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ABSTRACT

We present a novel perspective on diffusion models using the framework of information geometry.
We show that the set of noisy samples, taken across all noise levels simultaneously, forms a statistical
manifold – a family of denoising probability distributions. Interpreting the noise level as a temporal
parameter, we refer to this manifold as spacetime. This manifold naturally carries a Fisher-Rao metric,
which defines geodesics – shortest paths between noisy points. Notably, this family of distributions
is exponential, enabling efficient geodesic computation even in high-dimensional settings without
retraining or fine-tuning. We demonstrate the practical value of this geometric viewpoint in transition
path sampling, where spacetime geodesics define smooth sequences of Boltzmann distributions,
enabling the generation of continuous trajectories between low-energy metastable states. Code is
available at: https://github.com/Aalto-QuML/diffusion-spacetime-geometry.

1 Introduction

Diffusion models have emerged as a powerful paradigm for generative modeling, demonstrating remarkable success in
learning to model and sample data (Yang et al., 2023). Diffusion models gradually corrupt a data sample x0 ∈ RD into
Gaussian noise xT through T forward steps, then learn to reverse this corruption to recover the original sample. While
the underlying mathematical frameworks of training and sampling are well-established (Sohl-Dickstein et al., 2015;
Kingma et al., 2021; Song et al., 2021b; Lu et al., 2022; Holderrieth et al., 2025), analysing how information evolves
through the noisy intermediate states xt where t ∈ [0, T ] remains an open question.

We ask: Can we equip the diffusion’s latent space with a tractable geometric structure?

Figure 1: A geodesic in spacetime is the shortest path
between denoising distributions.

To address this, we must first define what latent space means
for diffusion models, a concept that lacks a universally ac-
cepted definition. Typically, the final noise vector xT is
regarded as the latent representation, with the denoiser (e.g.
PF-ODE) being the decoder x0(xT ) (Song et al., 2021b).
However, this treats the PF-ODE as a black box and over-
looks the intrinsic spatio-temporal structure of diffusion mod-
els. Notably, intermediate noisy states have already proven
useful in defence against adversarial attacks (Yoon et al.,
2021), or image editing (Park et al., 2023). Thus, we propose
to define the latent space as the entire spacetime continuum
(xt, t) for t ∈ (0, T ].

Similarly, we need to clarify the notion of geometry. The
most commonly adopted approach to defining geometry in
the latent space is via the pullback metric (Arvanitidis et al.,
2018, 2022), which is given by the Jacobian of the decoder

https://github.com/Aalto-QuML/diffusion-spacetime-geometry
https://arxiv.org/abs/2505.17517v1
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and describes how small changes in the latent code affect the decoding. However, we will show that the decoder x0(xt),
defined as the solution of an ODE, makes evaluating geometric quantities computationally prohibitive.

Surprisingly, this computational burden can be lifted by shifting focus from the deterministic decoder x0(xt) to the
denoising distribution p(x0|xt). This reframing enables the use of the Fisher-Rao metric (Amari, 2016), which naturally
defines the geometry on a continuous space of distributions. Importantly, we show that the denoising distributions
x0|xt form an exponential family, which enables, surprisingly, tractable estimation of geodesics in the spacetime (xt, t)
(See Fig. 1).

We summarize our contributions below. In this work, we

• study the latent space of diffusion models as a (D + 1)-dimensional statistical manifold,
• derive its Fisher-Rao metric characterizing the geometry underlying the denoising process,
• demonstrate that the geodesics between any two samples become tractable due to a novel insight that the

denoising distributions form an exponential family,
• show transition paths in image-based denoisers, and in molecular applications.

2 Background

2.1 Diffusion models

We assume a data distribution q defined on RD, and the forward process

p(xt|x0) = N (xt|αtx0, σ
2
t I), (1)

which gradually transforms q into pure noise pT ≈ N (0, σ2
T I) at time T , where αt, σt are hyperparameters such that

SNR(t) = α2
t /σ

2
t is decreasing. This process is equivalent to a Stochastic Differential Equation (SDE) (Song et al.,

2021b)
Forward SDE: dx = f(t)xdt+ g(t)dWt, x0 ∼ q, (2)

where f(t) = d
dt logαt, g

2(t) = −σ2
t
dλt

dt for λt = log SNR(t), and W is the Wiener process. There exists a
corresponding denoising SDE, which reverses this process (Anderson, 1982)

Reverse SDE: dx =
(
f(t)x− g2(t)∇x log pt(x)

)
dt+ g(t)dWt, xT ∼ pT , (3)

where pt is the marginal distribution of the forward process (Eq. 2) at time t, and W the reverse-time Wiener process.
Somewhat unexpectedly, there exists a deterministic Probability Flow Ordinary Differential Equation (PF-ODE), which
shares marginal distributions with both SDEs (Song et al., 2021b):

PF ODE: dx =
(
f(t)x− 1

2
g2(t)∇x log pt(x)

)
dt, xT ∼ pT . (4)

2.2 Statistical manifolds

Information geometry is a subfield of Riemannian geometry studying statistical manifolds, i.e., families of distributions
P = {p(·|θ) | θ ∈ Θ} parameterised by θ (Amari, 2016) (See Fig. 2). For an introduction to information geometry, we
refer to Nielsen (2020) or Mishra et al. (2023).

A central task in information geometry is finding shortest paths between two distributions p(·|θ) and p(·|θ′) along the
manifold P . To measure how small changes in θ affect the distribution p(·|θ) we use the Fisher-Rao metric tensor

Iθ = Ex∼p(x|θ)

[
∇θ log p(x|θ)∇θ log p(x|θ)⊤

]
∈ Rdim(Θ)×dim(Θ), (5)

which locally approximates the Kullback-Leibler divergence (Amari, 2016)

KL
[
p(·|θ) || p(·|θ + dθ)

]
=

1

2
dθ⊤Iθdθ + o(∥dθ∥2). (6)

Note that Iθ coincides with the Fisher information matrix (FIM) in statistics (Ly et al., 2017).

Up to scale, the Fisher–Rao metric is the only Riemannian metric on the space of probability distributions that is
invariant under sufficient statistics (Cencov, 1981). In other words, it is the only metric that treats statistically equivalent
representations of data as geometrically equivalent.

2
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2.3 Geodesics

Figure 2: Statistical manifold: a continuum
of distributions p(·|θ) with geodesics on Θ en-
abling smooth transitions.

