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Abstract

A Brownian motion model in the group of diffeomorphisms haei introduced as inducing
a least committed prior on warps. This prior is source-desibn symmetric, fulfills a natural

semi-group property for warps, and with probability 1 cesainvertible warps. Using this as a
least committed prior, we formulate a Partial Different@juation for obtaining the maximally

likely warp given matching constraints derived from the ges. We solve for the free bound-
ary conditions, and the bias toward smaller areas in theefohdimain setting. Furthermore, we
demonstrate the technique on 2D images, and show that théebtwarps are also in practice
source-destination symmetric and in an example on X-rayespggistration provides extrapola-
tions from landmark point superior to those of spline solusi.

Keywords Non-rigid registration; Brownian motion; central limitebrem; invariance.

1 Introduction

In any non-rigid registration algorithm, one must weigh daga confidence against the complexity of
the warp field mapping the source image geometrically inéodistination image. This is typically
done through spring terms in elastic registration [3, 10tt8pugh the viscosity term in fluid registra-
tion [8], by controlling the number of spline parametersjiliree-based non-rigid registration [1, 23]
or by finding the “smallest” warp as a geodesic flow according $pecific norm on warps [4, 17].

The regularizer ensuring a simple (or “small” to use the tealogy of Joshi et.al. [15]) has
profound influence on which solution is obtained, and theerties of the solution. When the data
support is weak or the warp is large, the influence of the eedr increases. Furthermore, if the
regularizer in turn defines distances between admissibipsy#é may be used as the foundation of
making statistics of warps.

The diffeomorphic approaches [15, 9, 4, 17] have nicer #tdal properties in terms of having
well defined inverse, allowing for composition, etc. Howewad these approaches define the size of a
warp as a length of path through the space of the admissibjgs\irmm the identity warp to the fiducial
warp (or set of warps exhibiting fiducial properties, eg.ciiepoint matches) and subsequently find
the shortest path. Hence, it compares to integrating some<valong a specific path of warps.

We wish to define a regularizer in a Bayesian setting as a priawarps. This should be a prior
on the group of diffeomorphisms and be “natural” in the sehse it behaves well under the group
action of composition of warps. The simplest approach is tiedefine it as a Brownian walk in
the group of diffeomorphisms. This paper constitutes tha dioherent collection of material from a
number of conference papers on the topic [19, 14, 20, 18]fielma number misconceptions in earlier
manuscripts and give new theoretical properties on inmegand details for implementation.

Before going into the specifics of Brownian warps, their gmigs and implementations, we make
the following observations.

2 Definitions

From a mathematical point of view we wish the wajxo fulfill the following principles

SmoothnessW is continuous and sufficiently differentiable. If this istrtbe case, the warp would
be able to “tear holes” in the image.

Invertible For all admissibléV, the inversaV—1 exists. If the inverse did not exist, the warp would
be able to fold.



Inverse smoothnessThe inverse is also smooth. If we are to work with the inversa warp, then
obviously it should have the same properties as the warlf itse

Path-connected All warps are path-connected to the identity within the gpafcall admissible warps.
Otherwise an underlying continuous process would not existpractice, reflections are ne-
glected by this principle.

This in short means that the warp is a diffeomorphism of pasitacobi determinant, we denote this
positive diffeomorphisms.

We also wish to define a regularizer that allows us to compuatepsv Intuitively this regularizer
should act similar to a norm on warps, but we relax a bit on ¢nmél requirements and formulate
the following criteria for the regularizeR(W) to fulfill:

Positive definite R(W) > 0 andR(W) = argminy R\W) =W = 1. If R(W) was a proper norm we
would needR(l) = 0 to be the minimum, but to avoid normalization issues, weplindefine
R(I) to be the minimum oR.

Triangle inequality R(W;) + R(W,) > R(W, oW, ), whereo denotes warp composition. R is to
behave similar to a norm, this criteria is obvious.

Source-destination symmetry R\W) = R\W1). Again, if R is to behave similar to a norm, it is
obvious that the warp that moves a point frénto B should have the same complexity as the
warp that moves a point frofa to A.

SmoothnessThe regularizer is continuous W and its variations are well defined. Otherwise opti-
mization would not necessarily be tractable, and gradiesed methods ill-defined.

