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Abstract

Neural models learn representations of high-dimensional data on low-dimensional
manifolds. Multiple factors, including stochasticities in the training process, model
architectures, and additional inductive biases, may induce different representations,
even when learning the same task on the same data. However, it has recently been
shown that when a latent structure is shared between distinct latent spaces, relative
distances between representations can be preserved, up to distortions. Building
on this idea, we demonstrate that exploiting the differential-geometric structure of
latent spaces of neural models, it is possible to capture precisely the transformations
between representational spaces trained on similar data distributions. Specifically,
we assume that distinct neural models parametrize approximately the same under-
lying manifold, and introduce a representation based on the pullback metric that
captures the intrinsic structure of the latent space, while scaling efficiently to large
models. We validate experimentally our method on model stitching and retrieval
tasks, covering autoencoders and vision foundation discriminative models, across

diverse architectures, datasets, and pretraining schemes.

1 Introduction

Neural models learn meaningful representations
of high-dimensional data generalizing to many
tasks, spanning different data modalities and do-
mains. Recent research reveals that these mod-
els often develop similar internal representations
when exposed to similar inputs|Li et al.| [2015]],
Moschella et al.| [2023]], [Fumero et al.|[2024],
Kornblith et al.|[2019a], a phenomenon that was
observed in biological networks Laakso and Cott
trell| [2000], Haxby et al.|[2001]. Remarkably,
even when models have different architectures,
their internal representations can frequently be
aligned through a simple, e.g., orthogonal, trans-
formation [Maiorca et al.| [2024]], [Lahner and
Moeller| [2024al], Moayeri et al.| [2023]]. This
suggests a certain consistency in how neural
nets encode information, emphasizing the im-
portance of studying these internal representa-
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Figure 1: Neural models trained on similar data
learn parametrizations of the same manifold. NNs
learn parametrizations (D1, D2) of the same under-
lying manifold ) up to isometric transformations
7. By pulling back the metric from ), relative

geodesic representations are invariant to the trans-
formation 7 between latent spaces Z; and Z,
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tions, and the transformations that relate them, to the extent to hypothesize whether neural nets are
converging toward a single representation of reality [Huh et al.| [2024].

One strategy to understand how different models are related is to identify representations that are
invariant to transformations between distinct models’ representational spaces. A simple and effective
recipe is that of relative representations Moschella et al.| [2023]], where samples are represented
as a function of a fixed set of latent representations. The similarity function employed is cosine
similarity, hinting at the fact that representations across distinct models are subject to angle preserving
transformations. However, the choice of similarity function should not be limited to only capturing
invariances of one class of transformations. As shown in|Cannistraci et al.|[2024],|[Fumero et al.|[2021]],
other choices can be good as well, and there’s not a clear best choice among different transformations
for capturing transformation across distinct latent spaces.We posit that when it is possible to relate
distinct neural models’ representational spaces, this suggests that neural models are learning distinct
parametrizations of the same underlying manifold (see Figure[I)). In this paper, we employ geodesic
distance in the latent space as a metric for relative representations. This approach ensures that the
relative space remains approximately invariant to the isometries and reparametrization of the data’s
manifold, as characterized by a Riemannian structure. Our contributions can be summarized as
follows:

* We observe that distinct neural models learn parametrization of the same underlying manifold
when trained on similar data.

* We propose a new representation that captures the isometric transformation between data
manifolds learned by distinct models, by leveraging the pullback metric.

* We propose to employ a scalable approximation of the geodesic energy to compute intrinsic
distances that preserve the ranks of true distances.

* We observe that different pullback metrics are suitable for different tasks, showing for the
first time how to get meaningful pullback metrics from discriminative models, such as
classifiers and self-supervised models.

* We test relative geodesics on retrieval and stitching tasks on autoencoders and real vision
foundation models, across different seeds, architectures, and training strategies, outperform-
ing previous methods.

2 Related Work

Representation alignment. Numerous studies have shown that neural networks trained under
different initializations, architectures, or objectives learn highly similar internal feature representations
Bonheme and Grzes| [2022], Kornblith et al.| [2019b]], [Klabunde et al.| [2023]], |L1 et al.[[2015]], Bengio
et al.|[2014], Maiorca et al.|[2024], |Huh et al.|[2024], Guth et al.|[2024],|Chang et al.|[2022], Conneau
et al.| [2018]], [Tsitsulin et al.| [2020], Nejatbakhsh et al.| [2024]. This correspondence becomes
stronger in wide and large networks Barannikov et al.|[2022], Morcos et al.[[2018]],|Somepalli et al.
[2022]. Leveraging these aligned embeddings, a simple linear transformation often suffices to map one
network’s latent space onto another’s, enabling techniques such as model stitching, where components
from different networks can be interchanged with minimal loss in performance [Fumero et al.| [2024]],
Bansal et al.|[2021]], (Csiszarik et al.|[2021]]. In practice, aligning two independently learned latent
spaces often requires only a linear transformation, which achieves comparable downstream task
performance [Moayeri et al.,|2023| Merullo et al., [2023| Maiorca et al., 2024, [Lahner and Moeller,
20240b]).