The metric (Eq. 5) enables defining length of curves γ : [0, 1]→ Θ
of distributions between endpoints θ0 and θ1 as

ℓ(γ) =

∫ 1

0

∥γ̇s∥Ids =
∫ 1

0

√
γ̇⊤
s Iγ(s)γ̇sds. (7)

The distance between θ0 and θ1 is defined as the length of the shortest
curve connecting them,

dI(θ0,θ1) = inf
{
ℓ(γ) | γ0 = θ0,γ1 = θ1

}
, (8)

and γ realizing this distance is called the geodesic. This is also the
curve minimizing the energy (Do Carmo and Francis, 1992):

E(γ) = 1

2

∫ 1

0

∥γ̇s∥2Ids. (9)

Geodesics, thus, naturally characterize the simplest transition path
between two distributions, and their lengths induce a distance measure
on P .

2.4 Exponential Family

In the case when the distribution family is exponential, the Fisher-Rao metric simplifies considerably. A family of
distributions P = {p(·|θ) | θ ∈ Θ} is called exponential when

p(x|θ) = h(x) exp
(
η(θ)⊤T (x)− ψ(θ)

)
, (10)

where T (x) represents the sufficient statistic, a function of x that captures all the information about θ, and η(θ) the
natural parameter. h and ψ are respectively a base measure and a log-partition function ensuring correct normalization
of the probability density. We derive a modified version of the Fisher-Rao metric for exponential families (Nielsen and
Garcia, 2009), which is more suitable for our purposes (cf. Appendix B.1):

Iθ =

(
∂η(θ)

∂θ

)⊤(
∂µ(θ)

∂θ

)
, (11)

where
µ(θ) = E

[
T (x)|θ

]
=

∫
T (x)p(x|θ)dx (12)

is the expectation parameter. The Fisher-Rao metric (Eq. 11) for exponential families captures how changes in θ affect
both the natural parameter η and the expectation parameter µ. The squared norm of a direction v under this metric is
the dot product of the directional derivatives Dvη and Dvµ, measuring how aligned the changes in η and µ are under
small shifts in θ.

The Fisher-Rao metric I applied to exponential families (Eq. 11) translates into a simpler expression for the geodesic
energy (Eq. 9) (cf. Appendix B.2):

E(γ) = 1

2

∫ 1

0

(
d

ds
η(γs)

)⊤(
d

ds
µ(γs)

)
ds. (13)

That is, all relevant information about γ is encapsulated within η and µ, and remarkably, the energy is independent of
h and ψ, which are typically difficult to estimate. As we will show later, this insight leads to an efficient algorithm for
computing geodesics.

3 Denoising spacetime geometry

Considering all latent representations xt of data points x0 ∈ RD across all noise levels t ∈ (0, T ], we obtain a latent
space structured as the set of pairs (xt, t) ∈ RD × (0, T ], forming a (D + 1)-dimensional manifold. The PF-ODE,
xPF
0 : X × (0, T ]→ X (Eq. 4), then acts as a decoder mapping these (xt, t) pairs back to the data space. The standard

3
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Figure 3: Spacetime geodesics between clean images remove less information than interpolation through full
noise (Song et al., 2021a,b). Left: spacetime curve. Right: denoising mean.

approach to defining a geometric structure in the latent space (xt, t) is via the pullback metric (Arvanitidis et al., 2018,
2022)

PF-ODE pullback metric: M(xt,t) =
∂xPF

0 (xt, t)

∂(xt, t)

⊤
∂xPF

0 (xt, t)

∂(xt, t)
∈ R(D+1)×(D+1). (14)

However, in the case of diffusion models, the decoder being a solution of an ODE introduces significant computational
challenges (See Appendix C).

We show that adopting a stochastic perspective, by considering the denoising distribution p(x0|xt) as a stochastic
decoder, leads to significant computational savings. Rather than using the standard pullback geometry, which analyzes
how small changes in latent noisy points affect the decoded sample, we take an information geometric view: we study
how such changes affect the entire denoising distribution. Crucially, this can be evaluated without any costly ODE or
SDE simulations required in the pullback framework.

3.1 Spacetime as a statistical manifold

In diffusion models, a sample xt ∈ RD at noise level t ∈ (0, T ] arises from corrupting a clean signal x0 via a forward
process (Eq. 1). The associated denoising distribution,

p(x0|xt) ∝ p(xt|x0) q(x0), (15)

describes the distribution over possible clean samples x0 that could have produced the noisy observation xt at time t.1
As we vary (xt, t), we obtain a family of denoising distributions

P =
{
p(x0|xt) | xt ∈ RD, t ∈ (0, T ]

}
, (16)

which defines a statistical manifold with parameters θ = (xt, t) ∈ Θ ⊆ RD × (0, T ]. Each point on this manifold
corresponds to a distinct denoising distribution.

3.2 Denoising manifold is an exponential family

Although the denoising distributions p(x0|xt) in diffusion models are generally intractable and difficult to approximate
(Rissanen et al., 2025), we show that they take the form of an exponential family, with explicitly defined parameters.
We show that both the natural and expectation parameters have closed-form expressions. Moreover, the expectation
parameter corresponds precisely to the first and second denoising moments, which directly lead to a computationally
efficient approximation of the curve energy.

Proposition 1 (Exponential family of denoising). Let xt be a noisy observation corresponding to diffusion time t, as
introduced in Eq. 1. Then

p(x0 | xt) = h(x0) exp
(
η(xt, t)

⊤T (x0)− ψ(xt, t)
)
, (17)

1Note that p(x0|xt) = p(x0|xt, t) also implicitly depends on t, which we omit in the notation.

4
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with h = q the data distribution density, ψ the log-partition function, and

η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
(natural parameter) (18)

T (x0) = (x0, ∥x0∥2) (sufficient statistic) (19)

µ(xt, t) =

(
1

αt

(
xt + σ2

t∇xt
log pt(xt)

)
︸ ︷︷ ︸

‘space’: E
[
x0|xt

] ,
σ2
t

αt
divxt

E[x0|xt] +
∥∥E[x0|xt]

∥∥2︸ ︷︷ ︸
‘time’: E

[
∥x0∥2 |xt

]
)

(20)

For the complete proof, see Appendix D.

3.3 Denoiser network approximation

In practice, we approximate the denoising mean E[x0|xt] with a neural network denoiser

x̂0(xt) ≈ E[x0|xt], (21)

which leads to the approximation of the expectation parameter:

µ(xt, t) ≈
(
x̂0(xt),

σ2
t

αt
divxt

x̂0(xt) + ∥x̂0(xt)∥2
)
∈ RD+1. (22)

To estimate divxt
x̂0(xt) efficiently, we apply the Hutchinson’s trick (Hutchinson, 1989) with a single Rademacher

variable (Grathwohl et al., 2019), reducing the cost of estimating µ to a single Jacobian-vector-product (JVP) (more
details in Appendix G).

