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Abstract

For many years, the hidden Markov model (HMM) has been ond@ftost popular tools for
analysing sequential data. One frequently used specialisakeleft-right model, in which the
order of the hidden states is known. If knowledge of the donatf a state is available it is not
possible to represent it explicitly with an HMM. Methods fapodelling duration with HMM’s do
exist [7], but they come at the price of increased computaticomplexity. Here we present an
efficient and robust algorithm for modelling duration in HNMiViand this algorithm is successfully
used to control autonomous computer actors in a theatriagl p

Keywords Hidden Markov Models; modelling duration; filtering; optimal particle filtersatnieal
play

1 Introduction

In this paper, we study how sequences of data can be modelled wheflekigevabout the order, and
the duration of discrete states are available. The objective of the papecasifaute the probability
that the data generating system is in a specific state using all available atimesyv If we know
the order of the states (i.e. state 2 is directly preceded by state 1), the hfhrilglen Markov
model may be well-suited [7]. However, there is a limitation in this model in that ibha&directly
represent knowledge about the duration of states. That is, if we krenvitth system will be in state
1 for approximately 3 minutes and thereafter in state 2 for about 1 minute, weteepresent that
knowledge properly with a hidden Markov model (HMM). Several solugibave been proposed to
deal with this problem, see e.g. [5] for details. The most intuitive solution to tbid@m is essentially
to partition each state into several sub-states, where states with long dsir@teopartitioned into
many sub-states, and states with shorter durations into few sub-states\ de shown [7] that the
expected duration of a state is proportional to the number of sub-stated) mhakes the strategy
sensible. The problem is that it is hard to determine the best number ofateb-g~urthermore, the
computational demands of the resulting algorithm increase with the total nurintbgr-states.

All duration modelling solutions seem to be based on models with a discrete stat $p this
paper the approach taken is first of all to generalise the hidden Markoelpat second of all to
implement the resulting model by using a patrticle filter. The basic idea is that shevhg to model
time, and hence duration, is by means of a continuous variable. For tsahrehe discrete Markov
model in an HMM is replaced by a state-space model, where a continuowenhiddable determines
the discrete state of the system. The resulting model is then implemented usingithe particle
filter [3].

The algorithm is tested by producing a theatrical play with autonomous comgatites. In this
setting, the manuscript of the play provides information about both stateamdeluration. The only
previous attempt of producing such a play seems to be the work of Pinhade2obick [6], where
order and duration is modelled by means of temporal logic.

2 Deriving the Model

A basic model for describing order of events is the hidden Markov ma@elrj this model, we work
with a hidden discrete state varialgez {1,...,H} that only depends on the previous statg. In
turn, the actual observation € %9 only depends on the current state of the system. Thus, to specify



Figure 1: (a) A graphical model of a Hidden Markov Model. (b) A griaghmodel of the suggested
extension.

the system we need the state transition distribugis_1) and the observation distributigr{x;|s).
This model is illustrated graphically in figure 1a.

The HMM does not allow us to explicitly encode knowledge of the duratiotedés. We therefore
seek a model that allows us to specify the system’s expected amount of timehistate. In order to
do this, the state transition distribution is changed from a Markov model to asgtate model. More
specifically we let the current stadedepend on the value of a continuous variahl&his variable in
turn depends on its previous value. Now the state transition is represertigd distributionsp(s|t;)
andp(ti|ti_1). This model is represented graphically in figure 1b.

The intuition behind this model is thatrepresents time, and at every point in time we know
the probabilities of each state. We assume that the entire sequence is firgteit iiakes sense to
assume that is confined to an intervdby, a;[. To specifyp(s|ti), we partition this interval intd
non-intersecting intervalg;_1,a;[, j = 1...J. In each of these intervals, we assume that the state
probabilitiesp(s |ti) are constant. More formally, we define

J
p(s = hftj) = Z la s a (), (2.1)

wherely, , [ denotes the indicator function which is defined as

1 te [aj_l,aj[
Ly 1./ (1) = {0 otherwise. (2:2)

For (2.1) to be a valid distribution, we obviously have to assume that

I

Whj=1 and 0<whj <1, (2.3)

=,
I
!

whereH denotes the number of different states.
In an HMM, the state transition is a discrete distribution, which means it canikemas

J
(s =hls-1) Z (2.4)

where the weightsi,j depend on the value &f_;. This distribution can be compared to (2.1), where
we note that the delta functions have essentially been replaced with indicattiofis.