Latent space geometry. Early work on the geometry of deep latent representations focused on
autoencoders, where the decoder’s mapping from latent to data space induces a natural pull-back
metric under the assumption that the ambient space is Euclidean [Shao et al., 2018 |Tosi et al.| 2014,
Arvanitidis et al.||2018]]. The Riemannian viewpoint allows one to compute geodesic paths and mean-
ingful distances that respect the manifold structure of the learned embedding. Subsequent research
has introduced computationally efficient approximations, such as energy-based proxies, and extended
these ideas to estimate local curvature for improved interpolation and sampling [[Chen et al., 2019,
Chadebec and Allassonniere, [2022, |Loaiza-Ganem et al., 2024, |Arvanitidis et al.| 2021} 2022al]. In the
context of discriminative models, one can obtain a Riemannian metric primarily using two approaches
[Grosse} 2022], either by pulling back the Fisher Information Matrix [[Amaril, 2016, |Arvanitidis et al.}
2022b|| or by assuming a Euclidean geometry on logit space and pulling back the metric.



3 Method

3.1 Notation and Background

Neural networks (NNs) are parametric functions Fy, composed of an encoding map and a decoding
map, represented as Fy = Dy, o Ep,. The encoder Ey, : X — Z generates a latent representation
z = Fy, (x), where z € X to the input domain X, and the latent space Z. The decoder Dy, is
responsible for performing the task at hand, such as reconstruction or classification. For simplicity,
we omit the parameter dependence () in our notation moving forward. For any single module E (or
equivalently D), we use Ex to denote that the module F was trained on the domain X. In the next
sections, we will provide the necessary background to introduce our method.

Latent Space Communication. Given a pair of domains X', ), a pair of neural models trained on
them FL, Ff,, and a partial correspondence between the domains I' : Ay — Ay where Ay C &
and Ay C Y, the problem of latent space communication is the one of finding a full correspondence
A El()() —> E2(J}) between the two domains, from I'. In a simplified setting, e.g., two models
trained with different initialization or architectures on the same data X = ) and the correspondence
is the identity. When X' # )/, the problem becomes multimodal.

Relative representations. The relative representations framework Moschella et al.| [2023] provides
a straightforward approach to represent each sample in the latent space according to its similarity to
a set of fixed training samples, denoted as anchors. Representing samples in the latent space as a
function of the anchors corresponds to transitioning from an absolute coordinate frame into a relative
one defined by the anchors and the similarity function. Given a domain &, an encoding function
Eyx : X — Z, asetof anchors Ay C X, and a similarity or distance functiond : Z x Z — R, the
relative representation for a sample x € X is:

RR(z Ax,d) = €D d(z,Ex(a)),

a; EAx

where z = Ex(z), and €) denotes row-wise concatenation. In the original method Moschella et al.
[2023]], d was the cosine similarity. This choice induces a representation invariant to angle-preserving
transformations. In this work, our focus is to leverage the intrinsic geometry of latent spaces to
employ a metric that captures isometric transformations between data manifolds.

Latent space geometry. For the latent space of a neural network, it is generally hard to reason about
its Riemannian structure. However, it is often easier to assign a Riemannian structure to the output
space. As such, one can define a pullback metric from the output space to the latent space, which is
a standard operation in Riemannian geometry (see ,e.g., Ch.2.4 of Do Carmo and Flaherty Francis
[1992)).

Formally, the decoder D : Z +— X takes as input a latent representation z € Z and outputs x. Given
a Riemannian metric defined on = as G x (). Then, the Riemannian metric at z is

G2(2) = (Z”U)T Gala) (52 = 1) Gal).(D),

where J (D) is the Jacobian of D at z. The metric tensor G x is useful to compute quantities such as
lengths, angles, and areas on M. Given a smooth curve 7 : [a, b] — M, its arc length is

b
L) = [ \fo®T G0 0

A slight variation of the above functional gives the geodesic energy £ of v [Arvanitidis et al.,[2018]
Shao et al., [2018]]
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where v(t) = 4/(¢). Both can be discretized and approximated in practice using finite difference
approaches [Yang et al., [2018| |Shao et al., 2018|]. Geodesic paths minimize both the arc length and
the energy, where the latter is usually preferred for numerical stability Hauberg| [2025]]. The arc
length instead has the property of being invariant to reparametrizations of the manifold,



Proposition 3.1 ([Do Carmo and Flaherty Francis| [1992]]). Let v : [a,b] — M be a smooth curve
on a Riemannian manifold (M, G), and let ¢ : |a, | — [a,b] be any smooth, strictly increasing
reparametrization. Define (1) = ’y(cp( )) Then the Riemannian length of v is unchanged.:

V= [ 1%t = [ h0led = 1)

3.2 Relative geodesics representations

Algorithm 1 Relative Geodesic Representations

Require: Sample = € X, anchors Ay, encoder E, decoder D, metric Gy, steps IV, step size At,
mode € {energy,distance}

Ensure: RR9°(x; Ay)

l: z 4 E(z), RRI «[]

2: fora € Ay do

3: zg < E(a), d+0

4 for j =1to N do ‘

5: i 1=z + %=

6: vim1 — (L= L)z + Iz,

7: v < D(v;) — D(v;-1)

8 G+ Gx(D(v;))

9: s+ v G

10: d + d+ At - (energy = is, distance = /s)
11: end for

12: Append d to RR9¢°

13: end for

14: return RR9¢°

When considering a differential geometry perspective, the problem of latent space communication
can be interpreted as finding a transformation between the data manifolds M, M approximated
by two neural models Fi, F». The relative representation framework captures this transformation
implicitly if equipped with the right metric. A natural candidate for this metric is the geodesic
distance defined on M, M5, respectively. This choice makes the relative representations invariant
to isometric transformation of the manifolds M7, M5. However, for high-dimensional problems,
the high cost of computing the geodesic renders the above methods inappropriate [Shao et al.| [2018]],
Chen et al.|[2019]. Furthermore, one can argue against directly using the latent geometry induced by
deterministic models from a theoretical perspective [Hauberg, 2019], as it may result in undesirable
properties, e.g., the resulting geodesics going outside of the data manifold.

