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Abstract— Deep generative models can automatically create con-
tent of diverse types. However, there are no guarantees that such
content will satisfy the criteria necessary to present it to end-users
and be functional, e.g. the generated levels could be unsolvable or
incoherent. In this paper we study this problem from a geometric
perspective, and provide a method for reliable interpolation and
random walks in the latent spaces of Categorical VAEs based on
Riemannian geometry. We test our method with “Super Mario
Bros” and “The Legend of Zelda” levels, and against simpler
baselines inspired by current practice. Results show that the
geometry we propose is better able to interpolate and sample,
reliably staying closer to parts of the latent space that decode to
playable content.
Index Terms—Variational Autoencoders, Differential Geometry,
Uncertainty Quantification, Deep Generative Models

I. INTRODUCTION

Deep latent variable models, such as Variational Autoencoders
(VAEs) or Generative Adversarial Networks (GANs), learn
a low-dimensional reprensentation of a given dataset. Such
methods have found great application in the game AI com-
munity, mainly to provide a continuous space in which to
search for relevant content using evolutionary techniques or
random sampling [1]–[3], or as a tool for game blending [4]–
[7]. Even though these methods excel at replicating a given
distribution and generating novel samples, they sometimes
fail to generate functional content [8]. For example, when
using them to create levels for tile-based games, there are no
guarantees for the generated content to be solvable by players
[2], restricting the possibility to serve content directly from
latent space. Fig. 1 shows an example of this problem for the
latent space of a VAE trained on Super Mario Bros (SMB)
levels: only some of the regions of the latent space correspond
to functional levels (defined in this case as levels that are
solvable for a human player, or an artificial agent), thus making
it difficult to reliably sample or interpolate functional content.
Fig. 1 shows, for example, a linear interpolation that crosses
non-functional regions of latent space.

We propose a heuristic for safe interpolation and random walks
based on differential geometry. Interpolations and random
walks allow us to gradually modify one type of content to

Latent space of Super Mario Bros

Functional

Not Functional

Fig. 1: Functional content in latent space. When using deep
generative models, there are no guarantees that functional content will
be produced. This figure shows the result of decoding a grid of levels
in the latent space of a Variational Autoencoder, highlighting a func-
tional level (i.e. one solvable by an AI agent) and a non-functional
one. Superimposed to the levels is a finer grid showing which
regions of the latent space correspond to functional (transparent) and
non-functional (red) content. We propose a method for performing
interpolations and random walks that stay within functional content.
This figure shows a comparison between an interpolation using the
proposed approach, and a linear interpolation.

another, making them great tools for designers interested in
creating functional content [9]. In this novel perspective, we
can construct a discrete graph of the points in latent space
that correspond to playable content, and perform interpolations
and random walks therein. Fig. 1 shows an example of
our interpolation approach. These techniques are inspired by
advancements in the uncertainty quantification community,
where methods like these are applied to stay close to where
training points are [10], [11]. Our insight is that these same
tools could be applied for staying close to playable content
instead of the support of the data.

High-level description of our method. As discuss above, we
provide a method for interpolating and performing random
walks based on considering a discrete graph of only the

ar
X

iv
:2

20
6.

00
10

6v
1 

 [
cs

.L
G

] 
 3

1 
M

ay
 2

02
2



Fig. 2: Description of the VAE. In our experiments, we use a
one-layer hierarchical VAE. This means that we first decode to
a Normal distribution, whose samples are then passed through a
Softmax activation function to generate levels. Red dashed arrows
indicate sampling from a normal distribution.

playable content in latent space. To construct it, we first train
a Variational Autoencoder with one hierarchical layer on tile-
based game content (e.g. SMB levels), and we regularize
its decoder to be uncertain in non-playable regions. This
regularization process, developed for differential geometry,
assigns high volume to non-functional parts of latent space,
thus forcing shortest paths and random walks to avoid them.
As inputs, our method requires a Variational Autoencoder
(with one hierarchical layer and low-dimensional latent space)
trained on tile-based content, and a way to test for the
functionality of decoded content.
We test our method against simpler baselines (two types of
random walks based on taking Gaussian steps and on following
the mass of playable levels, and linear interpolation), and we
find that we are able to present functional content more reliably
than them. These methods are tested on two domains: grid-
based representations of levels from Super Mario Bros and The
Legend of Zelda, using different definitions of functionality
(e.g. a solvable level, or a solvable level involving jumps).

