
Brownian Warps for Non-Rigid Registration

Mads Nielsen1,2, Peter Johansen1, Andrew D. Jackson3, Benny Lautrup3, Søren Hauberg1

1DEPARTMENT OFCOMPUTERSCEINCE

UNIVERSITY OF COPENHAGEN

UNIVERSITETSPARKEN1
DK-2100 Ø

2NORDIC BIOSCIENCEA/S
HERLEV HOVEDGADDE 207

DK-2730
3NIELS BOHR INSTITUTE

UNIVERSITY OF COPENHAGEN

BLEGDAMSVEJ17

DK-2100

March 13, 2008



Abstract

A Brownian motion model in the group of diffeomorphisms has been introduced as inducing
a least committed prior on warps. This prior is source-destination symmetric, fulfills a natural
semi-group property for warps, and with probability 1 creates invertible warps. Using this as a
least committed prior, we formulate a Partial DifferentialEquation for obtaining the maximally
likely warp given matching constraints derived from the images. We solve for the free bound-
ary conditions, and the bias toward smaller areas in the finite domain setting. Furthermore, we
demonstrate the technique on 2D images, and show that the obtained warps are also in practice
source-destination symmetric and in an example on X-ray spine registration provides extrapola-
tions from landmark point superior to those of spline solutions.

Keywords Non-rigid registration; Brownian motion; central limit theorem; invariance.

1 Introduction

In any non-rigid registration algorithm, one must weigh thedata confidence against the complexity of
the warp field mapping the source image geometrically into the destination image. This is typically
done through spring terms in elastic registration [3, 10, 9], through the viscosity term in fluid registra-
tion [8], by controlling the number of spline parameters in spline-based non-rigid registration [1, 23]
or by finding the “smallest” warp as a geodesic flow according to a specific norm on warps [4, 17].

The regularizer ensuring a simple (or “small” to use the terminology of Joshi et.al. [15]) has
profound influence on which solution is obtained, and the properties of the solution. When the data
support is weak or the warp is large, the influence of the regularizer increases. Furthermore, if the
regularizer in turn defines distances between admissible warps, it may be used as the foundation of
making statistics of warps.

The diffeomorphic approaches [15, 9, 4, 17] have nicer theoretical properties in terms of having
well defined inverse, allowing for composition, etc. However, all these approaches define the size of a
warp as a length of path through the space of the admissible warps from the identity warp to the fiducial
warp (or set of warps exhibiting fiducial properties, eg. specific point matches) and subsequently find
the shortest path. Hence, it compares to integrating some “work” along a specific path of warps.

We wish to define a regularizer in a Bayesian setting as a prioron warps. This should be a prior
on the group of diffeomorphisms and be “natural” in the sensethat it behaves well under the group
action of composition of warps. The simplest approach is then to define it as a Brownian walk in
the group of diffeomorphisms. This paper constitutes the first coherent collection of material from a
number of conference papers on the topic [19, 14, 20, 18], clarifies a number misconceptions in earlier
manuscripts and give new theoretical properties on invariance and details for implementation.

Before going into the specifics of Brownian warps, their properties and implementations, we make
the following observations.

2 Definitions

From a mathematical point of view we wish the warpW to fulfill the following principles

SmoothnessW is continuous and sufficiently differentiable. If this is not the case, the warp would
be able to “tear holes” in the image.

Invertible For all admissibleW, the inverseW−1 exists. If the inverse did not exist, the warp would
be able to fold.
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Inverse smoothnessThe inverse is also smooth. If we are to work with the inverse of a warp, then
obviously it should have the same properties as the warp itself.

Path-connectedAll warps are path-connected to the identity within the space of all admissible warps.
Otherwise an underlying continuous process would not exist. In practice, reflections are ne-
glected by this principle.

This in short means that the warp is a diffeomorphism of positive Jacobi determinant, we denote this
positive diffeomorphisms.