We therefore consider using the approximate energy of the straight line (in the Euclidean sense)
connecting the representations in the latent space

RRI(z; Ax) = @ E(V(2, Ex(ai)))
a; €Ax
where ¥(z1,bz2) = (1 — «)z1 + a2y is the convex combination between the points 21, 2.
It can be easily seen that for 7 the three quantities are related by the following bounds:
d(z0,21)” < L*(3) < 26(7) (©)

On a Riemannian manifold, a natural choice to form such a representation is to use the Riemannian
arc length of a curve defined respectively in Eq.[T]and the energy in Eq.[2]

Discretization. The energy and arc length can be approximated using finite difference schemes,

N 1 N

E(V) =) Ei=5) v(t) Gtu(t)At, )
N

L(v) =3 di =D _\/olts) TG(t)v(t)At, (5)



(a) MNIST (b) CIFAR-10

Figure 2: Pairwise latent-space distance matrices for (a) MNIST and (b) CIFAR-10. In each subfigure,
the left heatmap shows the straight-line energy proxy and the right shows the full Riemannian
geodesic distances. The Spearman rank correlation between the two measures is p = 0.99 for MNIST
and p = 1.00 for CIFAR-10, demonstrating near-perfect agreement.

where At = %, with N being the number of discretization steps.

When the step size is small enough, both quantities in the latent space can be approximated by their
counterpart on the output space 2018]. For Euclidean geometry, the geodesic arc length
is given in closed form as the geodesics are straight lines. Note that, unlike the energy, the curve
length is invariant under reparametrizations (proposition[3.1). As such, we use the curve length.

Approximate geodesic distances. Our choice comes with three advantages (i) Efficiency: since
we avoid gradient descent, the computation reduces to a single forward pass for each step in 7, (ii)
The approach is minimal yet sufficient as we only need reasonably accurate estimates of the lengths
rather than the entire geodesic trajectory, (iii) Since we don’t have to perform any optimizations
we can use directly the arc length benefiting from its invariance to reparametrizations. To assess
how close the straight line energy approximation (2) is to the true geodesic distances, we first
encoded 100 samples (10 per class, sorted by label) from MNIST and CIFAR-10
using a simple autoencoder’s encoder. We then computed pairwise distance matrices over these
latent representations using both methods, and the results are displayed in Fig.[2] Visually, both
distance matrices exhibit the same block-diagonal structure, mainly due to belonging to the same
class, and clustering patterns. Numerically, their Spearman rank correlation exceeds 0.99 with only 8
discretization points (see Appendix for correlation results across different numbers of discretization
steps and for implementation details).

3.3 Choice of pullback metric

For autoencoders, it has been argued that a pullback metric is beneficial to reflect the underlying
geometry of the latent space [Tosi et al, 2014, [Arvanitidis et al., 2018], [Hauberg| 2019]]. For
discriminative models, such as classifiers, it is not immediate how to assign a Riemannian structure to
the space of latent representations. From the perspective of information geometry, perhaps the most
natural choice is the Fisher information matrix 2016]], in which case the metric in the output
space can be obtained as the one with Categorical likelihood. However, neural networks typically
experience Neural Collapse [2023], rendering the resulting geometry troublesome. Here
we discuss two principled approaches: pullback and Diet.

Pullback. Perhaps the most natural idea is, as discussed in Section @ to construct a pullback
metric based on the model’s outputs. In practice, given a model, we train a classification head upon
the latent representations and utilize the resulting Riemannian structure.

Diet. Diet [Ibrahim et al, 2024] is a simple self-supervised training method, based on instance
discrimination task, which has been shown to yield identifiability guarantees [Reizinger et all, [2023].
Specifically, it can identify the cluster centers of Von-Mises Fisher (VMF) distributions, which lie on
a unit sphere.

One can consider such a scenario [Reizinger et al.,[2023]]: some latent variables z are drawn from
a VMF distribution, which naturally lie on a unit sphere, and pushed forward through an injective
generator function g to obtain the data . Given only x without the knowledge of g, it is possible to




Figure 3: Aligning latent spaces of autoencoders: MRR score as a function of the number of anchors
on pairs of autoencoders trained with different initializations on the MNIST (left), FashionMNIST
(center), CIFAR10 (right) datasets, respectively. In green, we plot the performance of Moschella
et al. [2023]], in blue, our method. The shaded area indicates standard deviation across different
random sets of anchors. Relative geodesics consistently outperform the cosine baseline, obtaining
peak performance.

recover the latent variables z through parameterizing a model and optimizing

exp ((wi, f(x)))
22 exp ((wj, f(2)) |
where w is a linear layer without bias and f is a nonlinear encoder. After the model is trained using

the above criterion, up to some assumptions, when both f and w are not unit-normalized, f o g is
linear. This hints that f o g may tell us something about the underlying spherical structure of z.