These properties are fulfilled by the previously mentionéi@amorphic approaches [15, 9, 4, 17],
but not by approaches that are linear in warp coordinateditiear spline-based methods [7, 23, 5].

We are now ready to define a warp: A non-rigid registration haymodeled by a warp field
W : IR® — IRP mapping points in on®-dimensional image into anothBr-dimensional image. We
give the definition:

Definition 1 (Warp Field) A warp field W(x) : IRP — IRP maps all points in the source imagg¥) :

IRP — IR into points of the destination imagg(k) : IRP — IR such that §W(X)) is the registered
source image. W is invertible and differentiable (i.e.,#edimorphism) and has everywhere a positive
Jacobiandet(d,;W) > 0.

The identification of a warp field on the basis of images is atenaif inference. Below we
will apply the Bayes inference machine [6], but a similarniotation should appear when using
information theoretic approaches such as the minimum ibiser length principle [21].

We wish to determine the warp fieWdl that maximizes the posterior

PW|ls,Ip) = %p(ls, Ip[W)p(W),

whereZ is a normalizing constant (sometimes denoted the partitination), p(Is, Ip|W) is the like-
lihood term, andp(W) is the warp prior. The likelihood term is based on the sintifaof the warped
source and destination image and may, in this formulatierhdsed on landmark matches [7], feature
matches [16, 22], object matches [2], image correlation, [@6mutual information [24]. The major
topic of this paper is the prigp(W) that expresses our belief in the regularity of the warp fieldrp

to identifying the images.



3 Brownian warps

We seek that distribution of warps which is the analogue ofBrian motion. We wish this distribu-
tion to be independent of warps performed earlier (i.eaiitant with respect to warps). This property
is of fundamental importance particularly when deterngrtime statistics of empirical warps, creating
mean warps etc. We also want the distribution to be a simpletiion of the regularizer, and choose
the maximum entropy solution, which is normally denoted®ilebs distribution

PIW) = 7 expl-R(W)].

The assumption of independence of previously performegsvidren gives

PW = W5 oWh) = [ p(Ws =W oW, ) p(Wg ).

This corresponds to the semi-group property of BrownianienotThe distribution of positions after
two moves corresponds to two independent moves and, thithiegtentral limit theorem, leads to a
Gaussian distribution of positions. Since this also hotitsaf concatenation of many warps, we can

construct a warp as
N

= lim
VVB N*Woi: OVy )
where theW are independent infinitesimal warps. This correspondstlgxtr the definition of a
Brownian motion on the real axis if the concatenation prodiceplaced by an ordinary sum.
In order to find this limiting distribution when allif are independent, we investigate motion in the
neighborhood of a single point following along all the wagpsl make the following lemma:

Lemma 1 (Local structure) Let dy = dxW be the local Jacobian of W Then, the Jacobian of a
Brownian warp is

N
g = lim [ 1w
N—oo Il:!)
Proof This is obviously true due to the chain rule of differentati O

Assume that an infinitesimal warp acts as the infinitesimégrendent warp round all points. We
assume independence along the warp to constitute a Browraéion. Furthermore, we assume spa-
tial independence among points in their first order strigctiihis is the simplest possible assumption.
Notice however that this does not imply that points move jreat@lently. It acts as a first order reg-
ularization on the warp including the spatial diffusion endgradient descend implied by the second
order terms in the warp originating from the variation widspect to first order terms. Hence, this
independence still assume spatial correlation in warphétigrder correlation should be constructed
in a warp invariant fashion which is far from trivial and lédtlater research.

In the case of spatial independence and independence affthigeisimal warps along the warp,
all entries in the local Jacobian are independent and chhtidistributed round the identity. Hence,

we may now model
N

Ing :N"Tm._ |—|—G%Hi, (1)

whereH; is aD x D matrix of independent identically distributed entries aftspread. The denomi-
nator/N is introduced to make the concatenation product finite, amslthe spread or the “size” of
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Figure 1: The independent action of the parameters on aquétrs.

the infinitesimal warps. The details does not matter as tiggpgdear in the limit, but one may think
of o as the standard deviation of the local motion.