II. BACKGROUND

From a bird eye’s view, our method can be described by the
following steps: (i) train a Variational Autoencoder (VAE)
on tile-based data (using a low-dimensional latent space),
(ii) explore its latent space for functional content using grid
searches, and (iii) use this knowledge to build a discrete
graph that connects only the functional content. To construct
this graph, we leverage differential geometry: we modify the
decoder such that non-playable areas have high volume. This
section describes all the theory and technical tools involved.

A. Variational Autoencoders on tile-based data

Variational Autoencoders (VAEs) [12], [13] are a type of latent
variable deep generative model (i.e. a method for approximat-
ing the density p(x) of a given dataset, assuming that the
generative process involves a low dimensional representation
given by latent codes z). Opposite to GANs [14], VAEs model
this density explicitly using a variational training process.
This means that the conditional distribution p(x|z) (which
models the probability density of a certain datapoint x given
a certain training code z) and the posterior distribution of the
training codes p(z|x) (which models the likelihood of the code
of a certain datapoint) are approximated using parametrized

(a) (b)

Fig. 3: How playability is distributed in the latent space of SMB.
After training the VAE, we decode in levels in a 10 × 10 grid of
equally spaced points in the [−5, 5]× [−5, 5] square (Fig. 3a). Even
in two dimensions, our model is able to segment functionally different
levels in distant parts of the latent space. These levels seem to vary
smoothly with respect to playability: Fig. 3b shows the measured
playability after decoding a 50×50 grid of levels in latent space. Blue
squares correspond to playable levels, and white to non-playable.

families of distributions. A common choice is to approximate
the posterior density of the training codes using a Gaussian dis-
tribution qφ(z|x), parametrized using neural networks. Since
we will focus on tile-based content, the conditional pθ(x|z)
will be modeled using a Categorical distribution parametrized
by a neural network.
In practical terms, this translates to having an autoencoder with
probabilistic encoder and decoder, both learning the parame-
ters of the distributions qφ(z|x) and pθ(x|z) respectively.
For our geometric tools to work, we need a deep generative
model that allows for manipulating the uncertainty of our
decoded outcomes. Thus, we consider a one-layer hierarchical
VAE which first decodes to a Normal distribuition, which
is then sampled to create logits for the final Categorical
distribution p(x|z). This hierarchical layer computes the mean
µdec(z) and standard deviations σdec(z) of the logits of the
Categorical distribution. In other words, the probabilities of
this distribution are giving by

decode(z) = Softmax(µdec(z) + ε� σdec(z)
2), (1)

where ε ∼ N(0, ID) and D is the dimension of the data. With
this formulation, we can manipulate the uncertainty of our
Categorical by having σdec(z) → ∞. A diagram that shows
how this network is structured can be found in Fig. 2.
Summarizing, our model is as follows

q(z |x) = N
(
z |µenc(x), σenc(x)

2
)
, (2)

p(x | z) = Cat(x | decode(z)), (3)

where µenc, µdec, σenc and σdec are usually parametrized using
neural networks whose weights are optimized by maximizing
the Evidence Lower Bound (ELBO) [12].

B. An intuitive introduction to differential geometry

Our method relies on the theory of smooth and Riemannian
manifolds (known as differential geometry). We will explain



it by giving an intuition for what Riemannian manifolds are,
what a metric is, and how a smooth map can allow us
to “pull back” a metric from one Riemannian manifold to
another. This explanation focuses on intuition at the expense of
technical precision. For a thorough and theoretical explanation
we recommend [15], [16].

