-tuning
schemes [5] and that models are released at various
capacities to ensure that research and innovation are not
limited by compute access.

In summary

The field of protein sequence modeling has transitioned
from explainable and simple statistical models to large-
scale self-supervised foundation models. To effectively
accommodate varied downstream tasks, there has been a
shift from using static embeddings to applying efficient
fine-tuning schemes for increased utility and perfor-
mance. How best to manage even richer contexts,
e.g. via the incorporation of molecular dynamics or
functional annotations, remains an open challenge and
could pave the way for an even wider range of real-world
applications. High-quality, multi-modal data will be
essential in training and evaluating these increasingly
capable models—as well as taking a step back and re-
evaluating which modeling techniques and objectives
fit proteins best.
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structure-encoding models (GVP, GearNet, and CDConv) through
various fusion methods. The results show benefits from combining
signals from both modalities by achieving state-of-the-art results on a
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sequence, i.e., by converting between amino acid tokens and 3Di
tokens. It is emphasized that ProstT5 is not a general purpose pLM and
is subject to information loss due to catastrophic forgetting during fine-
tuning of the protein-encoding ProtT5 model. It instead serves as a
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and discrete data simultaneously, e.g., protein structure and sequence.
Multiflow is built on top of discrete flow models (DFMs), which use
continuous-time Markov chains to simulate data-generating probability
flows. Combining DFMs with a previous continuous-data flow method
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RITA is a collection of autoregressive protein language models trained
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