We approximate the energy E(γ) (Eq. 13) via numerical integration and finite differences of η̇, µ̇

E(γ) ≈ 1

2ds

N−2∑
n=0

(
η(γn+1)− η(γn)

)⊤(
µ(γn+1)− µ(γn)

)
, (23)

on the discretized curve into N points γ = (γ0, . . . ,γN−1). Evaluating the energy requires N JVP evaluations of the
denoiser network. We optimise γ by minimizing E(γ) using gradient descent.

We compare the energy estimation cost with the standard pullback metric approach:

Pullback geometry: O(NK) evaluations of x̂0(xt)

Information geometry: O(N) JVPs of x̂0(xt)

with K the number of solver steps. Since the JVP costs about twice a denoiser evaluation, and K ≫ 2, the information
geometry approach is much more efficient when optimizing the energy to find geodesics (see Appendix C for details).

3.4 Interpolating between data through spacetime

Figure 4: Peak noise on the geodesic depends on
endpoint similarity. Top/bottom: endpoints. Middle:
geodesic point at peak noise.

As a demonstration of our geometric framework, we perform
image interpolations. A common approach to interpolating
between xa0 and xb0 is encoding both points with PF-ODE from
t = 0 to t = T , and connecting them with spherical linear
interpolation (SLERP) (Song et al., 2021a,b):

xa0
PF-ODE−−−−→ xaT

SLERP−−−−→ xbT
PF-ODE−−−−→ xb0. (24)

This interpolation path is a curve in spacetime, but not the short-
est one. We compare this interpolation path with a geodesic
in Fig. 3 (See Appendix E.2 for implementation details). We
note that the standard approach to interpolation, by encoding
the image to t = T , removes all information before generating
it again. In contrast, the geodesic minimizes information loss,
discarding only what is essential to move between images.

After decoding the noisy intermediate images on the interpola-
tion path with PF-ODE, we found that the spacetime geodesic

5
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introduces less semantic changes than the standard approach, however the images decoded from the geodesic were less
realistic (blurry), which we hypothesize might stem from the fact that the approximate geodesic minimization did not
find the optimal path. Please see Fig. 8 for visualization.

Furthermore, we observe that the amount of added noise on the interpolating geodesic depends on how similar the
endpoints are. If the starting two images are similar, less noise is needed than for dissimilar images. See Fig. 4 for a few
examples and Appendix E.2 for details.

4 Experiments

4.1 Sampling trajectories

Figure 5: PF-ODE paths are similar to energy-minimizing geodesics. Left: Geodesics move in straighter lines
than PF-ODE trajectories in 1D toy density. Right: Geodesics are almost indistinguishable to PF-ODE sampling in
ImageNet-512 EDM2 model.

We compare the trajectories obtained by solving the PF-ODE x0(xT ) (Eq. 4) with geodesics (Eq. 23) between the
same endpoints x0,xT . For a toy example of 1D mixture of Gaussians, we observe the geodesics curving less than the
PF-ODE trajectories in the early sampling (high t), while being indistinguishable for lower values of t (See Fig. 5 left
and Appendix E.1 for details).

We find only marginal perceptual difference between the PF-ODE sampling trajectories and the geodesics in the EDM2
ImageNet-512 model (Karras et al., 2024). The geodesic appears to generate information slightly earlier, but the
difference is minor (See Fig. 5 right, and Appendix E.2 for details).

We note that spacetime geodesics are not an alternative sampling method since they require knowing the endpoints
beforehand. An investigation into whether our framework can be used to improve sampling strategies is an interesting
future research direction.

4.2 Transition path sampling

We consider the problem of transition-path sampling (Holdijk et al., 2023; Du et al., 2024; Raja et al., 2025), whose
goal is to find probable transition paths between low-energy states. We assume a Boltzmann distribution

q(x) ∝ exp(−U(x)), (25)

where U is a known energy function, which is a common assumption in molecular dynamics.

In this setting, the denoising distribution follows a tractable energy function (See Eq. 58)

p(x0|xt) ∝ q(x0)p(xt|x0) ∝ exp

(
−U(x0)−

1

2
SNR(t)

∥∥∥x0 − xt/αt

∥∥∥2︸ ︷︷ ︸
−U(x0|xt)

)
. (26)

To construct a transition path between two low-energy states x1
0 and x2

0, we estimate the spacetime geodesic γ between
them using a denoiser model x̂0(xt) ≈ E[x0|xt] with Eq. 23, as shown in Fig. 6. At each interpolation point s ∈ [0, 1],
the geodesic defines a denoising Boltzmann distribution p(x|γs) where U(x|γs) is the energy at that spacetime location.
See Appendix E.3 for details.

6



Spacetime Geometry of Denoising in Diffusion Models A PREPRINT

Figure 6: Spacetime geodesics enable sampling transition paths between low-energy states. Left: Alanine Dipeptide
energy lanscape wrt two dihedral angles, with two energy minima x1

0,x
2
0. Middle: Spacetime geodesic γ connecting

x1
0 and x2

0. Right: Annealed Langevin transition path samples.

Annealed Langevin Dynamics To sample transition paths we use Langevin dynamics

dx = −∇xU(x|γs)dt+
√
2dWt, (27)

whose stationary distributions are p(x | γs) ∝ exp(−U(x|γs)) for any s. To obtain the trajectories from x1
0 to x2

0, we
gradually increase s from 0 to 1 using annealed Langevin (Song and Ermon, 2019). After discretizing the geodesic into
N points γn, we alternate between taking K steps of Eq. 27 conditioned on γn and updating γn 7→ γn+1, as described
in Algorithm 1. This approach assumes that p(x|γn) is close to p(x|γn+1), and thus x ∼ p(x|γn) is a good starting
point to Langevin Dynamics conditioned on γn+1.

Example We compute a spacetime geodesic connecting two molecular configurations of Alanine Dipeptide, as in
Holdijk et al. (2023). In Fig. 6, the energy landscape is visualized over the dihedral angle space, with a neural network
used to approximate the potential energy U . Using our trained denoiser x̂0(xt), we estimate the expectation parameter
µ, which allows us to compute and visualize a geodesic trajectory through spacetime. Transition paths were sampled
via annealed Langevin dynamics. See Appendix E.3 for details.