Intuitively, a Riemannian manifold is a smooth surface that
carries a metric: a tool for defining distances accounting for
how curved the surface might be. For example, distances along
a sphere are different from distances on Euclidean space. In
loose terms, a metric is equivalent to a dot product, allowing us
to define norms (e.g. ‖x‖ =

√
x · x in Rn), lengths and angles

between tangent vectors to the surface. One key subtlety is that
this metric is defined locally around a given point, instead of
globally as in Rn.

Consider our decoder dec between the latent space Z and
the Euclidean data space RD. This decoder induces a metric
on Z called the pullback, which is given by M(z) =
Jdec(z)

>Jdec(z) where Jdec is the Jacobian of the decoder.
To understand this definition in context, we can compute a
curve’s length in Z by using lengths in RD: let c : [0, 1]→ Z
be a curve, its length is then given by

Length[c] =
∫ 1

0

∥∥∥∥ d

dt
d(c(t))

∥∥∥∥ dt
=

∫ 1

0

√
(Jd(c(t))c′(t)) · (Jd(c(t))c′(t))dt

=

∫ 1

0

√
c′(t)>M(c(t))c′(t)dt

where we used the chain rule and the definition of the usual
norm in Euclidean space. In other words, the pullback M(z)
is mediating local lengths in Z . The quantity det(M(z)) also
plays a special role, since it measures the volume of a region
locally around z [16]. Our method modifies the decoder in
such a way that M(z) has high volume close to non-playable
parts of latent space.

III. DEFINING A GEOMETRY IN LATENT SPACE

A. Playability-induced geometry in latent space: Motivation

After training a VAE on SMB levels, we wondered how
playability was distributed in the latent space. For this, we used
Robin Baumgarten’s super-human A* agent [17] to simulate
a 50 × 50 grid in [−5, 5]2 in latent space. This agent returns
telemetrics, including whether the level was playable and how
many jumps the agent performed. Simulations are supposed to
be deterministic, but we found in practice that they were not
and thus we performed 5 simulations per level.1

Fig. 3b shows the VAE’s latent space illuminated by the mean
playability of each level. Notice that unplayable regions are
localized in different parts of the latent space, and can be

1We hypothesize that this is the effect of random CPU allocations during
the simulation. After giving it our best efforts, we were not able to force
Baumgarten’s agent to be deterministic.

thought of as “obstacles” when doing interpolations or random
searches. This empirical observation is supported by looking at
different training runs. A similar phenomena can be observed
in the latent space of Zelda: if we define functionalty as
decoding coherent and connected levels, we see structure in
the latent space (see Figs 4a and 4d).
Our goal, then, is to use this playability in latent space (or
an approximation thereof) to define a meaningful geometry in
latent space that allows us to do informed interpolations and
diffusions (i.e. random walks).
This section describes how to use the playability information
from a coarse grid in latent space to define algorithms for in-
terpolation and random walks in latent space. On a high-level,
this geometry is a discrete approximation of the one induced
by Jdec(z)

>Jdec(z), where Jdec is the Jacobian of a “cali-
brated” version of the decoder. The quantity Jdec(z)>Jdec(z)
has a clear geometric meaning: it defines a metric on the latent
space Z by “pulling back” the Euclidean metric on the data
space RD (see Sec. II-B). We will guide the reader using a
VAE trained on The Legend of Zelda levels as an example
(see Fig. 4).