To summarize, the limiting distribution of Eq. 1 is the distition of the Jacobian of a Brownian
Warp. In turn, this defines the Brownian distribution on vg&rms we have no reason to assume other
structure in the distribution.

Unfortunately, the solution to Eg. 1 is not given in the ke on random matrices. Gill and
Johansen [12] solve the problem for matrices with positiveies and Hognas and Mukherjea [13]
solve, among other cases, the situation when the matrieesyanmetric. However, Jackson et.al.
have solved the case for only two dimensions [14] and we a&gepitly considering the solution for
three. Here, we present only the result.

Theorem 1 (2D Brownian Jacobian) The limiting distribution of Eq. 1 where;Hhave independent
entries of unit spread and WR? — IR?, is given as

p(dws) = G(S/0) ignw/o) cosng). @)

where G is the unit spread Gaussian, are related to the Jacobi functions, and the parameters are
given as follows:

Scaling  S=log(det(J,))

Skewness F = WHJWBH%

Rotation 0 = arctan( 4212t ),
Ji1+])22

where j; are the individual entries of},.

It is shown in [14] that the limiting distribution does notpimd on features of the infinitesimal
distribution other than its spread, The parameteo may be viewed as a measure of rigidity. The
effects of the parameters are shown in Fig. 1.

It has been proved, that this distribution creates inviertitarps (with probability 1), is invariant
under inversion of the warp, and is Euclidean invariant [1l9¢re we prove that the distribution is
invariant under simultaneous and identical warping of seand destination.



Theorem 2 (Local diffeomorphic invariance) The distribution of warps given as spatially indepen-
dent Jacobians each distributed according to Eq. 2 is iraatriwith respect to a diffeomorphism
simultaneously acting on source and destination.

Proof A source and destination are related by a local Jacab&rch than, = Jng, whereny, n, are
local frames in the source and destination image respéctiven arbitrary diffeomorphism acts lo-
cally on the frames with its Jacobifn Acting on source and target simultaneously maisés=J'nh.

As all h,ny,n, are invertible, obviously = J'. O

This theorem only hold as a local property, but is in geneatitifor a whole warp if an invariant
measure is used for integration over the full warp field. @uosion of such a measure is, however,
not trivial in the general case. We will do so for the pairvilsgge matching problem below.

For computational purposes it may be convenient to appratarthe above distribution by a dis-
tribution which is also independent r and 8. This can be done in many ways without loosing
the symmetry and diffeomorphic invariance. However, thevotution property of concatenation of
warps will no longer hold exactly. We suggest the followingpeoximation.

P(dws) ~ Go(SG,,, z(0)e 7/, (3)

whereGg is a Gaussian of spreagl This approximation has a relative error at less than 3%lfor a
reasonable values & 0,F wheno > 0.4.

Taken from local points to a global distribution of a full ywame may assume spatial indepen-
dence of the local Jacobian of the warp. This does not carrespo assuming local independent
motion of points, but that the local spatial differences iation are distributed independently, just
like independent increments (gradient) of neighboringfsoof a function in turn leads to Tikhonov
regularization for functions. Taking this Markov RandonelBiapproach, we may say that we formu-
late a first order MRF on the point motion function. The aboigridhution may then be viewed as
Gibbs distributions, and the energy or minus-log-liketidlaf a full field then reads

EQ(W):—Iogp(W)+c:/ S+ 262+ 20F dx,
0

wherec is an arbitrary irrelevant constant. However, the intégravariable is not invariant under
the warp, and the functional will not lead to warp invarian@his may be obtained by using a warp
invariant integration measud:

Es(W) = —log p(W) + ¢ — /Q S 1 262+ 20F df, 4)

wherexX'= x,/detJ) are integration variables invariant under the warp choseensure global as
well as local warp invariance. It may at first glace semurhocto introduce this invariant measure.
However it also follow directly from the probabilistic thgoif one takes into account that after some
(of the infinitely many) warps, it is more probable to see trema that have increased in size. This
is handled elegantly in the theory by Markussen as an effiettinsforming the Itd integral of the
spatio-temporal warp [17] into a Stratonovich formulation

4 A PDE Solution

In general the warp energy Eq. 4 is augmented by an image dmlark matching term, so that the
full functional to minimize for a given warp inference tagads

E(W) = Ef(W) + A (W),
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whereE, is an image matching functional such as cross-correlatmartyal information, or landmark
distance. Unfortunately the energy functional Eq. 4 is fioear in the coordinate functions, and
simple tricks such as eigenfunction expansions and delinedr splines are not possible. Therefore
we will optimize this functional using a PDE as gradient d#gt We only concentrate dfy asE, is
thoroughly treated elsewhere [11].