Algorithm 1 Transition Path Sampling with Annealed Langevin Dynamics

Require: xa,xb ∈ RD endpoints, Nγ > 0, T > 0, tmin, dt
1: γ ← argminγ E(γ) ▷ Approximate spacetime geodesic connecting xa with xb
2: T ← {x := xa} ▷ Initialize chain T at xa
3: for n ∈ {0, . . . , Nγ − 1} do ▷ Iterate over the points on the geodesic γn
4: for t ∈ {1, . . . , T} do
5: ε ∼ N (0, I) ▷ Sample Gaussian noise
6: x← x−∇xU(x|γn)dt+

√
2dtε ▷ Langevin update

7: T ← T ∪ {x} ▷ Append state x to chain
8: end for
9: end for

10: return T ▷ Return chain

4.3 Constrained path sampling

Suppose we would like to impose additional constraints along the geodesic interpolants. This corresponds to constrained
optimization

min
γ

{
E(γ) + λ

∫ 1

0

h(γs)ds, s.t. γ0 = (x1
0, 0),γ1 = (x2

0, 0)

}
, (28)

where h : R× RD → R is some penalty function with λ > 0. We demonstrate the principle by (i) penalising transition
path variance, and (ii) imposing regions to avoid in the data space.

7
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Low variance transitions Suppose we want p(x|γs)’s to have small variance. Equation (Eq. 62) in Appendix D
shows that high SNR implies low denoising variance. Therefore, we can reduce variance by choosing h(xt) =
max(− log SNR(t), ρ) for some threshold ρ.

Avoiding restricted regions Suppose we want to avoid certain regions in the data space in the transition paths. We
encode the region to avoid as a denoising distribution p(·|θ∗) for some θ∗ = (x∗

t , t
∗) where larger the t∗, larger the

restricted region. We encode the penalty as KL distance between the denoising distributions (See Appendix B.3)

KL
[
p(·|θ∗)||p(·|γs)

]
=

∫ s

0

(
d

du
η(γu)

)⊤

(µ(γu)− µ(θ∗)) du+ C (29)

h(γs) = min
(
ρ,−KL

[
p(·|θ∗)||p(·|γs)

])
. (30)

Example Fig. 7 shows an example where we define θ∗ = (−0.8,−0.1, t∗) with log SNR(t∗) = 4. The figure shows
the transition paths succesfully avoiding the penalty region region p(·|θ∗), where the restricted region denotes where
U(x|θ∗)−minx U(x|θ∗) = 15. See Appendix E.3 for experiment details.

Figure 7: Vanilla transition paths can be constrained to have lower variance, or successfully avoid a restricted
region p(·|θ∗). Left: geodesics γ. Right: transition paths T .

5 Related works

Previous studies have separately examined the impact of latent noise on data and employed geometric frameworks to
extend or analyze diffusion models. We review those previous contributions to provide a broader context.

Latent structures Prior work has examined the relationship between latent noise xt and data x0 in score-based
models. Yu et al. (2025) propose a geodesic density in diffusion latent space, Park et al. (2023) apply Riemannian
geometry to lower-dimensional latent code, and Karczewski et al. (2025) study how scaling noise affects the log-density
and perceptual detail of generated images. Our research also studies the xt to x0 relationship but differs in three
ways: we use the principled Fisher–Rao metric rather than a less motivated inverse-density metric, maintain the
full-dimensional latent space without projection, and analyze the complete diffusion path across all timesteps.

Manifold-aware diffusion models Multiple authors (Huang et al., 2022; De Bortoli et al., 2022; Thornton et al.,
2022) have extended the theoretical framework of diffusion models to data supported on Riemannian manifolds. Our
approach is different: we study the inherent geometric properties that emerge within the denoising landscape of standard
diffusion models trained on data sampled from Euclidean spaces. Instead of enforcing Riemannian geometry, we use it
as a tool to better understand conventional diffusion models.

Understanding data manifold through score functions and geometry Recent research explores how diffusion
models relate to data geometry. Stanczuk et al. (2022), Kamkari et al. (2024), Ventura et al. (2025), and Humayun et al.
(2024) studied how score functions capture manifold properties (through normal bundles, local intrinsic dimension,
Jacobian spectra, and piecewise-linear approximations). Our work differs in two ways: we focus on information flow
during denoising rather than data manifold structure, and we apply information geometry instead of analyzing score
function spectra.

Improving sampling strategy with geometry Two recent works explore geometric formulations of diffusion models,
aiming at improving sampling efficiency. Das et al. (2023) propose optimizing the forward noising process by following
the shortest geodesic between p0 and pt under the Fisher-Rao metric, hypothesizing that this minimizes accumulated

8
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errors during denoising and thus indirectly improves sampling. In contrast, Ghimire et al. (2023) frame both the forward
and reverse processes as Wasserstein gradient flows on probability spaces, using optimal transport geometry to propose
a direct acceleration strategy. Our approach differs: we adopt an information geometric perspective (unlike Ghimire
et al. (2023)) and focus on the reverse process (unlike Das et al. (2023)). Furthermore, Das et al. (2023) make a strong
assumption that the data distribution p0(x0) is Gaussian, whereas we only assume that it has a density.

6 Limitations

Our geometric framework defines shortest paths (geodesics) between any two noisy samples, including those with
very low noise levels (i.e., nearly clean data). However, by definition, the denoising distribution of a nearly clean
sample approaches a Dirac delta, meaning it maps to essentially a single outcome. Since the Fisher-Rao metric locally
approximates the KL divergence, and the KL divergence between two distinct Dirac delta distributions is infinite,
distances between such low-noise samples become extremely large. As a result, optimizing geodesics between nearly
clean samples becomes numerically unstable and impractical. Therefore, in our experiments, we select endpoints with a
non-negligible level of noise to ensure tractable optimization (see Appendix E for details).

Another limitation comes from using Annealed Langevin Sampler (Algorithm 1) for transition path sampling, which
works well in practice, but only approximately guarantees that points on the trajectory correctly follow p(·|γs). To
ensure correct marginals with a single SDE, the change in the energy needs to be taken into account, as discussed by
Albergo and Vanden-Eijnden (2024).

7 Conclusion

We proposed a novel perspective on the latent space of diffusion models by viewing it as a (D + 1)-dimensional
statistical manifold, with the Fisher-Rao metric inducing a geometrical structure. By leveraging the fact that the
denoising distributions form an exponential family, we showed that we can tractably estimate geodesics even for
high-dimensional image diffusion models. We visualized our methods for image interpolations and demonstrated their
utility in molecular transition path sampling.