L=E,,|—log

While Diet was proposed to train the entire neural network [Ibrahim et al.| 2024, we use it to learn a
classification head on top of the pretrained neural network. Specifically, we add several layers on top
of the pretrained model, and use it as f. After the model is trained, we may expect f o g to give the
ground truth z up to a linear transformation. Furthermore, Lihner and Moeller| [2024a] noted that
it was beneficial to employ data augmentations, which we also observed to be important to achieve
good performance.

We propose to directly employ the geodesic distances of a sphere to form the relative representations
in Diet. Specifically, on a unit sphere, the distance between two points x and y is given by
T
d(z,y) = arccos (m Y ) ,
[yl

which interestingly bears a strong resemblance to the cosine distances as used in the original
paper on relative representations [Moschella et al., [2023]]. Observe that z and y do not need to lie
precisely on the unit sphere; instead, they are projected onto the unit sphere. As such, this implies the
assumption that different instances of f o g yield transformations that are constant scalings, which
is a stronger assumption than a linear transformation. Moreover, that the data lies on a unit sphere is
a rather strong assumption. Nevertheless, as will be shown later, this approach results in meaningful
representations across the models.

4 Experimental evaluation on Autoencoders

In the following, we evaluate relative geodesic representations on the latent communication problem
across models trained with different initializations, different architectures, and tasks.

4.1 Aligning neural representational spaces trained independently

Experimental setting. For the following experiment we trained pairs of convolutional autoencoders
(F}, F») with different initializations on the MNIST Deng|[2012], FashionMNIST Xiao et al.| [2017],
CIFAR10|Krizhevsky|[2009] datasets. The architecture of the convolutional autoencoder is detailed
in the Appendix. After training, we extracted 10k samples from the test set, and mapped them to the
latent spaces of the two models, to representations Z; = F (X), Zo = E2(X) respectively. Starting
from a small set of anchors in correspondence Ay — Ay, the objective is to evaluate how well it



is possible to recover the full correspondence between the representations Z, Zo from the relative
representations. As a baseline, we compare with relative representations using cosine similarity
Moschella et al.|[2023]].

Analysis of results. Fig. [3| plots the performance in terms of MRR on MNIST, FashionMNIST,
CIFAR10 datasets. To obtain the score we first compute similarity matrices between relative repre-

T .
sentations of the two spaces as D(Z1, Z3) where D, ; = i Rl?(i(lz)%\)l; ”RRRR((Z;Z); e Then we compute
i J

the Mean Reciprocal Rank (MRR, see Appendix on top of the similarity matrix. In the
figure, we plot MRR as a function of a random set of anchors, where the shaded areas indicate the
standard deviations over 5 different sets of random anchors with the same cardinality. Our method
consistently performs better than Relative Representation, saturating the score with few anchors on
all the domains, despite the different degrees of complexity of the latent spaces. In addition, our
method shows significantly less variance, being more robust to the choice of the anchor set.

Takeaway: Relative geodesic representation near-perfectly captures transformations between repre-
sentational spaces of models initialized differently, outperforming Moschella et al.|[2023]] in sample
efficiency and robustness.

4.2 Stitching autoencoder models
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Figure 4: Stitching on Autoencoders: We visualize qualitative reconstructions of samples, stitching
autoencoders of models trained with different initializations on MNIST (left), FashionMNIST (center),
CIFAR10 (right). The first two columns show reconstructions from the original models; the middle
columns represent baselines [Maiorca et al.| [2024]], Lahner and Moeller| [20244al], [Moschella et al.
[2023]]; the rightmost column is our method. Relative geodesics yield the best stitching results using
just 5 anchors.

Experimental setting. = We consider the same pairs of autoencoders trained on the MNIST,
FashionMNIST, CIFAR10 datasets of section @ Starting from a set of five random anchors,
we estimate a transformation 7" between the model representational spaces 21, Z». Different from
Moschella et al.|[2023]], in which zero-shot stitching was achieved by training once a decoder mod-
ule with relative representations and then exchanging different encoder modules, here we achieve
stitching without training any decoder. We compute relative representation with respect to the set of
anchors, and compute a similarity matrix D(Z1, Z2). Then we compute the vector ¢ = arg max; (D)
representing a correspondence between the two representations matrices Z, Zo, and use c to fita
linear transformation 7" to approximate the transformation between the two domains. We perform
stitching by performing the following operation for a sample € X: & = Dy o T o Ey ().

Analysis of results. We visualize the results of reconstructions of random samples in Fig. 4]
comparing with Moschella et al.|[2023]], |Lihner and Moeller| [2024a]], Maiorca et al.|[2024]. For
each dataset, each column represents respectively: (i) the original autoencoding mapping for a
sample x of model Fy, D1(E;(x)), (ii) Da(FEa(x)), (iii) the mapping Do (F1(z)), (iv) the mapping
Do (TanchorsEr(x)) where Tanenors is estimated on the five available anchors, (v) the mapping
Do (TeosineFr () where Tepsine is estimated among all 10k samples with the correspondence ¢
obtaining in the relative space of Moschella et al.|[2023], (vi) Our result Dy (Tye1ge0En1 (2)), Where
Treigeo 1s estimated from the correspondence obtained in the relative geodesic space. While the
baselines do not reach a good enough reconstruction quality, reconstructions with our method are
almost perfect in accordance with the results in Fig. [3]

Takeaway: The relative geodesic space enables stitching neural modules trained on different seeds.