B. Calibrating the decoder

In Sec. II-B we saw that we can use the Jacobian of the
decoder dec to define a geometry in the latent space. Let’s
develop more intuition about what the Jacobian is, and how
we can exploit its definition to make traversing through
non-playable levels “more expensive” for our distances. The
Jacobian plays the role of a first order derivative for functions
of more than one variable, and it can be approximated by finite
differences just like the usual derivative:

Jdec(z) ≈
[
dec(z + dzi)− dec(z)

‖dzi‖

]dim(Z)

i=1

(4)

where dz is a small vector on the ith direction and ‖dzi‖
is its norm. To increase the volume of the metric (and thus
have higher local distances in latent space), we need a decoder
in which small changes with respect to the latent code will
result in large changes after decoding. Thus, we calibrate
our decoder to output what it learned during training when
close to playable levels (i.e. Softmax(µdec(z) + εσdec(z)),
and to extrapolate to noise when close to non-playable levels
(replacing σdec(z) for 105). In other words, whenever we walk
close to non-playable levels, we pass through levels of very
different forms making the numerator of Eq. (4) explode. This
method was first introduced for VAEs in [10] and was applied
to Categorical distributions in [18].
Numerically speaking, the way in which we transition from
decoding the levels we learned to decoding highly noisy levels
is by computing the distance to the closest non-playable level,
and transforming that distance into a number α(z) between 0
and 1, where α(z) = 0 means that the latent code is close to
non-playable regions and α(z) = 1 means the opposite. That
number is then used as a semaphore in a sum

dec(z) = α(z) decµ,σ(z) + (1− α(z)) decµ,105(z). (5)



(a) Coherent levels (b) Metric volume (c) Discrete approximation

Functional

Not Functional

(d) Levels in latent space

Fig. 4: Defining a geometry in latent space. Here we illustrate how our method works using a VAE trained on Zelda levels. First, in Fig. 4a
we decode a coarse grid in latent space and identify the regions where non-functional content is (blue corresponds to functional). Using this
knowledge, we then calibrate a decoder to have high metric volume in these non-functional regions (see Fig. 4b; we show log-volumes).
From these metric values, we construct an approximation by thresholding, arriving at the discrete graph presented in Fig. 4c. Notice how
there is a wider band around non-functional content, helping us to avoid it. Finally, we verify by decoding a grid of levels in latent space
in Fig. 4d.

This semaphore function α(z) is implemented using a trans-
lated sigmoid function. Namely, consider minDist(z) to be the
minimum distance to a non-functional training code, then we
can define

α(z) = Sigmoid
(

minDist(z)− βk
β

)
, (6)

where β is a hyperparameter that governs how quickly we
transform from 0 to 1 (we settled for β = 5.5 in our
experiments), and k ≈ 6.9.
In summary, we decode a coarse grid in latent space to
identify where possible non-playable regions are, we use it
to calibrate our decoder, making it locally noisy around non-
playable regions. We then compute the pullback metric of
the calibrated decoder, resulting on a notion of distance in
which non-playable levels are far away. Figures 4a and 4b
show exactly this: non-functional regions (showed as white)
render high log-volume.

C. Approximating the manifold with a graph

Once we have a calibrated decoder dec(z), we can equip our
latent space with the metric M(z) = Jdec(z)

>Jdec(z). This
metric, as discussed above, has high volume close to non-
playable levels. Empirically, we found it useful to approximate
this manifold using a finite graph. At this point we can easily
compute M(z) for many training codes by approximating
the Jacobian using first order finite differences (see Eq. (4)),
knowing that det(M(z)) is a high number for points that
are close to non-playable regions of space (according to a
coarse grid). We can then sample an arbitrary grid, compute
the metric M(z) for each point and construct a finite graph
by considering only the points whose volume log(det(M(z))
is below some threshold v (which we chose to be the mean
volume, but can be thought of as a hyperparameter).
Fig. 4c shows how we can transform a coarse grid into a
continuous manifold, and then approximate it using a finite
graph as discussed above. Notice that this finite approximation
can be of any resolution. In this graph, interpolation and
random walks can be easily implemented. We discuss these
algorithms next.

a) Shortest paths on graphs through A*: Once we have a
finite graph embedded on Rdim(Z), computing the shortest
path between two latent codes z and z′ in the graph can
be done using the A* algorithm [19]. It must be noted that,
for simplicity in the implementation, we consider a connected
graph in which the points we are trying to avoid are at infinite
distance.

b) Random walks on graphs: Starting at a node z0, our
random walk algorithm samples uniformly at random from the
set of neighbours of z0, arriving at an intermediate point z10 .
Since the grid is usually very fine (thus making local distances
small), we continue this process of sampling uniformly at
random from neighbors on z10 arriving at z20 . This process
continues for m “inner” steps. After these, we assign z1 = zm0 .
For our experiments we decided on m = 25, but it can be
considered a hyperparameter.