Figure 2: (a) An illustration of state duration in the suggested model. Eachahtarresponds to a
state, and the length of an interval corresponds to the expected durbticatate. (b) The traditional
way of modelling duration with HMM’s. Each interval is partitioned into sevén#krvals. This
corresponds to a quantisationtof

For the model to be fully specified, we must also defptg|ti_1). Sincet; is confined to the
interval [ag,a;[, we note that this distribution should be zero outside this interval. In this paper
we essentially assume thptti|ti_1) is @ normal distribution, but other choices should be possible.
Formally we define

Ptiltiie) = Z Mg o (t)A (G|, 07), (2.5)
where bothu = p(tj_1) ando = o(ti_1) can be any function af_; as long a®r > 0. The normali-
sation constarz can easily be evaluated as the integral of the normal distribution fgatmay. This
specifically applies ta= ¢ (ag,ay), where

b _ _
Y(a,b) = /a N (i1, 0?)dtj = % (erf [E&(ﬂ —erf [?QSD . (2.6)

We now have a fully specified model. To get a better understanding of thelmed assume
that o is constant, angt =tj_1 + A, whereA is constant. Sincg is thought of as time, this choice
simply tells us that time goes by. The state distribuiidg|t;) is defined as constant in the intervals
[aj_1,aj[. We now assume that the system state is deterministically given by the intervazhjri.:e.l
for some value of.. We then see that each interVa|_1,a;[ corresponds to a state, and its length to
the expected duration of the state. This is illustrated in figure 2a.

With HMM'’s we can compute the filtering distributiop(si|x1;). This distribution can be com-
puted directly fromp(t;|x1;) as

p(s X1) = / p(s;, tixz)dt = / p(s |t) p(ti X3l 2.7)

One algorithm for computing the filtering distributiquis |x1) with this model would be to quan-
tisetj, and then use a standard HMM filter. This idea is illustrated in figure 2b. Thiwistandard
way of modelling duration in HMM’s [7]. The problem with this approach is tlh& not clear how
fine-grained; should be quantised. {f is quantised very fine-grainedly, the filtering algorithm be-
comes computationally expensive. More specifically, if we quantiseo Q states, the HMM filter
runs in(Q?). If we use a less fine-grained quantisation instead, the results becoraedesate. In
this paper, we propose a filtering algorithm based on a particle filter rattweatn HMM filter.

3 About Particle Filters

When the hidden state variable is continuous, the currently most populeraappto filtering is the
particle filter. In this section, we review the basics of this algorithm. For a medejith description
containing most of the proofs see [3].



The aim of the algorithm is to estimate moments of the filtering distribypidix1) by means of
samples. Heresp i denotes all observations up to iteratiphe. X3, Xz, . .., Xj. The idea is that samples
are taken fromp(ty;|x1;) and then all values of the samples Ibuis ignored. Since the filtering
distribution is unknown, we turn to importance sampling [1]. This means drasﬂngplesﬂ) from
animportance distribution ¢f1.i|x1;) and then estimating moments of the filtering distribution as

_ N ("
h= [ h)pes s ~ Y M h™), (3.1)

N
=13 m-1W,

where we have defined thmportance weightasw” = p(t\” x1:)/q(t\ |x11). If N — e (3.1) is
exact. The key to making this strategy work is to choose an importance distnputiioch ensures
that the resulting algorithm is recursive. With this in mind, it is chosen that thertanpee distribution
should be factorised as

q(tailXei) = qtri—a[Xzi-1)atifti—1, %) (3.2)
With this choice, one can sample fragts;|X1i) recursively by extending the previous saméfél

with a samplei(”) from q(tifti_1,X;). The Weightswi(f) can also be recursively updated by means of

o6t ™) pt™ ")

w; O Wj_1 X
1 1 n n

(3.3)

When extending the previous sample, we need to draw a sampleyftgtn 1,x;). This, however,
assumes that the true valuetpf; is known, which is not the case. Several strategies can be used
to approximate this valueSequential Importance Sampling (SESsumes that the previous sample
position was the true value, i.g. 1 = ti(f)l. This is usually not stable, since errors accumulate in this
estimate. Thearticle filter approximates the distribution gf ; with the weighted samples from the

previous iteration, i.e.
w", -
Pti—[Xzi-1) & — 7 O(ti1 — 7). (3.4)

N (m)

m=1Wi_1
The value ot;_1 is then approximated by drawing a sample from this distribution. This simply-corre
sponds to a resampling of the previous samples, where samples with lardesteige a high proba-
bility of surviving. Since these samples are assumed to come from the trubudistr p(tj_1|X1:-1),

the associated weights have to be reset E@l =1/Nforalln.