We treat the energy minimization problem using a gradiesteed scheme:

We introduce the notatio®(D, 0, ||J||3) = &+ 262 + 20F such that

E:= | Q(D.6.|3)a%
and notice thaQ does only depend oW in first order so that

0Es [ 4.\ 9Q
w=(5) %
where% denotes symbolic differentiation with respectitcanddy denotes spatial partial differenti-
ation with respect ta (and similar fory). Sincel is a 2x 2 matrix varying inx, g—? becomes a 2 2
matrix of functions inx. That is,

29Q

53 X€ IR? — IR?*2
and therebys : IR? — IR,
Here we first concentrate df{ (not using the invariant integration variabiédut plainly dx):
0Q _ 2logD —20F 9D 0 d|J||5 00

N D 33t a1 "%

whereJ is the Jacobian matrix &V and D = det(J). Using the invariant coordinates (substituting
dx— +/DdX) this yields

dQ Q/2+2logD—20F D o d|J3

93 /D 93 /b 03

On an infinite domain the symbolic differentiation in thesgiaions are very simple as all terms are
co-linear or quadratic in the entries &f Numerical issues do however arise on a finite domain since
‘;—5’ is non-zero only at the boundary.

Using E{ directly serves the problem that the solution is no longers®target symmetric as
emphasis in the energy varies from point to point with respethe local scaling. Usings in its full
form using the invariant integration variable solves thisgem.

On a bounded domain, this will lead to a simultaneous miration on the size of the domain, to
minimize the functional, and hence a bias toward shrinkiagps. It will no longer give meaningful
warps directly. This may be solved by fixing the size of thenant domain directly using a Lagrange
multiplier in the optimization problem:

26
+4\/56%.

Es_bounded™ /Q Q(D, 6, HJH%)dYH-)\ /Q dx. (5)
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We directly solve forA using the fact that the time evolution §f dX vanishes if

Es
SRS
By simple calculus of variation we obtain:
0 ~ AVD+Q/2+2logD—20F D = o 9|J||3 26
%Qs—bounded— i) 23 + NSRE +4V/DO—~ (6)

whereA must be updated along the evolution. Adgs an integral measure, this actually is not a
PDE but a partial integral-differential equation. So fag have no proofs of stability of uniqgueness
of the solution. However, it works in the practical solutioit does not fall within the class for
which unigueness has been proved [11]. It also works on #ytatidferent function space, since in
previous work [11] the warps have been living in componeisewsobolev spaces which has a non-
empty intersection with the space of diffeomorphisms. H@vasome diffeomorphisms are not in the
Sobolev space, and some members of the component-wiseeSdapaice does fold and are obviously
not diffeomorphisms.

This algorithm guarantees that the resulting warp is a differphism. It corresponds to some
degree to the large deformation diffeomorphisms by Josti Miiler [15] in the sense that their
formulation also seek a solution composed over many timgsstelowever, we have succeeded in
integrating out the time, and found the closed form solufmrthe resulting functional. Hence, we
find the solution directly by optimizing the warp, and not lptimizing the warp, and all the inter-
mediate steps, from source to destination. An interestiegretical link between the two approaches
is found in Markussen [17], where a warp-time discretizati® performed, but where a Brownian
motion formulation is used.