We also wish to define a regularizer that allows us to compute warps. Intuitively this regularizer
should act similar to a norm on warps, but we relax a bit on the formal requirements and formulate
the following criteria for the regularizerR(W) to fulfill:

Positive definite R(W) ≥ 0 andR(W) = argminW R(W) ⇒ W = I . If R(W) was a proper norm we
would needR(I) = 0 to be the minimum, but to avoid normalization issues, we simply define
R(I) to be the minimum ofR.

Triangle inequality R(W1) + R(W2) ≥ R(W2 ◦W1), where◦ denotes warp composition. IfR is to
behave similar to a norm, this criteria is obvious.

Source-destination symmetryR(W) = R(W−1). Again, if R is to behave similar to a norm, it is
obvious that the warp that moves a point fromA to B should have the same complexity as the
warp that moves a point fromB to A.

SmoothnessThe regularizer is continuous inW and its variations are well defined. Otherwise opti-
mization would not necessarily be tractable, and gradient-based methods ill-defined.

These properties are fulfilled by the previously mentioned diffeomorphic approaches [15, 9, 4, 17],
but not by approaches that are linear in warp coordinates like linear spline-based methods [7, 23, 5].

We are now ready to define a warp: A non-rigid registration maybe modeled by a warp field
W : IRD 7→ IRD mapping points in oneD-dimensional image into anotherD-dimensional image. We
give the definition:

Definition 1 (Warp Field) A warp field W(x) : IRD 7→ IRD maps all points in the source image IS(x) :
IRD 7→ IR into points of the destination image ID(x) : IRD 7→ IR such that IS(W(X)) is the registered
source image. W is invertible and differentiable (i.e., a diffeomorphism) and has everywhere a positive
Jacobiandet(∂xjW) > 0.

The identification of a warp field on the basis of images is a matter of inference. Below we
will apply the Bayes inference machine [6], but a similar formulation should appear when using
information theoretic approaches such as the minimum description length principle [21].

We wish to determine the warp fieldW that maximizes the posterior

p(W|IS, ID) =
1
Z

p(IS, ID|W)p(W),

whereZ is a normalizing constant (sometimes denoted the partitionfunction), p(IS, ID|W) is the like-
lihood term, andp(W) is the warp prior. The likelihood term is based on the similarity of the warped
source and destination image and may, in this formulation, be based on landmark matches [7], feature
matches [16, 22], object matches [2], image correlation [16], or mutual information [24]. The major
topic of this paper is the priorp(W) that expresses our belief in the regularity of the warp field prior
to identifying the images.
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3 Brownian warps

We seek that distribution of warps which is the analogue of Brownian motion. We wish this distribu-
tion to be independent of warps performed earlier (i.e., invariant with respect to warps). This property
is of fundamental importance particularly when determining the statistics of empirical warps, creating
mean warps etc. We also want the distribution to be a simple function of the regularizer, and choose
the maximum entropy solution, which is normally denoted theGibbs distribution

p(W) =
1
Z

exp[−R(W)] .

The assumption of independence of previously performed warps then gives

p(W = W2 ◦W1) =

∫

p(W2 = W ◦W−1
1 )p(W1)dW1.

This corresponds to the semi-group property of Brownian motion: The distribution of positions after
two moves corresponds to two independent moves and, throughthe central limit theorem, leads to a
Gaussian distribution of positions. Since this also holds for a concatenation of many warps, we can
construct a warp as

WB = lim
N→∞

N

∏
i=0

◦Wi ,

where theWi are independent infinitesimal warps. This corresponds exactly to the definition of a
Brownian motion on the real axis if the concatenation product is replaced by an ordinary sum.

In order to find this limiting distribution when allWi are independent, we investigate motion in the
neighborhood of a single point following along all the warpsand make the following lemma:

Lemma 1 (Local structure) Let JWi = ∂xjWi be the local Jacobian of Wi . Then, the Jacobian of a
Brownian warp is

JWB = lim
N→∞

N

∏
i=0

JWi .