This work deepens our understanding of the latent space in diffusion models and has the potential to inspire further
research, including the development of novel applications of the spacetime geometric framework, such as enhanced
sampling techniques.
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A Notation

We denote x ∈ RD a point in D-dimensional Euclidean space (a column vector), Tr(A) =
∑
iAii - the trace operator

of a square matrix A ∈ Rk×k.
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Differential operators For a scalar function f : RD → R,x 7→ f(x) ∈ R, we denote

gradient: ∇xf(x̃) =

(
∂f

∂x1
, . . . ,

∂f

∂xD

)⊤
∣∣∣∣∣
x=x̃

∈ RD

Hessian: ∇2
xf(x̃) =

[
∂2f

∂xi∂xj

]
i,j

∣∣∣∣∣
x=x̃

∈ RD×D

Laplacian: ∆xf(x̃) = Tr
(
∇2

xf(x̃)
)
=

D∑
i=1

∂2f

∂(xi)2

∣∣∣∣∣
x=x̃

∈ R.

For a curve γ : [0, 1]→ Rk, s 7→ γs ∈ Rk we denote

time derivative: γ̇s =
d

ds
γs ∈ Rk.

For a vector valued function f : Rk → Rm,x 7→ (f1(x), . . . , fm(x))⊤ ∈ Rm we denote

Jacobian:
∂f(x̃)

∂x
=

[
∂f i

∂xj

]
i,j

∣∣∣∣∣
x=x̃

∈ Rm×k

When k = m, we define

divergence: divxf(x̃) = Tr

(
∂f(x̃)

∂x

)
=

k∑
i=1

∂f i

∂xi

∣∣∣∣∣
x=x̃

∈ R

Functions with two arguments For f : Rk1 × Rk2 → R, (x1,x2) 7→ f(x1,x2) ∈ R we define (analogously w.r.t.
second argument)

gradient w.r.t. first argument: ∇x1f(x̃1, x̃2) =

(
∂f

∂x11
, . . . ,

∂f

∂xk11

)⊤ ∣∣∣∣∣
(x1,x2)=(x̃1,x̃2)

∈ Rk1

For f : Rk1 × Rk2 → Rm, (x1,x2) 7→ (f1(x1,x2), . . . , f
m(x1,x2))

⊤ ∈ Rm we define (analogously w.r.t. second
argument)

Jacobian w.r.t. first argument:
∂f(x̃1, x̃2)

∂x1
=

[
∂f i

∂xj1

]
i,j

∣∣∣∣∣
(x1,x2)=(x̃1,x̃2)

∈ Rm×k1

B Fisher-Rao, energy and KL functionals in exponential families

Throughout this section, we will work with the general form of an exponential family.
Definition (Exponential Family). A parametric family of probability distributions {p(·|θ)} is called an exponential
family if it can be expressed in the form

p(x|θ) = h(x) exp
(
η(θ)⊤ T (x)− ψ(θ)

)
,

with x a random variable modelling the data and θ the parameter of the distribution. In addition, T (x) is called a
sufficient statistic, η(θ) natural (canonical) parameter, ψ(θ) the log-partition (cumulant) function and h(x) is a base
measure independent of θ.

B.1 Fisher-Rao metric in exponential families

In this section, we will prove Eq. 11, which is the Fisher-Rao metric applied to the case of exponential family.
Proposition (Fisher-Rao metric for an exponential family). Let {p(·|θ)} be an exponential family. We denote η(θ)
the natural parametrisation, T (x) the sufficient statistic and µ(θ) = E[T (x)|θ] the expectation parameters. The
Fisher-Rao metric is given by:

12
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I(θ) =

(
∂η(θ)

∂θ

)⊤(
∂µ(θ)

∂θ

)
,

where we equivalently write Iθ = I(θ) to mean the metric at θ.

Proof. For p(x|θ) = h(x) exp
(
η(θ)⊤T (x)− ψ(θ)

)
, we have

∇θ log p(x|θ) = ∇θ

∑
k

ηk(θ)T k(x)−∇θψ(θ) =

(
∂η(θ)

∂θ

)⊤

T (x)−∇θψ(θ). (31)

Note that

E [∇θ log p(x|θ) | θ] =
∫
p(x|θ)∇θ log p(x|θ)dx =

∫
∇θp(x|θ)dx = ∇θ

∫
p(x|θ)dx = 0. (32)

Therefore, by taking the expectation of both sides of Eq. 31, we get

∇θψ(θ) =

(
∂η(θ)

∂θ

)⊤

µ(θ), (33)

where µ(θ) = E[T (x)|θ]. Now we differentiate j-th component of both sides of Eq. 32 w.r.t θi, and we get

0 =
∂

∂θi
0 =

∂

∂θi
E
[
∂ log p(x|θ)

∂θj
| θ
]
=

∂

∂θi

∫
p(x|θ)∂ log p(x|θ)

∂θj
dx

=

∫
∂p(x|θ)
∂θi

∂ log p(x|θ)
∂θj

dx+

∫
p(x|θ)∂

2 log p(x|θ)
∂θi∂θj

dx

= E
[
∂ log p(x|θ)

∂θi
∂ log p(x|θ)

∂θj
| θ
]
+ E

[
∂2 log p(x|θ)
∂θi∂θj

| θ
]
.

(34)

Therefore

Iij(θ) = E
[
∂ log p(x|θ)

∂θi
∂ log p(x|θ)

∂θj
| θ
]
= −E

[
∂2 log p(x|θ)
∂θi∂θj

| θ
]
. (35)

Now using Eq. 31, we have

∂2 log p(x|θ)
∂θi∂θj

=
∂

∂θi

(∑
k

∂ηk(θ)

∂θj
T k(x)− ∂ψ(θ)

∂θj

)
=
∑
k

∂2ηk(θ)

∂θi∂θj
T k(x)− ∂2ψ(θ)

∂θi∂θj
. (36)

Therefore, from Eq. 35:

Iij(θ) =
∂2ψ(θ)

∂θi∂θj
−
∑
k

∂2ηk(θ)

∂θi∂θj
µk(θ). (37)

Now using Eq. 33, we have

∂2ψ(θ)

∂θi∂θj
=

∂

∂θj

(∑
k

∂ηk(θ)

∂θi
µk(θ)

)
=
∑
k

∂2ηk(θ)

∂θj∂θi
µk(θ) +

∑
k

∂ηk(θ)

∂θi
∂µk(θ)

∂θj
. (38)

Combining (Eq. 37) with (Eq. 38) yields:

Iij(θ) =
∑
k

∂ηk(θ)

∂θj
∂µk(θ)

∂θi
=

[(
∂η(θ)

∂θ

)⊤(
∂µ(θ)

∂θ

)]
ij

. (39)
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B.2 Energy function in exponential families

Proposition (Energy function for an exponential family). Let γ : [0, 1]→ Θ be a smooth curve in the parameter space
Θ of an exponential family, and let I(θ) be the Fisher-Rao metric on Θ. Then

E(γ) = 1

2

∫ 1

0

(
d

ds
η(γs)

)⊤(
d

ds
µ(γs)

)
ds.