We have still to choose the importance distributigf|ti_1,X;). The most simple choice is inspired
by (3.3). Here, we note that the weight update is significantly simplified if wey@gt;_1,x;) =
p(ti[ti—1). With this choice, the resulting filter is called tBeotstrap filter{3]. This filter works quite
well if the observations follow the predictiont;|t;_1) fairly well. Yet when this is not the case,
the results are usually not very good. The reason for this is that newlesmm@ not necessarily
drawn from places in the state space where the likeligegt;) is high. To avoid such problems, an
alternative importance distribution is needed. The obvious choigg; j_1,xi) = p(ti|ti_1, ;). With

this choice, and by means of the Markov property, it is easy to prove that

p(xi[ti) p(tifti—1)
p(xi[t) p(t[ti—1)dt’

q(tifti-1,%i) = 7 (3.5)



With this importance distribution, the resulting method is calleddpgmal particle filter We see
that for this method, the weight update is

wi 0w, [ POl Pl et (3.6)

The problem with the optimal filter is that it usually cannot be implemented, sincantibgral in

the weight update is often hard to evaluate. The only case in which this filkendtaally been
implemented seems to be the non-linear extensions of the Kalman filter [4]. We ovileVer, see
that the optimal filter can be implemented in the model described in the previdignsec

4 Implementing the Model

In this section, we show how the model can be implemented by means of an opéirielefilter.
This algorithm requires a method for evaluating the new weight (3.6) ofticlgaand a method for
simulating the importance distribution (3.5). These two methods will be descrilbleel irext sections.
First, we do note that since the entire state space is the infagvaj[, the importance distribution
can be expressed as
p(tifti—1) p(Xilt)
a P(t[ti1) p(xift)dt’

A(tifti-1,Xi) = Liag a((ti) (4.)

4.1 Assigning Weights

To compute the weight of a particle, we need to evaluate (3.6). To simplify ttatiomm we omit the
superscript” and subsequently compute the new weight as

wi = [ OGPtk (4.2)
LY tio®) S poals = hpls = i @3)
=7z o} Xils = ;= .
X H h;p s =h)p(s
S pxls =) [ A (U0Y) S Wil (O @.4)
=7z Xils = e} Whilia | a .
h;p S . H ;1 hid{aj 1,3
H J
=z 1Y pxils =h) 5 whi%(aj-1,3;). (4.5)
h=1 =1

Since¥ can be evaluated using (2.6), we can evaluate the expression. Thetatomal complexity
of this operation i/ (HJ).

4.2 Simulating the Importance Distribution

As the importance distributioq(ti|ti_1,X;) is one-dimensional, we can simulate it by usingerse
transform samplindl]. This consists of computing the inverse of the cumulative distributiontfonc
and evaluating this function at a uniformly distributed paiwt [0, 1].

The first step of this approach is to compute the cumulative distribution furfetign= /¥ q(t|ti_1,x;)ct.
Since the union of the intervala;_1, a;| covers the entire state space, every valugrofist fall within



one of these intervals. We now assume that this interjakis, ax| and thak is known. We then get

_ [ ywq(tyti,l,xi)dt (4.6)
—wt [ pitt-a)pixfta @)
y H J
:(ZW)—l/aOJV(t|u,G Z p(xi|s :h)thjl[ajfbaj[(t)dt (4.8)
H i
= (@) S plis =) 3w [ (14 0% a (0 49)
H k- H
Z Z p(xils = h)wh¥(aj-1,8)) + > p(xils = h)whk%(akl,y)] . (410
h=1j=1 h=1

We now turn to computing the inverselefy). Settingr = F(y) and rearranging (4.10) we get

H k-1

H
G (a-1,y) = [ > p(xils = h)th] (Zw)r — Z p(xi|s = h) Whjg(ajlaaj)] (4.11)
=1

Using the definition of/ (2.6), we can solve this for, which gives

H H k-1
y=u+v2oerf?! [2[ Y p(xils = h)whk} [ (zw)r — Z Z p(xils = h)wn; (a; - 1,aj)}
h=1
A—1—H
+erf[ N }] (4.12)

We can now simulate the importance distribution by generating a uniformly distlilbbwieabernr
[0,1] and inserting in (4.12). The result will then follow the importance distribution. This, howgeve
assumes that the internjal_1, ax| containingy is known. To find this interval, we note thatt;[ti_1) >

0, which makes-(y) an increasing function. This tells us that

a 1<y <a & (4.13)
Flak-1) < F(y) <F(a). (4.14)

Sincer = F(y), we can finck by searching the sequen@e(ax))k-1...; for a value ofk such that (4.14)
is fulfilled. It should be noted thdt (ax) can be evaluated directly using (4.10). The computational
complexity of the simulation is agaiti(HJ).

5 A Dramatic Application

The presented algorithm has been developed for the purpose ofcprgdutheatrical play, where an
autonomous computer acts together with a human actor. More specificallgrtiputer controls a
robot, plays sounds, and displays animations on stage. In the theattioal,she manuscript of the
play contains fairly detailed descriptions of both the order and the duratitre @ctor’s actions. If
an action is thought of as a state, the model is applicable. The idea is to W8eEgesognition to
determine what the human actor is doing and compare this with a manuscript lnirtien actor’s
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actions to get an estimate of the current positiom the manuscript. On this basis, it is easy to
determine which actions the computer is to perform by comparing the estimate witisonigts of
the computer controlled actors.