5 Experiments on vision foundation models

In this section we evaluate relative geodesic representations performance on retrieval and model
stitching tasks on vision foundation discriminative models across models trained with different
objectives, architectures, and sizes.

5.1 Matching representational spaces of discriminative foundation models

Table 1: Average MRR cosine results for different methods across different datasets. Relative repre-
sentations pulling back from diet decoder (RelGeo (Diet)) consistently provides better retrievals.

Method CIFAR-10 CIFAR-100 ImageNet-1k CUB SVHN
Rel(Cosine) Moschella et al.|[2023]  0.129+0.135 0.166 £0.162  0.221 £0.178  0.1354+0.148  0.068 & 0.08
RelGeo(Pullback) 0.047 £0.013  0.112+0.031 0.412 4+ 0.09 0.284+0.129  0.025 £+ 0.012
RelGeo(Diet) 0.387+0.145 0.445+0.142 0.566 +£0.111 0.523 +0.177 0.314 +0.188

In this section, we test the compatibilities of representations of vision foundation models with different
architectures, such as residual networks |He et al.| [2016b]] and vision transformers Dosovitskiy et al.
[2021]], and with different pretraining objectives including classification and self-supervised learning.

Experimental setting. We perform experiments on retrieval tasks on pretrained vision foundation
models, investigating how well we can match representations together with different backbones
subject to the decoding tasks, on 5 datasets, varying in complexity and size: CIFAR10, CIFAR100
Krizhevsky| [2009], SVHN |Yuval Netzer et al.|[2011], CUB |Wah et al.| [2023]], and ImageNet-1k
Russakovsky et al.| [2015]]. For ImageNet-1k, we used 1000 anchors, while for other datasets we
used 500. As backbones we consider ResNet-50 [He et al., [2016a]], Vision Transformers (ViT)
[Dosovitskiy et al.| 2021]], with both patch 16-224 and patch 32-384, and DINOV?2 [Oquab et al.,
2024]]. We compare the original formulation of relative representations with cosine similarity
Moschella et al.|[2023]] denoted as Rel(Cosine), relative geodesic representation using Euclidean
pullback metric denoted as RelGeo (Pullback), and pulling back the spherical metric using a Diet
decoder denoted RelGeo (Diet).

Analysis of results. Table |l| shows results from different methods averaged across all possible
pairs of models on the considered datasets. Additionally, Fig. [5|shows the results on CUB datasets,
highlighting the numbers in different settings. While Re1Geo (Pullback) may result in worse MRR
numbers, RelGeo (Diet) provides consistently improved retrieval performance. In the Appendix we
report full results for every dataset.

Takeaway: Relative geodesic representations pulling back from instance discrimination decoders are
identifiable across vision foundation models, improving retrieval performances.

5.2 Zero-shot stitching of vision foundation models

Table 2: Average stitching performances across different settings. Re1Geo (Pullback) often outper-
forms Rel (Cosine), while RelGeo (Diet) remains competitive.

Method CIFAR-10 CIFAR-100 ImageNet-1k CUB SVHN

Rel(Cosine) Moschella et al.|[2023]  0.907 £0.09  0.7754+0.132 0.549 £0.152 0.531 £0.188  0.384 +0.115
RelGeo (Pullback) 0.955+0.03 0.874+£0.055 0.501+0.159 0.595£0.163 0.59 £ 0.054
RelGeo(Diet) 0.915+0.074 0.775+0.115  0.479+0.17  0.559+£0.171  0.416 &+ 0.079

Model stitching was introduced in|Lenc and Vedaldi|[2015] to analyze neural network representational
spaces, by training a linear layer to connect different layers and evaluating performance. Here we
sidestep the need for trainable stitching layers and consider the zero-shot model stitching task defined
in Moschella et al.|[2023]] to effectively test how components of vision foundation models can be
reused. To do this, we leverage the space of relative geodesic representations as a shared compatible
space. For the ith model E;, we train one decoder D; on the relative representations induced by it,
then evaluate the performance of using D; to decode the representations of model E;, where E/; may
be a different model. This assesses how much two representation spaces can be merged with respect
to the task defined by decoder D, e.g., a classification head.
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Figure 5: CUB Accuracies (top) and symmetricized MRR cosine (bottom)

Experimental setting. We perform experiments on pretrained vision foundation models from
Hugging Face, investigating how well we can match representations together with different backbones
with classification heads, on the same datasets and models as considered in Sectionlﬂ Similar to
Section[5.1} we compare Rel(Cosine), RelGeo (Pullback) and RelGeo(Diet).

Analysis of results. The results of the different methods across the different data sets are shown
in Table 2] where we average over all possible model pairs. We further show the accuracies of the
models on the CUB dataset in Fig.[5] Both RelGeo (Pullback) and RelGeo(Diet) provide strong
stitching accuracies, with RelGeo (Pullback) reflecting the benefits of pulling back class specific
information. RelGeo (Diet) results still in good accuracies while having very strong MRR metrics

m

Takeaway: Using geometric relative representations yields good accuracies and good MRRs, avoiding
downgrading of performance when performing model stitching while retaining identifiability.