5 Implementation

We now turn to discretization of the above partial diffefahéquation. First we discretize the energy
in Eq. 5 as
Es_bounded™ Z VD-Q(D, 6, [|J]|3) + A z VD,
(xy)eQ (xy)eQ
whereD, 6, and ||J||3 are all functions of the local Jacobian {®y). We can then compute the
derivative of the energy with respect to the warp in the pOiptyo) as

7} AvD+Q/2+2logD —20F  dD
7o Es-bounded ~ Z
OW (%0, o) xGea vD IW (%0, o)
o 9|35
+ +4VDO s
VD W (X0, Yo) ( >yo)

To compute this gradient we need to evaluate the derivatie [xJ||3, and® with respect tW(Xo, Yo).
To do this, we first discretize the Jacobian. As a first appnaxion we compute the elements of the
Jacobian at each grid point as backwards differences

o uc(xy); U (%)
Jxy) =~ <vx(x,y); U;I(XJ))

< U(X,y) - U(X— 17 y)' U(X,y) - U(X,y— 1) >
V(X> y) - V(X - 17 y)’ V(X> y) - V(X>y_ 1) 7
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X i-1 X X i+1 X i-1 X X i+1

Figure 2: In every point{x;,V;), the local Jacobian is estimated from the 12 local discnetmés
including the point. To the left, the four frames, where tlnpcontributes centrally, are illustrated,
whereas the 8 frames where the point contributes to in exlrposition are illustrated to the right.

whereW = (u,v)T. Using this approximation we can now compute the neededates as

oD
50 = VW~V
ou
9119113 — o
ou ~2u +20

06 (W +w)— (W —%)
ou T (U v )2+ (Uy — v )2

and similar for the derivatives with respect\o These derivatives are defined in terms of the dis-
cretization. To make the discretization symmetrixiandy we choose to use all four combinations
of forward and backward differences in both coordinatese fitnal approximation of the energy is
then computed as the average of these four approximatiom&nWsing this approximation we see
that each grid pointx,y) that is not on the border appears 12 times in the energy. Sliisstrated

in Figure 2. When computing the derivative of the energy weetbat 12 frames will contribute to

33113 .
Fitey) iy adgisy (and similar forv(xy)). o |

At the boundary, the contributions from the discrete Jeamoleéaving the domain are neglected,
as the free boundary conditions are implemented in this way.

For time discretization of the PDE we use a simple explidiesae. That is, we repeat the follow-

ing step until convergence

Wi =W — meE-
In this paper we assume that exact landmark matches aralaeaill his basically means that the
warp is known in certain grid points. For this reason, thepasionly iteratively updated in grid points
where the warp is unknown.

6 Results

We see from the energy formulation that the rigidity parametdetermines the relative weight of the
skewness term to the scaling and rotation terms. For iitistn of the independent terms, see Fig. 3.
For large deformations, the difference to spline-basedaus, becomes obvious as for example thin
plate splines can introduce folds in the warping (see Fig. 4)
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Figure 3: lllustration of deformation of a regular grid. Tyoints in the center have been moved up
and down respectively, while the corners are kept fixed. \Welsa the scaling term (top left) aims at
keeping the area constant. The skewness term (bottom ileft) & keeping the stretch equally large
in all directions. Top right is a combination of scaling ahk&wsness § = 1). Bottom right is a thin
plate spline for comparison.
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Figure 4: Leftmost are two images of large deformationst lsefhe maximum likelihood Brownian
warp, right is a thin plate spline. Rightmost two images are tonsecutive warps where landmark
motions are inverse: Left is Brownian warps, right is thiatplspline. Brownian warps do not give
the exact inverse due to numerical imprecision, but cldsen the thin plate spline.

10



Folded thin-plate splines Symmetry error
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Figure 5: Top-left is the fraction of thin-plate warps thahtains a fold (is not invertible) as function
of the spread of the random motion of the two interior poinbp-fight is the absolute error (as
difference to the identity warp) in pixel position when wiaug forward and concatenating with the
backward warp. Below is the same for the relative error ofBh@vnian warps and the thin-plate
warps. 25 runs for each standard deviation on & 50 grid was performed. All error bounds are
bootstrapped 90% confidence intervals.

For testing the source-target symmetry we conducted thewimlg experiment. We kept the
boundary fixed and moved two random points in the interiohw&iBrownian motion to new random
positions (see Fig 5).

The figures clearly show that the warp generated by the ablguathm is statistically significant
more symmetric than thin-plate spline warps. The motion@his after warping forward and back
are less than a third than in the case of thin plate splinescé&{aot only is the theory symmetric, im-
plementations show significant improvements. Howeverwhgs are not totally symmetric, which
in our opinion is due to the spatial discretization, as thieras smaller on a 5& 50 grid than on a
10x 10 grid (see Fig. 6).