Proof. We know that the energy of γ can be defined as E(γ) = 1
2

∫ 1

0
∥γ̇s∥2Ids. We replace the Riemannian metric I

with the previously obtained expression of the Fisher-Rao metric (Eq. 11).

E(γ) = 1

2

∫ 1

0

∥γ̇s∥2Ids =
1

2

∫ 1

0

γ̇⊤
s Iγs

γ̇sds

=
1

2

∫ 1

0

γ̇(s)⊤
(
∂η(γs)

∂θ

)⊤(
∂µ(γs)

∂θ

)
γ̇sds

=
1

2

∫ 1

0

(
∂η(γs)

∂θ
γ̇s

)⊤(
∂µ(γs)

∂θ
γ̇s

)
ds

=
1

2

∫ 1

0

(
d

ds
η(γs)

)⊤(
d

ds
µ(γs)

)
ds.

B.3 Kullback-Leibler divergence in exponential families

As in Eq. 6, the Fisher-Rao metric is the local approximation of the KL divergence, i.e.

KL(p(·|θ1)||p(·|θ2)) ≈
1

2
(θ1 − θ2)

⊤ Iθ1
(θ1 − θ2) .

In the case of exponential families, we have Iθ =
(
∂η(θ)
∂θ

)⊤ (
∂µ(θ)
∂θ

)
, and thus we can write

KL(p(·|θ1)||p(·|θ2)) ≈
1

2
(θ1 − θ2)

⊤
(
∂η(θ1)

∂θ

)⊤(
∂µ(θ1)

∂θ

)
(θ1 − θ2)

≈ 1

2
(η(θ1)− η(θ2))

⊤
(µ(θ1)− µ(θ2)) .

It turns out that the RHS always corresponds to a notion of distribution divergence (not only when θ1 and θ2 are close
together), namely the symmetrized Kullback-Leibler divergence:

KLS(p||q) := 1

2
(KL(p||q) + KL(q||p)) . (40)

Lemma 1 (KL in exponential families). Let P = {p(· | θ) | θ ∈ Θ} be an exponential family with p(x|θ) =
h(x) exp(η(θ)⊤T (x)− ψ(θ)), and µ(θ) = Ex∼p(x | θ)[T (x)]. Then

KL(θ1||θ2) = (η(θ1)− η(θ2))
⊤
µ(θ1)− ψ(θ1) + ψ(θ2), (41)

where we abuse notation and write KL(θ1||θ2) instead of KL(p(· | θ1)||p(· | θ2)).

Proof.

KL(θ1||θ2) = Ex∼p(x | θ1) [log p(x|θ1)− log p(x|θ2)]
= Ex∼p(x | θ1)

[
η(θ1)

⊤T (x)− η(θ2)
⊤T (x)− ψ(θ1) + ψ(θ2)

]
= (η(θ1)− η(θ2))

⊤ Ex∼p(x | θ1)[T (x)]− ψ(θ1) + ψ(θ2)

= (η(θ1)− η(θ2))
⊤
µ(θ1)− ψ(θ1) + ψ(θ2).
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Lemma 2 (Symmetrized KL in exponential families). With assumptions of Lemma 1, we have

KLS(θ1||θ2) =
1

2
(η(θ1)− η(θ2))

⊤
(µ(θ1)− µ(θ2)) . (42)

Proof.

2KLS(θ1 | θ2) = KL(θ1||θ2) + KL(θ2||θ1)

= (η(θ1)− η(θ2))
⊤
µ(θ1)−�

��ψ(θ1) +
HHHψ(θ2) + (η(θ2)− η(θ1))

⊤
µ(θ2)−HHHψ(θ2) +�

��ψ(θ1)

= (η(θ1)− η(θ2))
⊤
(µ(θ1)− µ(θ2)) .

The formula for KL in Lemma 1 is not useful in practice, because it requires knowing ψ(θ), which can be unknown or
expensive to evaluate. However, the gradients with respect to both arguments depend only on η and µ.

Lemma 3 (KL gradients). With assumptions of Lemma 1, we have for any θ1,θ2

∇θ1 KL(θ1||θ2) =
∂µ(θ1)

∂θ

⊤
(η(θ1)− η(θ2))

∇θ2
KL(θ1||θ2) =

∂η(θ2)

∂θ

⊤
(µ(θ2)− µ(θ1))

(43)

Proof. The proof is a straightforward calculation using Lemma 1 and Eq. 33. We have

∇θ1
KL(θ1||θ2) = ∇θ1

(
(η(θ1)− η(θ2))

⊤
µ(θ1)− ψ(θ1) + ψ(θ2)

)
=
∂η(θ1)

∂θ

⊤
µ(θ1) +

∂µ(θ1)

∂θ

⊤
(η(θ1)− η(θ2))−∇θψ(θ1)

(33)
= �������∂η(θ1)

∂θ

⊤
µ(θ1) +

∂µ(θ1)

∂θ

⊤
(η(θ1)− η(θ2))−�������∂η(θ1)

∂θ

⊤
µ(θ1)

=
∂µ(θ1)

∂θ

⊤
(η(θ1)− η(θ2))

and

∇θ2 KL(θ1||θ2) = ∇θ2

(
(η(θ1)− η(θ2))

⊤
µ(θ1)− ψ(θ1) + ψ(θ2)

)
(33)
= −∂η(θ2)

∂θ

⊤
µ(θ1) +

∂η(θ2)

∂θ

⊤
µ(θ2) =

∂η(θ2)

∂θ

⊤
(µ(θ2)− µ(θ1))

Knowing the gradients allows for estimating the KL divergence along a curve.

Proposition 2 (KL along a curve). Let γ : [0, 1]→ Θ be a smooth denoising curve, and θ∗ ∈ Θ. Then:

KL(γs||θ∗) = KL(γ0||θ∗) +

∫ s

0

(
d

du
µ(γu)

)⊤

(η(γu)− η(θ∗)) du

KL(θ∗||γs) = KL(θ∗||γ0) +

∫ s

0

(
d

du
η(γu)

)⊤

(µ(γu)− µ(θ∗)) du

(44)
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Proof.

KL(γs||θ∗)−KL(γ0||θ∗) =

=

∫ s

0

d

du
(KL(γu||θ∗)) du // Fundamental theorem of calculus

=

∫ s

0

∇θ1 KL(γu||θ∗)⊤γ̇udu // Chain rule

=

∫ s

0

(
∂µ(γu)

∂θ
γ̇u

)⊤

(η(γu)− η(θ∗)) du // Lemma 3

=

∫ s

0

(
d

du
µ(γu)

)⊤

(η(γu)− η(θ∗)) du // Chain rule.