6 Conclusions and discussion

We have introduced the framework of relative geodesic representation starting from the assumption
that distinct neural models trained on similar data distributions learn to approximate the same
underlying latent manifold. As a result, geodesic distances based on their representations are invariant
to transformations between different representational spaces. We show that the geodesic energy and
arc length of straight lines provide an efficient, low-cost metric for bridging these spaces, allowing us
to measure similarity and align representations across different architectures, training objectives, and
training procedures, while outperforming previous methods.

Limitations and future work. The accuracy of using the straight line arc length (or energy)
approximation can be imprecise in regions of high curvature in the latent space, corresponding to
regions further from the training points’ support. Moreover, this could require increasingly smaller
step sizes, hurting the efficiency performance of the method. This suggests considering different paths
rather than the linear one, and adaptive step sizes, e.g., by estimating the support of the data building
KNN graphs in the latent space and forcing the path to not deviate too much from them. By employing
the pullback metric from a given output space, the relative geodesics representation has the interesting
property of restricting the alignment problem to the information relevant to the decoding task. This
could be useful to (i) explore multi-modal alignment [Norelli et al.|[2023]], where it is of interest to
capture not only the shared information across modalities, but also the modality-specific information;
(ii) to better understand the relation between the representation similarity and decodability
and the interaction between tasks and learned representations [Fumero et al.|[2023]).
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A Appendix

A.1 Additional details

A.1.1 Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) is a commonly used metric to evaluate the performance of retrieval
systems [Moschella et al.| [2023]. It measures the effectiveness of a system by calculating the rank of
the first relevant item in the search results for each query.

To compute MRR, we consider the following steps:

1. For each query, rank the list of retrieved items based on their relevance to the query.

2. Determine the rank position of the first relevant item in the list. If the first relevant item for
query ¢ is found at rank position r;, then the reciprocal rank for that query is ri

3. Calculate the mean of the reciprocal ranks over all queries. If there are ) queries, the MRR
is given by:

Mrr— L3 L ©
- Q o1 i

Here, r; is the rank position of the first relevant item for the i-th query. If a query has no
relevant items in the retrieved list, its reciprocal rank is considered to be zero.

MRR provides a single metric that reflects the average performance of the retrieval system, with
higher MRR values indicating better performance.

Similar to stitching accuracies, MRR is generally asymmetric. However, it can also be made
symmetric. Specifically, as MRR is calculated based on a distance matrix D, one can make the
distance matrix symmetric by setting D = % (DT + D). In Sectionwe reported the symmetric
version. Otherwise we report both the original version and the symmetric version, and discriminate
between these two by explicitly indicating it when it is symmetric.

A.1.2 Architectural details

We provide here the architectural details of the convolutional Autoencoders employed in experiments
in Figures[3]and

Encoder

3 X 3 conv. 32 stride 2-ReLLu
3 X 3 conv. 64 stride 2-ReLu
Flatten

(64 * k * k) x h Linear
Latents

Decoder

h x (64 * k * k) Linear
Unflatten

3 X 3 conv. 64 stride 2-ReLLu
3 x 3 conv. 32 stride 2-ReLLu
Sigmoid

Table 3

For the classifier experiment, in order to obtain geometric representations we need a decoder. The
architecture is shown in Table[d] For RelGeo(Diet), the last linear layer is configured with bias=False
in accordance with the original algorithm.

For evaluating the performances of the representations, we train a classification head with the same
architecture as used by Moschella et al.| [2023] as given in Table 5]
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Classification head

input_dim LayerNorm
input_dim x 500 Linear-Tanh
500 x num_classes Linear

Table 4

Final classification head

input_dim LayerNorm

input_dim X input_dim Linear-Tanh
InstanceNorm1d

input_dim X num_classes Linear

Table 5

A.1.3 RelGeo(Diet) augmentations

As noted by [Ibrahim et al.| [2024]], it is beneficial to employ data augmentations when using Diet to
perform self-supervised training of neural networks. We largely follow their approach, and considered
different levels of data augmentations. Following Ibrahim et al.|[2024]], we consider different levels
of data augmentations indexed by a scalar strength, which are summarized below using PyTorch
pseudocode; strengths of a higher level employs the augmentations of lower levels as well.

0: no augmentations;

1: RandomResizedCrop((height, width)), RandomHorizontalFlip();

2: RandomApply(ColorJitter(0.4, 0.4, 0.4, 0.2)), p=0.3); RandomGrayscale(0.2);
3: RandomApply(GaussianBlur((3, 3), (1.0, 2.0)), p=0.2), RandomErasing(0.25).

A.1.4 Compute resources

Experiments regarding the geodesic approximation are conducted using NVIDIA A100 GPU and 12
CPU cores. Run time varies depending on the discretization steps, number of anchors and the used
dataset.

The autoencoder stitching and retrieval experiments are performed on an NVIDIA RTX 3080TI GPU.

The experiments concerning vision foundation models are carried out on a compute cluster, with each
job using a single NVIDIA A100 GPU and 10 CPU cores and taking several hours.

Preliminary experiments used up more compute resources. It is estimated that we used hundreds of
GPU hours.

A.1.5 Geodesic approximation

Here, we provide the experimental details of the results presented in Fig. 2]and Fig. [6] To assess the
geodesic energies, we used a small autoencoder, whose architecture is presented in Table [6]

Autoencoder training We trained a lightweight convolutional autoencoder (see Table[6) on both
MNIST and CIFAR-10 to obtain the latent representations used in our experiments. For MNIST, the
first convolutional layer was adjusted to accept a single input channel; for CIFAR-10 it used three
channels. Each model was trained for 30 epochs using the Adam optimizer |Kingma and Ba| [[2017]]
with a batch size of 64. We set the learning rate to 0.001, and we fixed a random seed of 42 to ensure
reproducibility.