IV. EXPERIMENTS & RESULTS

A. Training results for the VAE

We trained our one-layer hierarchical VAEs on data from
two tile-based games: Super Mario Bros (SMB) levels and
The Legend of Zelda. Both of these are common benchmarks
for testing generation in the game AI community. These
levels, usually extracted from the Video Game Level Corpus
(VGLC)2, are processed into token-based text files of height
and width 14 in the case of SMB, and levels of shape 11×16
in the case of Zelda. This processing involves sliding a 14×14
window across the original SMB levels, and by splitting the
original Zelda levels into rooms. We arrive at a total of 2264
playable levels for SMB; and of the 237 original levels for
Zelda, we keep 213 that are solvable according to a definition
we discuss in the next section.

We trained 10 different VAEs for SMBs and 10 for Zelda. All
these networks have MLP encoders with 3 hidden layers of
sizes 512, 256 and 128 respectively, then mapping to a latent
space of size 2; the decoders were symmetric, and the last
hierarchical layer is of size D, the data’s size. For the SMB

2https://github.com/TheVGLC/TheVGLC

https://github.com/TheVGLC/TheVGLC


and Zelda networks, we used learning rates of 10−3 and 10−4

respectively; for both we used a batch size of 64, and an Adam
optimizer [20] and early stopping with at most 250 epochs. All
these neural networks were trained using PyTorch [21].
We noticed an ELBO loss of 53.4 ± 3.1 for the training
runs on SMB, and of 31.8 ± 10.9 for Zelda. As can be
seen from the variance, the training processes for Zelda were
surprisingly unstable, with some networks converging to flat
representations, failing to capture the structure of the dataset.
Thus, for our experiments we used 4 out of the 10 VAEs
trained on Zelda, keeping only the networks in which the latent
space had more than flat, constant representations.

B. Finding playable regions using a coarse grid

To find the non-playable regions in the latent space of Super
Mario Bros, we ran Robin Baumgarten’s A* agent [17] on the
decoded levels of a 50× 50 grid in all latent spaces using the
simulator provided by the MarioGAN repository3. In the case
of Zelda, we implemented a “grammar check” which makes
sure that (i) the level has either stairs or doors, (ii) if there are
more than two doors, they must be connected by a walkable
path (with e.g. no lava/water tiles blocking all possible paths),
(iii) doors must be complete and in the right places, and (iv)
the level must be surrounded by walls. Figs. 3 and 4 show
examples of these two latent spaces.

C. Approximating the manifold using graphs

After training these VAEs, we can regularize the decoder,
forcing it to be expensive in non-playable regions (see
Sec. III-B). When the decoder is calibrated, the log-volume
log(det(Jdec(z)

TJdec(z))) = log(det(M(z))) is high for
latent codes that correspond to non-playable levels.
We can, then, consider a finer grid of any resolution (we
chose 100 × 100 levels), cutting off the nodes for which
log(det(M(z)) is higher than the average over all the grid.
This process was used to approximate the playability manifold
for both SMB and Zelda. For example, Fig. 4c shows the
resulting 100× 100 grid in the Zelda.
To argue why a discrete approximation was necessary, consider
the following random walk algorithm for the continuous case:
at any step zn in the random walk, compute the pullback met-
ric M(zn) and sample from the Gaussian N(zn,M(zn)

−1).
We found, empirically, that these random walks tended to “get
stuck” close to non-training codes. Indeed, in those regions the
inverse of the metric can be thought of as infinitesimally small.