Using the same reasoning we have

KL(θ∗||γs)−KL(θ∗||γ0) =

∫ s

0

d

du
(KL(θ∗||γu)) du

=

∫ s

0

∇θ2 KL(θ∗||γu)⊤γ̇udu

=

∫ s

0

(
∂η(γu)

∂θ
γ̇u

)⊤

(µ(γu)− µ(θ∗)) du

=

∫ s

0

(
d

du
η(γu)

)⊤

(µ(γu)− µ(θ∗)) du

C Computational complexity of ODE pullback metrics

In this section, we elaborate on why the information geometric approach is computationally significantly less demanding
than the pullback metric approach.

Energy estimation Given a latent generative model with a decoder f : Rk → RD, z 7→ f(z), the pullback metric is
defined as (Arvanitidis et al., 2018)

Mz =
∂f(z)

∂z

⊤
∂f(z)

∂z
∈ Rk×k (45)

and the Riemannian norm of a tangent vector v:

∥v∥2Mz
= v⊤Mzv =

∥∥∥∥∂f(z)∂z
v

∥∥∥∥2 , (46)

where the last norm is Euclidean. The Riemannian energy of a latent curve γ : [0, 1]→ Rk is given by

E(γ) = 1

2

∫ 1

0

∥γ̇s∥2Mγs
ds =

1

2

∫ 1

0

∥∥∥∥∂f(γs)∂z
γ̇s

∥∥∥∥2 ds = 1

2

∫ 1

0

∥∥∥∥ ddsf(γs)
∥∥∥∥2 ds, (47)

where the last equality follows from the chain rule. Therefore, in practice the energy of a latent curve is approximated
with finite differences of the discretized curve: γn := γsn for sn = n

N−1 , n = 0, . . . , N − 1, and ds = 1
N−1 , we have:

E(γ) ≈ 1

2ds

N−2∑
n=0

∥f(γn+1)− f(γn)∥2. (48)

Therefore, estimation of the energy of a latent curve requires N evaluations of the decoder f when the curve is
discretized into N points.
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Spacetime: pullback vs information geometry In the case of the diffusion’s latent spacetime, the decoder f(xt) =
xPF
0 (xt, t) is the solution of the PF-ODE (Eq. 4) solved from t to 0. Therefore, estimating the energy in the pullback

geometry requires solving the PF-ODE N times. And each solver step requires evaluating the score function (or
equivalently, the denoiser model x̂0(xt)).

On the other hand, as we show in Equation (Eq. 23), estimating the latent energy using information geometry requires
N estimates of the expectation parameter µ:

µ(xt, t) ≈
(
x̂0(xt),

σ2
t

αt
divxt x̂0(xt) + ∥x̂0(xt)∥2

)
, (49)

which can be efficiently estimated with a single Jacobian-Vector Product (JVP), as we show in Listing 1. Therefore, the
total cost of estimating the energy of a curve discretized into N points is:

Pullback geometry: O(NK) evaluations of x̂0(xt)

Information geometry: O(N) JVPs of x̂0(xt)

where K is the number of solver steps. Given that the JVP costs roughly twice as much as evaluating the denoiser
(Meng et al., 2021), and K ≫ 2, the information geometry approach is significantly more efficient. This is especially
important since we usually need to not only evaluate the energy, but also optimize it (differentiate it many times) to find
geodesics.

D Probabilitic structure of the denoising process

In this section, we show that denoising distributions form an exponential family, and we identify closed-form expressions
of the key parameters. The main theorem is established as a concatenation of two lemmas. In Lemma 4, we derive the
sufficient statistic and natural parameters; and in Lemma 5, we compute the expectation parameter using the first and
second denoising moments.
Proposition 1 (Exponential family of denoising). Let xt be a noisy observation corresponding to diffusion time t, as
introduced in Eq. 1. Then

p(x0 | xt) = h(x0) exp
(
η(xt, t)

⊤T (x0)− ψ(xt, t)
)
, (17)

with h = q the data distribution density, ψ the log-partition function, and

η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
(natural parameter) (18)

T (x0) = (x0, ∥x0∥2) (sufficient statistic) (19)

µ(xt, t) =

(
1

αt

(
xt + σ2

t∇xt
log pt(xt)

)
︸ ︷︷ ︸

‘space’: E
[
x0|xt

] ,
σ2
t

αt
divxt

E[x0|xt] +
∥∥E[x0|xt]

∥∥2︸ ︷︷ ︸
‘time’: E

[
∥x0∥2 |xt

]
)

(20)

Proof. See Lemma 4 for the derivation of the natural parameter η and the sufficient statistic T , and Lemma 5, for the
derivation of the expectation parameter µ.

D.1 Denoising distributions as an exponential family

Lemma 4 (Denoising distribution as exponential families). Let xt be a noised observation of a latent variable x0

under a known diffusion process at time t. Then the denoising distributions p(x0 | xt) form an exponential family

p(x0 | xt) = h(x0) exp
(
η(xt, t)

⊤T (x0)− ψ(xt, t)
)
, (50)

with h the base measure and ψ the log-partition function.

The sufficient statistics T and the natural parameters η are given by

T (x0) =
(
x0, ∥x0∥2

)
and η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
. (51)

Proof. The denoising distribution is given by

p(x0|xt) =
p(xt|x0)q(x0)

pt(xt)
,

17
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where q is the data distribution, p(xt|x0) = N (xt|αtx0, σ
2
t I) is the forward density (Eq. 1), and pt(xt) =∫

p(xt|x0)q(x0)dx0 is the marginal distribution at time t. Therefore

p(xt|x0) =
1

(2πσ2
t )
D/2

exp

(
−∥xt − αtx0∥2

2σ2
t

)
=

1

(2πσ2
t )
D/2

exp

(
−∥xt∥

2

2σ2
t

+
αt
σ2
t

xt
⊤x0 −

α2
t

2σ2
t

∥x0∥2
)

= exp

(
−D

2
log(2πσ2

t )−
∥xt∥2

2σ2
t

)
exp

(
− α2

t

2σ2
t

∥x0∥2 +
αt
σ2
t

xt
⊤x0

)
.