Distance computation After training, we selected 10 samples per class (100 total) in label order
from each dataset and encoded them to produce their latent encodings. True geodesics are computed
using Stochman library Detlefsen et al.[[2021]], which wraps the decoder into a pull-back manifold,
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intializes a spline path between codes, and then optimizes its control points to minimize the Rie-
mannian energy. Geodesic energies are computed as in Eq. [2} Pairwise distances are computed and
visualized in Figures[2]and [f] demonstrating the close agreement between the two measures under
identical encoding and discretization settings. In Fig. 2] latent dimensions for MNIST and CIFAR
are 64 and 128 respectively, while in Fig. [6] latent dimension is 2 for both datasets.

Table 6: ConvAutoencoder architecture (latent dim d).

Encoder Activation
Conv2d(1, 32, kernel = 3, stride=2, pad=1) ReLU
Conv2d(32, 64, kernel = 3, stride=2, pad=1) ReLU
Flatten —

Linear(64*7*7, d) —

Decoder Activation
Linear(d, 64*7%7) RelLU
Unflatten(64,7,7)

ConvTranspose2d(64, 32, kernel = 3, stride=2, pad=1, out_pad=1) ReLU
ConvTranspose2d(32, 1, kernel = 3, stride=2, pad=1, out_pad=1) Sigmoid

(a) MNIST (b) CIFAR-10

Figure 6: Pairwise latent-space distance matrices for (a) MNIST and (b) CIFAR-10, with latent
dimension of 2. In each subfigure, the left heatmap shows the straight-line energy proxy and the
right shows the full Riemannian geodesic distances. The Spearman rank correlation between the two
measures is 0.99 for MNIST and p = 1.00 for CIFAR-10, demonstrating near-perfect agreement.
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Figure 7: Impact of varying discretization levels on similarity and distance metrics for (a) MNIST and
(b) CIFAR-10 datasets. Each subplot shows how Spearman’s p, Pearson’s 7, and Euclidean distance
change as the number of discretization levels increases.
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Table 7: MRR based on cosine.

Method CIFAR-10 CIFAR-100 ImageNet-1k CUB SVHN

Rel(Cosine) Moschella et al.|[2023]  0.08 £0.077  0.122+0.109  0.21+£0.149  0.089+0.094  0.035 £ 0.034
RelGeo(Pullback) 0.019+0.005 0.046 £0.016  0.236+0.08  0.156 +0.089  0.013 £ 0.005
RelGeo(Diet) 0.189+0.108 0.241+0.117 0.358+0.126 0.327+0.184 0.131+0.107

A.1.6 Autoencoder stitching and retrieval

We provide the experimental details of the results presented in Figure [3]and Figure[d All models
employed followed the architecture depicted in Table[6] with a latent dimensionality of 128.

We trained the lightweight convolutional autoencoder (see Table@ on MNIST, CIFAR-10, FashionM-
NIST with 5 different seeds, to obtain the latent representations used in our experiments. For MNIST,
and FashionMNIST the first convolutional layer was adjusted to accept a single input channel; for
CIFAR-10 it used three channels. Each model was trained for 50 epochs, reaching convergence, using
the Adam optimizer [Kingma and Ba|[2017] with a batch size of 64. We set the learning rate to 0.001.

A.1.7 Vision foundation models

We use the pretrained models as provided by Huggingface Transformers [Wolf et al.l 2020]], which
has Apache-2.0 license, and the datasets as provided by HuggingFace Datasets [Lhoest et al., 2021],
which also has Apache-2.0 license. The license information of the datasets are: CIFAR-10: unknown;
CIFAR-100: unknown; CUB: unknown; ImageNet-1k: ImageNet agreement; SVHN: non-commercial
use only.

Unless otherwise stated, we directly use the original test set of the dataset as the test set, while using
0.9 of the original train set as the train set and the remaining as the validation set. Both the anchors
and the Diet data points are selected from the validation set.

For CIFAR-100, we use coarse labels.
For SVHN, the objective is to predict the cropped digits.

For CUB dataset, we use https://huggingface.co/datasets/birder-project/CUB_200_
2011-WDS. The training set is of a small size, and we select 2000 points as the validation set.

When reporting aggregated MRR metrics in the tables, we always ignore the diagonal numbers as
these are generally (close to) 1.

For all cases where we need to train classification heads, apart from the ones with Diet the heads are
trained for 10 epochs, while the ones with Diet are trained for 50 epochs. The heads used to obtain
the gometric information are trained using learning rate 5e — 4 and batch size 64, while the heads
used for stitching was trained using learning rate le — 4 and batch size 32.

When reporting stitching results, we train three classification heads and average the accuracies as the
final results.

A.2 Additional results on Vision Foundation models

We provide additional results on vision foundation models. For ablation studies, we focus on the
performances of the models on CUB dataset.

A.2.1 Other models

We provide the heatmaps on different datasets in Figure[8] Figure O] Figure[I0and Figure [IT]

A.2.2 Other evaluation metrics

We provide the results of other evaluation metrics in Table[7} Table [§|and Table 9]
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Table 8: MRR based on cdist.