D. Comparing interpolations and random walks

To test whether our proposed geometry improved on reliably
interpolating/randomly walking between functional content
from the latent space we considered, for each VAE, 20
interpolations and 10 random walks. 10 equally spaced points
were then selected from each interpolation, and each random
walk was ran for 50 steps.

3https://github.com/CIGbalance/DagstuhlGAN

We considered linear interpolation to be a suitable baseline
for interpolation, since it is common practice in the deep
generative models community [22]. For random walks, we
considered two baselines: first a naı̈ve one, based on randomly
sampling at each step zn from a Gaussian N(zn, I2) where
I2 is the identity matrix of size 2; secondly a baseline that
randomly samples playable levels from the graph and takes
a step of fixed size in that direction. This second baseline
then tends to stay within playable levels, converging to its
center of mass in the limit, and this first baseline is closer to
common methods for latent space exploration [2]. Example
interpolations and random walks for all methods (ours, plus
the two baselines) can be found in Figs. 5c, 5e, and 5d.

Table I shows the average playabilities of these 10 interpo-
lations and 20 random diffusions for our proposed geometry,
plus the two baselines discussed above. In the case of Super
Mario Bros (SMB), we see a slight increase in the reliability
of interpolations and random walks: our methods indeed
stay more within the playable regions, showing an expected
playability (i.e. functionality) of close to 100%. This is to
be contrasted with e.g. the playability of performing Normal
random walks, which results only in about 77% of playable
levels. In the case of Zelda, we see a similar increase in
the probability of presenting a playable level when using our
geodesic interpolation; the baselines for random walks, how-
ever, seem to perform relatively poorly in these latent spaces.
Our method is able to avoid non-playable regions, presenting
an estimated 99.5% probability of sampling a random level.
Fig. 6 shows a violin plot of the mean playabilities for these
interpolations and random walks, providing more than a point
uncertainty estimate of these results.

E. Measuring diversity in decoded levels

Another metric that is particularly relevant for games is the
diversity present in a corpus of levels [23]. We leverage the
literature that discusses similarities between Categorical data
[24] to implement the following similarity metric: given two
levels l1 and l2, both of size (h,w), we define

sim(l1, l2) =
1

wh

w,h∑
i,j

[l1[i, j] = l2[i, j]] , (7)

where [l1[i, j] = l2[i, j]] is one when the boolean condition is
satisfied, and 0 otherwise. In other words, we measure how
many times the two levels l1 and l2 agree on average. We
define the diversity of a corpus of levels L = {lm}Mm=1 as

diversity(L) = 1− 2

M(M − 1)

∑
m<m′

sim(lm, lm′), (8)

that is, as one minus the average similarity of different pairs
of levels in the corpus, counted only once. With this measure,
the entire Zelda dataset used for training has a diversity of
0.23, and the SMB dataset has a diversity of 0.17.

Table I also shows the mean diversity of the interpolations
and random walks. We see that our improvements on reliablity

https://github.com/CIGbalance/DagstuhlGAN


(a) Our interpolations (b) Our random walks (c) Linear interpolations (d) Baseline random walks (e) Normal random walks

Fig. 5: Interpolations and diffusions in the jumping submanifold. We showcase examples of the different interpolations and diffusions
used in all comparison experiments (see Secs. IV-D and IV-F) for the submanifold given by solvable levels in which Mario jumps. Notice
how this graph is a subset of Fig. 3b. Figs. 5a and 5b show our interpolations and diffusions respectively. Fig. 5c shows example linear
interpolations (used in both baselines) and Figs. 5d and 5e show the random walks of our baselines. We manage to staw away from non-
functional levels (shown in white) in both our interpolation and random walks, sometimes at the cost of getting stuck bottlenecks (see the
upper part of 5b).