Proof This is obviously true due to the chain rule of differentiation. �

Assume that an infinitesimal warp acts as the infinitesimal independent warp round all points. We
assume independence along the warp to constitute a Brownianmotion. Furthermore, we assume spa-
tial independence among points in their first order structure. This is the simplest possible assumption.
Notice however that this does not imply that points move independently. It acts as a first order reg-
ularization on the warp including the spatial diffusion under gradient descend implied by the second
order terms in the warp originating from the variation with respect to first order terms. Hence, this
independence still assume spatial correlation in warp. Higher order correlation should be constructed
in a warp invariant fashion which is far from trivial and leftto later research.

In the case of spatial independence and independence of the infinitesimal warps along the warp,
all entries in the local Jacobian are independent and identically distributed round the identity. Hence,
we may now model

JWB = lim
N→∞

N

∏
i=0

I + σ
1√
N

Hi , (1)

whereHi is aD×D matrix of independent identically distributed entries of unit spread. The denomi-
nator

√
N is introduced to make the concatenation product finite, andσ is the spread or the “size” of
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Scaling Skew Rotation
S≈ 0.8, F = 1, θ = 0 S= 0, F ≈ 2, θ = 0 S= 0, F = 1, θ ≈ 0.5

Figure 1: The independent action of the parameters on a unit square.

the infinitesimal warps. The details does not matter as they disappear in the limit, but one may think
of σ as the standard deviation of the local motion.

To summarize, the limiting distribution of Eq. 1 is the distribution of the Jacobian of a Brownian
Warp. In turn, this defines the Brownian distribution on warps, as we have no reason to assume other
structure in the distribution.

Unfortunately, the solution to Eq. 1 is not given in the literature on random matrices. Gill and
Johansen [12] solve the problem for matrices with positive entries and Högnäs and Mukherjea [13]
solve, among other cases, the situation when the matrices are symmetric. However, Jackson et.al.
have solved the case for only two dimensions [14] and we are presently considering the solution for
three. Here, we present only the result.

Theorem 1 (2D Brownian Jacobian) The limiting distribution of Eq. 1 where Hi have independent
entries of unit spread and W: IR2 7→ IR2, is given as

p(JWB) = G(S/σ)
∞

∑
n=0

gn(F/σ)cos(nθ) , (2)

where G is the unit spread Gaussian, gn are related to the Jacobi functions, and the parameters are
given as follows:

Scaling S= log(det(JWB))

Skewness F = 1
2 det(JWB)‖JWB‖2

2

Rotation θ = arctan
(

j12− j21
j11+ j22

)

,

where ji j are the individual entries of JWB.

It is shown in [14] that the limiting distribution does not depend on features of the infinitesimal
distribution other than its spread,σ . The parameterσ may be viewed as a measure of rigidity. The
effects of the parameters are shown in Fig. 1.

It has been proved, that this distribution creates invertible warps (with probability 1), is invariant
under inversion of the warp, and is Euclidean invariant [19]. Here we prove that the distribution is
invariant under simultaneous and identical warping of source and destination.
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Theorem 2 (Local diffeomorphic invariance) The distribution of warps given as spatially indepen-
dent Jacobians each distributed according to Eq. 2 is invariant with respect to a diffeomorphism
simultaneously acting on source and destination.
Proof A source and destination are related by a local JacobianJ such thatn2 = Jn1, wheren1, n2 are
local frames in the source and destination image respectively. An arbitrary diffeomorphism acts lo-
cally on the frames with its Jacobianh. Acting on source and target simultaneously makesn2h= J′n1h.
As all h,n1,n2 are invertible, obviouslyJ = J′. �

This theorem only hold as a local property, but is in general valid for a whole warp if an invariant
measure is used for integration over the full warp field. Construction of such a measure is, however,
not trivial in the general case. We will do so for the pairwiseimage matching problem below.