Method CIFAR-10 CIFAR-100 ImageNet-1k CUB SVHN

Rel(Cosine) Moschella et al|[[2023]  0.051 +£0.072  0.071+£0.107 0.078+£0.105  0.023+0.02  0.02 £+ 0.032

RelGeo (Pullback 0.019+£0.005 0.04+0.015  0.106+0.11 0.108+0.092 0.012 = 0.005

RelGeo(Diet) 0.127+0.118 0.151+0.138 0.298£0.141 0.269+0.195 0.123 +0.103
Table 9: Symmetrized MRRs based on cdist.

Method CIFAR-10 CIFAR-100  ImageNet-1k CUB SVHN

Rel(Cosine) Moschella et al.|{[2023]  0.098 +0.133  0.122+0.164 0.103 £0.146  0.046 = 0.055  0.046 £ 0.081
RelGeo(Pullback 0.046 +0.013  0.105+£0.031  0.179+0.173  0.187 +0.141 0.04 +0.021
RelGeo(Diet) 0.252+0.189 0.278 £0.211 0.462+0.148 0.433 +0.212 0.306 +0.188
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Table 10: Accuracies as aggregated alternatively.

Method ResNet-50 ViT-16 ViT-32 DINOv2
Rel(Cosine) Moschella et al.|[2023] 0.507 £0.2 0.669 £0.229 0.664 £0.218  0.678 £0.24
RelGeo (Pullback) 0.646 £0.209 0.709+0.208 0.72+0.194 0.737 £ 0.209
RelGeo(Diet) 0.529 +£0.194  0.658 £0.229 0.661 +£0.219  0.668 £ 0.237

Table 11: MRRs based on cosine as aggregated alternatively.

Method ResNet-50 ViT-16 ViT-32 DINOV2

Rel(Cosine) [Moschella et al.|[2023]  0.011 4 0.005 0.138 £ 0.11 0.133£0.112  0.147+0.128
RelGeo (Pullback) 0.074£0.077  0.107+0.118 0.116 £0.126  0.079 £ 0.074
RelGeo(Diet) 0.182+0.107 0.299+0.184 0.316 £0.182 0.201 £0.076

A.2.3 Alternative aggregation

Here we consider an alternative way to aggregate the results, i.e. grouping by the models. The results
are reported in Table [T0] Table [I2} Table [T1] Table [I4] and Table [I3] In general, the observation
remains: RelGeo(Pullback) yields good accuracies and RelGeo(Diet) yields good MRRs.

A.2.4 Number of anchors

We investigate the impact of the number of anchors. The results are shown in Figure[I2]and Figure[I3]
The general conclusion that RelGeo(Pullback) is good in terms of accuracies, RelGeo(Diet) is good
in terms of MRRs persist with varying number of anchors.

A.2.5 Number of diet points

We analyze the impact of the number of diet points. The results are shown in Figure [[4] The
performances of RelGeo(Diet) improve as the number of diet points become larger.

A.2.6 Number of discretization steps

We analyze the impact of the number of discretization steps on RelGeo(Pullback) and RelGeo(Diet)
and provide the results in Figure [I5]and Figure [I6] The performances do not vary much depending
on the discretization steps, though using multiple steps seem to help.

A.2.7 Diet augmentation strengths

We analyze the impact of different data augmentation strengths on RelGeo(Diet). The results are
shown in Figure[T7] Similar to the observations in terms of self-supervised learning [Ibrahim et al.,
2024], RelGeo(Diet) benefits from stronger data augmentations.

Table 12: MRRs based on cdist as aggregated alternatively.

Method ResNet-50 ViT-16 ViT-32 DINOv2
Rel(Cosine) Moschella et al.[[2023]  0.007 £0.001  0.079 £0.086  0.089 £0.112  0.019 £0.015
RelGeo (Pullback) 0.023+£0.016 0.075+0.096 0.078 £0.099  0.051 £0.05
RelGeo(Diet) 0.121 £0.094 0.253 £0.193 0.258+0.194 0.143 +0.065
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Table 13: Symmetric MRRs based on cosine as aggregated alternatively.

Method ResNet-50 ViT-16 ViT-32 DINOV2

Rel(Cosine) Moschella et al.|[2023]  0.032£0.023 0.2124+0.173  0.208£0.175  0.124 £0.104
RelGeo (Pullback) 0.143+£0.132  0.197+£0.186 0.205£0.189 0.154 +0.137
RelGeo(Diet) 0.336 +0.143 0.506 £0.2 0.526 £0.187 0.42+0.106

Table 14: Symmetric MRRs based on cdist as aggregated alternatively.

Method ResNet-50 ViT-16 ViT-32 DINOv2
Rel(Cosine) |Mosche11a et a1.|[]2023] 0.009 £0.005 0.141+£0.156  0.134 =0.158  0.049 = 0.047
RelGeo (Pullback) 0.052£0.033 0.1444+0.146 0.147+0.146  0.103 £ 0.085
RelGeo(Diet) 0.204 +£0.13 0.432+0.235 0.437+0.232 0.313+0.108
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Figure 14: Results of RelGeo(Diet) on CUB with varying number of diet points. Top: accuracies;
bottom: symmetric MRR cosine.
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Figure 15: Results of RelGeo(Pullback) on CUB with varying number of discretization steps. Top:
accuracies; bottom: symmetric MRR cosine.
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