Fig. 6: Comparing our geometry against baselines. This figure shows the distributions of playability and diversity, which are summarized
on Table I, where (I) stands for interpolations and (RW) stands for random walks. For each VAE we performed 20 interpolations and 10
random walks, selecting the starting points at random. These quantities were measured in each interpolation/random walk. Our geometry
has most of its playability mass closer to 1.0 than the baselines; however, this comes at a slight cost on diversity: the mass for estimated
diversities is lower than the baselines.

come at a small cost on the diversity of the decoded levels.
This diversity cost is stark in the case of geometric random
walks for Zelda, and we hypothesize that it is because of the
“bottlenecks” between the playable regions, as well as the fact
that some playable regions may be disconnected (see Fig. 5b
for a showcase of this behavior on similar manifolds).

F. A different definition of functionality

So far, we have dealt with presenting levels that are functional
in the sense that they are solvable, or playable by users.
We can, however, modify this definition to encompass a
more restricted set. We experiment with restricting the SMB

playability graph even further to the subset of levels in which
Mario has to jump.

This manifold is presented in Fig. 5, which is to be compared
with Fig. 3. Table I shows the proportion of levels in which
Mario jumps in 20 interpolations and 10 random walks,
just like in Sec. IV-D. First, we notice that the expected
playability is not hindered by restricting to this submanifold.
Second, since the area of levels without jump is wider than
that of playabiliy (leading to a non-convex manifold), we
decode to levels that include jumps more reliably than the two
discussed baseline (with an estimated increase of e.g. 10% for
interpolations).



E[playability] ↑ E[diversity] ↑
Geometry Interpolation Random Walks Interpolation Random Walks

Super Mario Bros

Ours 0.993±0.033 0.996±0.010 0.146±0.034 0.121±0.024
Baseline 0.953±0.084 0.963±0.026 0.154±0.028 0.138±0.026
Normal 0.949±0.093 0.773±0.169 0.155±0.029 0.240±0.026

The Legend of Zelda

Ours 0.961±0.068 0.995±0.011 0.222±0.112 0.099±0.072
Baseline 0.916±0.104 0.874±0.073 0.182±0.104 0.213±0.051
Normal 0.896±0.105 0.567±0.257 0.178±0.107 0.261±0.103

Super Mario Bros (Jump)

E[playability] ↑ E[jumps > 0] ↑

Ours 0.990±0.040 0.995±0.013 0.99±0.01 1.00±0.00
Baseline 0.957±0.078 0.960±0.034 0.90±0.03 0.75±0.08
Normal 0.952±0.083 0.768±0.200 0.90±0.02 0.94±0.02

TABLE I: Comparison between the discretized geometry and
baselines for SMB, Zelda, and the jump submanifold. This table
shows the expected functionality (i.e. playability) and diversity of
the decoded levels after running interpolations and random walks
according to our proposed discretized geometry (see Sec. III), as well
as baselines composed of linear interpolation, Gaussian random walks
and a custom center-of-mass seeking random walk. We report a mean
and standard deviation after running the experiments on 10 different
VAE runs for SMB, and 4 selected VAE runs for Zelda, . These results
show that our proposed geometry is avoiding non-playable regions
of the latent space more reliably than the baselines when performing
both interpolations and random walks. However, it must be noted
that this increase in reliability comes at a cost on the diversity of the
decoded levels, especially when it comes to performing random walks
on Zelda. This results hold even when we consider a submanifold of
the original manifold, given by the levels in which Mario jumps at
least once.

V. RELATED WORK

Our work is situated among the applications of Machine
Learning (ML) to Procedural Content Generation (PCG) [8].
More precisely, recent research has focused on applying Deep
Generative Modeling to the problem of creating content for
videogames. From levels in VizDoom [1], graphic assets in
MOBAs [25] to levels in several of the games available in
the Video Game Level Corpus [26] for applications such as
latent space exploration and evolution [2], [5], [23], or game
blending [4]–[6], [27]. This research spans applications of
Generative Adversarial Networks [28], autorregresive models
[29], Variational Autoencoders [4] and Neural Cellular Au-
tomata [23]. The method we propose here differs from most
of this research, given that our focus is to understand parts
of the latent space that obey certain functionality criteria,
and use them to define geometric algorithms for interpolation
and diffusion. There exist, however, approaches in which
functional content creation is addressed: [30] bootstrap the
creation of playable content; and in [31] authors create content
and then repair it using linear programming; both approaches
are complementary to ours.