For computational purposes it may be convenient to approximate the above distribution by a dis-
tribution which is also independent inF and θ . This can be done in many ways without loosing
the symmetry and diffeomorphic invariance. However, the convolution property of concatenation of
warps will no longer hold exactly. We suggest the following approximation.

p(JWB) ≈ Gσ (S)Gσ/
√

2(θ)e−(F/σ), (3)

whereGσ is a Gaussian of spreadσ . This approximation has a relative error at less than 3% for all
reasonable values ofS,θ ,F whenσ > 0.4.

Taken from local points to a global distribution of a full warp, we may assume spatial indepen-
dence of the local Jacobian of the warp. This does not correspond to assuming local independent
motion of points, but that the local spatial differences in motion are distributed independently, just
like independent increments (gradient) of neighboring points of a function in turn leads to Tikhonov
regularization for functions. Taking this Markov Random Field approach, we may say that we formu-
late a first order MRF on the point motion function. The above distribution may then be viewed as
Gibbs distributions, and the energy or minus-log-likelihood of a full field then reads

E′
s(W) = − logp(W)+c =

∫

Ω
S2 +2θ2 +2σFdx,

wherec is an arbitrary irrelevant constant. However, the integration variable is not invariant under
the warp, and the functional will not lead to warp invariance. This may be obtained by using a warp
invariant integration measuredx̃:

Es(W) = − logp(W)+c =

∫

Ω
S2 +2θ2 +2σFdx̃, (4)

where x̃ = x
√

det(J) are integration variables invariant under the warp chosen to ensure global as
well as local warp invariance. It may at first glace seemad hocto introduce this invariant measure.
However it also follow directly from the probabilistic theory if one takes into account that after some
(of the infinitely many) warps, it is more probable to see the areas that have increased in size. This
is handled elegantly in the theory by Markussen as an effect of transforming the Itô integral of the
spatio-temporal warp [17] into a Stratonovich formulation.

4 A PDE Solution

In general the warp energy Eq. 4 is augmented by an image or landmark matching term, so that the
full functional to minimize for a given warp inference task reads

E(W) = Es(W)+ λEI(W),
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whereEI is an image matching functional such as cross-correlation,mutual information, or landmark
distance. Unfortunately the energy functional Eq. 4 is non-linear in the coordinate functions, and
simple tricks such as eigenfunction expansions and derivedlinear splines are not possible. Therefore
we will optimize this functional using a PDE as gradient descend. We only concentrate onEs asEI is
thoroughly treated elsewhere [11].

We treat the energy minimization problem using a gradient descend scheme:

∂tW = − δE
δW

= −δEs

δW
−λ

δEI

δW
.

We introduce the notationQ(D,θ ,‖J‖2
2) = S2 +2θ2 +2σF such that

Es ≡
∫

Ω
Q(D,θ ,‖J‖2

2)dx̃

and notice thatQ does only depend onW in first order so that

δEs

δW
= −

(

∂x

∂y

)T ∂Q
∂J

,

where ∂
∂J denotes symbolic differentiation with respect toJ, and∂x denotes spatial partial differenti-

ation with respect tox (and similar fory). SinceJ is a 2×2 matrix varying inx, ∂Q
∂J becomes a 2×2

matrix of functions inx. That is,
∂Q
∂J

: x∈ IR2 7→ IR2×2

and therebyδEs
δW : IR2 7→ IR2.

Here we first concentrate onE′
s (not using the invariant integration variable ˜x but plainlydx):

∂Q′

∂J
=

2logD−2σF
D

∂D
∂J

+
σ
D

∂‖J‖2
2

∂J
+4θ

∂θ
∂J

,

whereJ is the Jacobian matrix ofW andD = det(J). Using the invariant coordinates (substituting
dx 7→

√
Ddx) this yields

∂Q
∂J

=
Q/2+2logD−2σF√

D

∂D
∂J

+
σ√
D

∂‖J‖2
2

∂J
+4

√
Dθ

∂θ
∂J

.