Formally, we must define the distributiga{s = h|t;) in order to use the model. As stegede-
scribes the action performed by the human actor, the distribution cordspmthe manuscript of the
play. Since the human actor is only able to perform one action at a time, thetsmighare set to
1 in the intervals where actidmis performed and O elsewhere. We also have to define the temporal
predictionp(tj|ti_1), which requires us to specify ando. Here we letu =t_; + A, whereA is the
number of seconds since the previous iteration. In the theatrical settirggrtaenty of state duration
information varies. When the information about duration, is very certaineve $o a small value,
and when the information is uncertain, we geto a large value. This has the practical consequence
that particles spread across a larger area of the state space whematiendaformation is weak,
which makes the algorithm more sensitive towards the input. Whensmall, the particles tend to
form groups, which makes the algorithm less sensitive to the input.

If we assume that the likelihoogd(x1i|s = h) can be evaluated, then we are able to estimate
moments of the distribution af. In section 5.1, we present the evaluation of this likelihood.

In order to determine which actions the computer actors are to perform,mgute the probabil-
ity of an actiona. being performed. To compute this probability, we introduce a manusofégtt;)
which describes the computer actor’s actions.

P(aclxai) = | P(aclt)plt s )t (5.1)

Since this is a moment gf{ti|X1), we can evaluate it using (3.1). The manuscpc|ti) is specified
in the same way as the manuscript of the human actor.

5.1 Gesture Recognition

To be able to use the algorithm, we need a measurepi@nt|s = h). In the theatrical setting, we
have chosen to use a gesture recognition system to provide this likelihoode dgecifically, 13
different gestures are recognised. The recognition system is bas&dation History Images” as
described by Bobick and Davis [2]. Briefly put, these images reducguesee of black and white
images to one gray-scale image that describes the current action. Theegeshen recognised by
the matching of this image to a set of templates, which each describe an actisnmdtching is
performed by computing global image featufgsof the current image and afterwards computing
the likelihood of each action. Here, we assume that each action class israNtistribution, i.e.
p(X1i|ls = h) = A4 (K |un, Zn). Bobick and Davis [2] use Hu moments as global features, but we have
improved results greatly by using Zernike moments [8] instead. In fact, whielg Hu moments the
success-rate is 30%, whereas the success-rate is 60% when usiegike Znoments.

5.2 Results

To actually produce the play, it is essential to know when the computer hasrftarm an action.
Using the methods described so far, we can compute the probability of an.attie actual decision
algorithm is based on a simple threshold of this probability. If the probabilityncdcion exceeds
60%, it is performed. By means of this simple rule, we have been able togeadtheatrical play
successfully. The play lasts approximately 10 minutes, during which the demarforms 68 differ-
ent actions. The play has been performed successfully several tintespald easily be extended to
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Figure 3. Data from a short play designed for testing. The horizontalsisows the image number,
and the vertical axis shows the gesture number. (a) The likelihoods frergebture recognition
system. (b) The ground-truth data. (c) The resulting filtering distribution.

last longer. If the acting is to be convincing, timing is of the essence. Usingrésented algorithm,
the timing is actually surprisingly good, and, from a practical point of view, dhtions are nearly
performed at exactly the right time. Video material is available at the projcusive2

To get a better understanding of the quality of the algorithm, a shorter anel siraple play
has been produced. This consists of 9 different gestures perfdmgnadnuman actor in a period
lasting approximately 2 minutes. The actual likelihguc|s) is shown in figure 3a. This should
be compared with the ground-truth data presented in figure 3b. As appeardata contains a fair
amount of noise, but the true pattern is visible. In figure 3c, the filteringilolision p(s|x1;) is
shown. As can be seen, the results are quite good, and even shansaeitlo poor likelihoods are
detected. It should be noted that the used manuspfigt;) encodes the order of the actions correctly,
but the durations are not perfectly aligned with the signal.

6 Conclusion and Future Work

This paper has presented an efficient algorithm for modelling duration olehidMarkov models.
This algorithm is based on the optimal particle filter. It seems to be the firstithigowhere duration
is modelled explicitly with a continuous variable. It also seems to be one of thedses where
the optimal particle filter can be implemented. The algorithm was originally designecduce a
theatrical play, in which autonomous computer actors play together with a hactam Such a play
has been successfully produced, and the algorithm has proved toybstakle. It would, however,
be quite interesting to see how well the algorithm would work with more traditioradlems, e.g.
speech recognition. Before such experiments can be performed, lid wamwever, be necessary to
develop algorithms for learning manuscrips |t;).
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