We apply techniques from the Uncertainty Quantification com-
munity. Namely, the geometric quantities we discussed (e.g.
manifolds and metrics) provide invariants to reparametrization,
and thus constitute sensible tools for understanding represen-
tations [32]. These geometric methods have been studied for

latent variable methods like Gaussian Process Latent Variable
Models (GPLVMs) [11], Generative Adversarial Networks
[33] and Variational Autoencoders [10], [18], [34], [35]. Our
contribution to this corpus consists of a different way to ensure
high volume in the latent space of a Categorical VAE by
calibrating a hierarchical layer in the decoding process, as
well as a discretized approximation that allows for sensible
random walks. These differential geometry tools have also
been applied e.g. in robot control [36]–[38]. This line of
research is also similar in spirit to learning functions in the
latent space of e.g. proteins, modeled as tokens using VAEs
[18], [39].

VI. CONCLUSION

In this paper we defined a geometry in the latent space of
two tile-based games: Super Mario Bros and The Legend
of Zelda. After learning a latent representation using a one-
layer-hierarchical Variational Autoencoder (VAE), we explore
the latent space for non-functional regions (e.g. unsolvable or
incoherent levels) and place high metric volume there. This
geometry is then approximated with a finite graph by thresh-
olding volume, and is subsequently used for interpolations and
random walks.
When compared to simpler baselines (e.g. linear interpolation
and Gaussian random walks), our method presents functional
levels more reliably. We also tested the ability to define
and explore submanifolds of the SMB playability manifold,
rendering a system for computing interpolations and random
walks that stay not only within playable levels, but also levels
in which Mario has to jump.
There are multiple avenues for future work. First of all,
many of our constructions are sensitive to the hyperparameters
specified (e.g. the bandwith β in Eq. (6), or the threshold cut
for the metric volume in Sec. III); further work is required to
generalize these methods beyond the need for these hyperpa-
rameters. Moreover, the induced geometries in latent spaces
have mostly been studied when the dimension of the latent
space is 2. Testing these tools and improving on them for
dimensions bigger than 2 should be addressed in future work.
We also rely on the assumption that functionality is distributed
smoothly in the latent space, for which we have no theoretical
guarantees. Finally, learning these discrete approximations of
manifolds using graphs may allow for regression methods
therein [40], opening the doors for e.g. optimizing certain
metrics while reliably presenting functional content.
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[39] D. Schwalbe-Koda and R. Gómez-Bombarelli, “Generative models for
automatic chemical design,” arXiv:1907.01632 [physics, stat], vol. 968,
p. 445–467, 2020, arXiv: 1907.01632.

[40] V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. P. Deisen-
roth, and N. Durrande, “Matérn gaussian processes on graphs,” 2021.

https://doi.org/10.1145/3205455.3205517
https://doi.org/10.1145/3377930.3389822
https://proceedings.mlr.press/v32/rezende14.html
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2109.05489
https://epubs.siam.org/doi/10.1137/1.9781611972788.22
https://dl.acm.org/doi/10.1145/3477911.3477913
http://arxiv.org/abs/1603.00930

	I Introduction
	II Background
	II-A Variational Autoencoders on tile-based data
	II-B An intuitive introduction to differential geometry

	III Defining a geometry in latent space
	III-A Playability-induced geometry in latent space: Motivation
	III-B Calibrating the decoder
	III-C Approximating the manifold with a graph

	IV Experiments & Results
	IV-A Training results for the VAE
	IV-B Finding playable regions using a coarse grid
	IV-C Approximating the manifold using graphs
	IV-D Comparing interpolations and random walks
	IV-E Measuring diversity in decoded levels
	IV-F A different definition of functionality

	V Related work
	VI Conclusion
	References