On an infinite domain the symbolic differentiation in these equations are very simple as all terms are
co-linear or quadratic in the entries ofJ. Numerical issues do however arise on a finite domain since
∂D
∂J is non-zero only at the boundary.

Using E′
s directly serves the problem that the solution is no longer source-target symmetric as

emphasis in the energy varies from point to point with respect to the local scaling. UsingEs in its full
form using the invariant integration variable solves this problem.

On a bounded domain, this will lead to a simultaneous minimization on the size of the domain, to
minimize the functional, and hence a bias toward shrinking warps. It will no longer give meaningful
warps directly. This may be solved by fixing the size of the invariant domain directly using a Lagrange
multiplier in the optimization problem:

Es−bounded=

∫

Ω
Q(D,θ ,‖J‖2

2)dx̃+ λ
∫

Ω
dx̃. (5)
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We directly solve forλ using the fact that the time evolution of
∫

Ω dx̃ vanishes if

λ = − E′
s

∫

Ω dx̃
.

By simple calculus of variation we obtain:

∂
∂J

Qs−bounded=
λ
√

D+Q/2+2logD−2σF√
D

∂D
∂J

+
σ√
D

∂‖J‖2
2

∂J
+4

√
Dθ

∂θ
∂J

, (6)

whereλ must be updated along the evolution. Asλ is an integral measure, this actually is not a
PDE but a partial integral-differential equation. So far, we have no proofs of stability of uniqueness
of the solution. However, it works in the practical solution. It does not fall within the class for
which uniqueness has been proved [11]. It also works on a totally different function space, since in
previous work [11] the warps have been living in component-wise Sobolev spaces which has a non-
empty intersection with the space of diffeomorphisms. However some diffeomorphisms are not in the
Sobolev space, and some members of the component-wise Sobolev space does fold and are obviously
not diffeomorphisms.

This algorithm guarantees that the resulting warp is a diffeomorphism. It corresponds to some
degree to the large deformation diffeomorphisms by Joshi and Miller [15] in the sense that their
formulation also seek a solution composed over many time steps. However, we have succeeded in
integrating out the time, and found the closed form solutionfor the resulting functional. Hence, we
find the solution directly by optimizing the warp, and not by optimizing the warp, and all the inter-
mediate steps, from source to destination. An interesting theoretical link between the two approaches
is found in Markussen [17], where a warp-time discretization is performed, but where a Brownian
motion formulation is used.

5 Implementation

We now turn to discretization of the above partial differential equation. First we discretize the energy
in Eq. 5 as

Es−bounded≈ ∑
(x,y)∈Ω

√
D ·Q(D,θ ,‖J‖2

2)+ λ ∑
(x,y)∈Ω

√
D,

whereD, θ , and‖J‖2
2 are all functions of the local Jacobian in(x,y). We can then compute the

derivative of the energy with respect to the warp in the point(x0,y0) as

∂
∂W(x0,y0)

Es−bounded ≈ ∑
(x,y)∈Ω

[

λ
√

D+Q/2+2logD−2σF√
D

∂D
∂W(x0,y0)

+
σ√
D

∂‖J‖2
2

∂W(x0,y0)
+4

√
Dθ

∂θ
∂W(x0,y0)

]

.

To compute this gradient we need to evaluate the derivative of D, ‖J‖2
2, andθ with respect toW(x0,y0).