We evaluate the Brownian warps and thin-plate-spline wlopdoing extrapolation of registra-
tions of biological shapes. From a few point matches, we wistpenerate a registration of the full
outline. This is of course not accurate and we evaluate tladitguf the registration based on the
distance of the curves.
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Folded thin—plate splines Symmetry error
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Figure 6: As previous figure, but with 200 runs for each stashd&viation on a 1& 10 grid.
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10 fractured vertebrae (the individual bones in the spioklran) have been annotated by 6 points
used for fracture scoring in traditional clinical practieee Fig. 7). These 6 points are used as land-
marks for a thin-plate-spline non-rigid registration anBrawnian warp registration of the fractured
vertebrae to a normal template vertebra (see Fig. 8). Atebeae have also been annotated by a full
contour. The registration can be used for transportingahedntour to the frame of the normal tem-
plate vertebra. The hypothesis is now that since the diftegphic registration is theoretically more
appropriate, it may also generalise the registration obtheints to the full contour better. Hence we
wish to measure the distance between the template contduharcontour of the fractured vertebra
after registration based on the 6 height points.

The result of the registration is that two curv€g C, in the plane are given. Many different
distances between these may be measured. Assuming oneistceerect” (the template curv€;)
we wish to estimate the distance from this to an approximatede C, of the registered fractured
vertebra. Since no correspondence is given between pamtheocurves, we measure, for each
point on the correct curve, the distance to the closestst poirthe approximate curve. This is, in
mathematical terms, the Hausdorff distance from the tetagdaundaryC; to the warped fractured
vertebra boundarg,:

0 (C1,Cp) = /C mine,d(Ca(s1),Ca(s2))dst

whereC,,C, are the two curvess;,s; are their respective natural parameters, df) is the Eu-
clidean distance between two points.

In order to not let the arbitrary endpoint of the curves inficee the measure, we have chosen to
cut the template in each end, so that it covers less of thelwarthan any of the test vertebrae.

The results are as follows:

Warping method\ Averagedy Standard dev.
Thin-plate-spline| 4.83 mm 1.41 mm
Brownian warps | 3.41 mm 1.27 mm

The average Brownian warp Hausdorff distance is signifigasrhaller than the thin-plate warped
Hausdorff distances with p.< 0.05 using a two-sided unpaired heteroscedastic studetet&.t-

The results here are that the theoretically well-foundéfalinorphic Brownian warps actually
also produce a significantly better warp for the above pratfiurposes. Matching fractured vertebrae
using only 6 points is a difficult task, but the Brownian warpsoved more than 30% of the warp-
ing error compared to the standard linear approaches. Tbe isadhat this will generalize to other
anatomical registration tasks. If this is indeed the casieamnorphic warping may lead to improved
registration in many other cases, and subsequently torladis-based segmentations, more compact
shape models, and more compact appearance models.

7 Conclusion

We have exploited a prior for warps based on a simple inveeigminciple under warping. This dis-
tribution is the warp analogue of Brownian motion for additactions. An estimation based on this
prior guarantees an invertible, source—destination sytmenand warp-invariant warp. When compu-
tational time is of concern, approximations can be made hvwhiglate the basic semi-group property
while maintaining the invariances. For fast implementaiowe recommend an approximation in-
cluding only the skewness term, as this has nice regulgrizioperties.

We have developed a PDE scheme for implementing an algomimmputing the maximum-
likelihood warp. We have tested this in the case of exactriear®d matching, and shown that it
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Template before warp
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Figure 7: The template vertebra and the 6 annotated poimtaatly used for fracture scoring, but
here as landmarks for registration.

Source before warp: (green annotation, b—brown, r-tps)
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Figure 8: An example of a fractured vertebra and its boundagreen. In blue is the Brownianly
warped template boundary. In red is the thin-plate splingpectemplate boundary.
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does not fold (as theory predicts) as linear approacheslwjilind shown that also in discrete approx-
imation, the scheme yields solutions very close to beingcastarget symmetric. The approach has
shown promising results for medical image registration.

Future work includes a joint optimization scheme with otingslge matching terms as used earlier
[11].
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