To do this, we first discretize the Jacobian. As a first approximation we compute the elements of the
Jacobian at each grid point as backwards differences

J(x,y) ≈
(

u−x (x,y); u−y (x,y)
v−x (x,y); v−y (x,y)

)

=

(

u(x,y)−u(x−1,y); u(x,y)−u(x,y−1)
v(x,y)−v(x−1,y); v(x,y)−v(x,y−1)

)

,
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i−1

i+1

Figure 2: In every point(xi ,yi), the local Jacobian is estimated from the 12 local discrete frames
including the point. To the left, the four frames, where the point contributes centrally, are illustrated,
whereas the 8 frames where the point contributes to in extremal position are illustrated to the right.

whereW = (u,v)T . Using this approximation we can now compute the needed derivatives as

∂D
∂u

≈ v−y −v−x

∂‖J‖2
2

∂u
≈ 2u−x +2u−y

∂θ
∂u

≈
(u−x +v−y )− (u−y −v−x )

(u−x +v−y )2 +(u−y −v−x )2
,

and similar for the derivatives with respect tov. These derivatives are defined in terms of the dis-
cretization. To make the discretization symmetric inx andy we choose to use all four combinations
of forward and backward differences in both coordinates. The final approximation of the energy is
then computed as the average of these four approximations. When using this approximation we see
that each grid point(x,y) that is not on the border appears 12 times in the energy. This is illustrated
in Figure 2. When computing the derivative of the energy we see that 12 frames will contribute to

∂D
∂u(x,y) ,

∂‖J‖2
2

∂u(x,y) , and ∂θ
∂u(x,y) (and similar forv(x,y)).

At the boundary, the contributions from the discrete Jacobian leaving the domain are neglected,
as the free boundary conditions are implemented in this way.

For time discretization of the PDE we use a simple explicit scheme. That is, we repeat the follow-
ing step until convergence

Wt+1 = Wt − γ
δE
δW

.

In this paper we assume that exact landmark matches are available. This basically means that the
warp is known in certain grid points. For this reason, the warp is only iteratively updated in grid points
where the warp is unknown.

6 Results

We see from the energy formulation that the rigidity parameter σ determines the relative weight of the
skewness term to the scaling and rotation terms. For illustration of the independent terms, see Fig. 3.
For large deformations, the difference to spline-based methods, becomes obvious as for example thin
plate splines can introduce folds in the warping (see Fig. 4).
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Figure 3: Illustration of deformation of a regular grid. Twopoints in the center have been moved up
and down respectively, while the corners are kept fixed. We see that the scaling term (top left) aims at
keeping the area constant. The skewness term (bottom left) aims at keeping the stretch equally large
in all directions. Top right is a combination of scaling and skewness (σ = 1). Bottom right is a thin
plate spline for comparison.
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Figure 4: Leftmost are two images of large deformations: Left is the maximum likelihood Brownian
warp, right is a thin plate spline. Rightmost two images are two consecutive warps where landmark
motions are inverse: Left is Brownian warps, right is thin plate spline. Brownian warps do not give
the exact inverse due to numerical imprecision, but closer than the thin plate spline.
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Figure 5: Top-left is the fraction of thin-plate warps that contains a fold (is not invertible) as function
of the spread of the random motion of the two interior point. Top-right is the absolute error (as
difference to the identity warp) in pixel position when warping forward and concatenating with the
backward warp. Below is the same for the relative error of theBrownian warps and the thin-plate
warps. 25 runs for each standard deviation on a 50× 50 grid was performed. All error bounds are
bootstrapped 90% confidence intervals.

For testing the source-target symmetry we conducted the following experiment. We kept the
boundary fixed and moved two random points in the interior with a Brownian motion to new random
positions (see Fig 5).

The figures clearly show that the warp generated by the above algorithm is statistically significant
more symmetric than thin-plate spline warps. The motion of points after warping forward and back
are less than a third than in the case of thin plate splines. Hence, not only is the theory symmetric, im-
plementations show significant improvements. However, thewarps are not totally symmetric, which
in our opinion is due to the spatial discretization, as the error is smaller on a 50×50 grid than on a
10×10 grid (see Fig. 6).

We evaluate the Brownian warps and thin-plate-spline warpsfor doing extrapolation of registra-
tions of biological shapes. From a few point matches, we wishto generate a registration of the full
outline. This is of course not accurate and we evaluate the quality of the registration based on the
distance of the curves.
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Figure 6: As previous figure, but with 200 runs for each standard deviation on a 10×10 grid.
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10 fractured vertebrae (the individual bones in the spinal column) have been annotated by 6 points
used for fracture scoring in traditional clinical practice(see Fig. 7). These 6 points are used as land-
marks for a thin-plate-spline non-rigid registration and aBrownian warp registration of the fractured
vertebrae to a normal template vertebra (see Fig. 8). All vertebrae have also been annotated by a full
contour. The registration can be used for transporting the full contour to the frame of the normal tem-
plate vertebra. The hypothesis is now that since the diffeomorphic registration is theoretically more
appropriate, it may also generalise the registration of the6 points to the full contour better. Hence we
wish to measure the distance between the template contour and the contour of the fractured vertebra
after registration based on the 6 height points.

The result of the registration is that two curvesC1,C2 in the plane are given. Many different
distances between these may be measured. Assuming one curveis “correct” (the template curveC1)
we wish to estimate the distance from this to an approximatedcurveC2 of the registered fractured
vertebra. Since no correspondence is given between points on the curves, we measure, for each
point on the correct curve, the distance to the closests point on the approximate curve. This is, in
mathematical terms, the Hausdorff distance from the template boundaryC1 to the warped fractured
vertebra boundaryC2:

dH(C1,C2) =

∫

c
mins2d(C1(s1),C2(s2))ds1

whereC1,C2 are the two curves,s1,s2 are their respective natural parameters, andd(·, ·) is the Eu-
clidean distance between two points.

In order to not let the arbitrary endpoint of the curves influence the measure, we have chosen to
cut the template in each end, so that it covers less of the vertebra than any of the test vertebrae.

The results are as follows:

Warping method AveragedH Standard dev.
Thin-plate-spline 4.83 mm 1.41 mm
Brownian warps 3.41 mm 1.27 mm

The average Brownian warp Hausdorff distance is significantly smaller than the thin-plate warped
Hausdorff distances with ap < 0.05 using a two-sided unpaired heteroscedastic student’s t-test.

The results here are that the theoretically well-founded diffeomorphic Brownian warps actually
also produce a significantly better warp for the above practical purposes. Matching fractured vertebrae
using only 6 points is a difficult task, but the Brownian warpsremoved more than 30% of the warp-
ing error compared to the standard linear approaches. The hope is that this will generalize to other
anatomical registration tasks. If this is indeed the case, diffeomorphic warping may lead to improved
registration in many other cases, and subsequently to better atlas-based segmentations, more compact
shape models, and more compact appearance models.

7 Conclusion

We have exploited a prior for warps based on a simple invariance principle under warping. This dis-
tribution is the warp analogue of Brownian motion for additive actions. An estimation based on this
prior guarantees an invertible, source–destination symmetric, and warp-invariant warp. When compu-
tational time is of concern, approximations can be made which violate the basic semi-group property
while maintaining the invariances. For fast implementations, we recommend an approximation in-
cluding only the skewness term, as this has nice regularizing properties.

We have developed a PDE scheme for implementing an algorithmcomputing the maximum-
likelihood warp. We have tested this in the case of exact landmark matching, and shown that it
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Figure 7: The template vertebra and the 6 annotated points normally used for fracture scoring, but
here as landmarks for registration.
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Figure 8: An example of a fractured vertebra and its boundaryin green. In blue is the Brownianly
warped template boundary. In red is the thin-plate spline warped template boundary.
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does not fold (as theory predicts) as linear approaches willdo, and shown that also in discrete approx-
imation, the scheme yields solutions very close to being source-target symmetric. The approach has
shown promising results for medical image registration.

Future work includes a joint optimization scheme with otherimage matching terms as used earlier
[11].
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