(52)

By substituting into the denoising density, we get

p(x0|xt) = q(x0) exp

{
− α2

t

2σ2
t

∥x0∥2 +
αt
σ2
t

xt
⊤x0 −

(
log pt(xt) +

D

2
log(2πσ2

t ) +
∥xt∥2

2σ2
t

)}
= h(x0) exp

(
η(xt)

⊤T (x0)− ψ(xt)
)
,

(53)

where

η(xt, t) =

(
αt
σ2
t

xt,−
α2
t

2σ2
t

)
∈ RD+1 (54)

T (x0) =
(
x0, ∥x0∥2

)
∈ RD+1 (55)

h(x0) = q(x0) ∈ RD+1 (56)

ψ(xt, t) = log pt(xt) +
D

2
log(2πσ2

t ) +
∥xt∥2

2σ2
t

∈ RD+1 (57)

Note that, if the data distribution is Boltzmann, i.e. q(x0) ∝ exp(−U(x0)) for some energy function U , we have:

p(x0|xt) ∝ q(x0)p(xt|x0) ∝ exp(−(U(x0)) exp

(
−∥xt − αtx0∥2

2σ2
t

)
= exp

(
−U(x0)−

1

2
SNR(t)∥x0 − xt/αt∥2

)
.

This implies that p(x0|xt) is also a Boltzmann distribution with p(x0|xt) ∝ exp(−U(x0|xt)) for

U(x0|xt) = U(x0) +
1

2
SNR(t)

∥∥∥x0 − xt/αt

∥∥∥2. (58)

D.2 Second denoising moment derivation

We can now derive the expectation parameter µ(xt, t), which is required to compute the geodesic energy (see Eq. 13).
The following proposition provides a closed-form expression for µ in terms of the denoising moments:
Lemma 5 (Expectation parameter of a denoising distribution). proposition Let µ(xt, t) := E[T (x0) | xt] denote the
expectation parameter corresponding to the sufficient statistics T . Then,

µ(xt, t) =

(
1

αt

(
xt + σ2

t∇xt log pt(xt)
)
,
σ2
t

αt
divxtE[x0 | xt] + ∥E[x0 | xt]∥2

)
, (59)

where the first component corresponds to the spatial parameter E[x0 | xt] , and the second to the temporal parameter
E[∥x0∥2 | xt].

Proof. From Lemma 4, we already have the expression of the sufficient statistic T (x0) =
(
x0, ∥x0∥2

)
. We need to

derive the first E[x0 | xt] and second E[∥x0||2 | xt] denoising moments.

Recall that the forward corruption process is p(xt | x0) = N
(
xt|αtx0, σ

2
t I
)
, the score of the marginal can be

expressed using Tweedie’s formula (Efron, 2011):

∇x log p(x) = − 1

σ2
t

(xt − αtE[x0|xt]) (60)
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It follows directly that the first denoising moment is:

E[x0 | xt] =
1

αt

(
xt + σ2

t∇xt
log pt(xt)

)
. (61)

The denoising covariance is known (Meng et al., 2021):

Cov[x0 | xt] =
σ2
t

α2
t

(
I + σ2

t∇2
xt

log pt(xt)
)
. (62)

Therefore, from the definition of conditional variance, we can deduce the second denoising moment:

E
[
∥x0||2 | xt

]
= E

[∥∥∥x0 − E[x0 | xt]
∥∥∥2 | xt]+ ∥∥∥E[x0 | xt]

∥∥∥2
= Tr (Cov[x0 | xt]) +

∥∥∥E[x0 | xt]
∥∥∥2

(62)
=

σ2
t

α2
t

(
D + σ2

t∆ log pt(xt)
)
+
∥∥∥E[x0 | xt]

∥∥∥2
=
σ2
2

αt
divxt

(
xt + σ2

t∇xt
log pt(xt)

αt

)
+
∥∥∥E[x0 | xt]

∥∥∥2
=
σ2
t

αt
divxtE[x0 | xt] +

∥∥∥E[x0 | xt]
∥∥∥2.

(63)

E Experimental details

E.1 Toy Gaussian mixture

For the experiments with a 1D Gaussian mixture (Fig. 1, and Fig. 5 left), we define the data distribution as p0 =∑3
i=1 πiN (µi, σ

2) with µ1 = −2.5, µ2 = 0.5, µ3 = 2.5, π1 = 0.275, π2 = 0.45, π3 = 0.275, and σ = 0.75. We
specify the forward process (Eq. 1) as Variance-Preserving (Song et al., 2021b), i.e. satisfying α2

t +σ
2
t = 1, and assume

as log-SNR linear noise schedule, i.e. λt = log SNR(t) = λmax + (λmin − λmax)t for λmin = −10, λmax = 10.
Which implies: α2

t = sigmoid(λt), σ
2
t = sigmoid(−λt).

Since p0 is a Gaussian mixture, all marginals pt are also Gaussian mixtures, and training a diffusion model is unnecessary,
as the score function∇x logt(x) is known analytically. In this example, the data is 1D, and the spacetime is 2D.

To generate Fig. 1 we estimate the geodesic between θ1 = (−2.3, 0.35), and θ2 = (2, 0.4) by parametrizing γ with
a cubic spline (Arvanitidis et al., 2022) with two nodes, and discretizing it into N = 128 points and taking 1000
optimization steps with Adam optimizer and learning rate η = 0.1, which takes a few seconds on an M1 CPU.

To generate Fig. 5 left, we generate 3 PF-ODE sampling trajectories starting from x = 1, 0,−1 using an Euler solver
with 512 solver steps. We solve only until t = tmin = 0.1 (as opposed to t = 0), because for t ≈ 0, the denoising
distributions p(x0|xt) become closer to Dirac delta distributions δxt

, which makes the energies very large. For each
sampling trajectory, we take the endpoints (x1, 1), (xtmin

, tmin) and estimate the geodesic between them using Eq. 23
with a cubic spline with 10 nodes, discretizing it into 512 points, and taking 2000 gradient steps of AdamW optimizer
with learning rate η = 0.01. This takes roughly 10 seconds on an M1 CPU.

E.2 Image data

For all experiments on image data, we use the pretrained EDM2 model trained on ImageNet512 (Karras et al., 2024)
(specifically, the edm2-img512-xxl-fid checkpoint), which is a Variance-Exploding model, i.e. αt = 1, and using
the noise schedule σt = t. It is a latent diffusion model, using a fixed StabilityVAE (Rombach et al., 2022) as the
encoder/decoder.

Image interpolations To interpolate between to images, we encode them with StabilityVAE to obtain two latent
codes x1

0,x
2
0, and encode them both with PF-ODE (Eq. 4) from t = 0 to t = tmin = 0.368, corresponding to

log SNR(tmin) = 2. This is to avoid very high values of energy for t ≈ 0. We then optimize the geodesic between
(x1
tmin

, tmin) and (x2
tmin

, tmin) by parametrizing it with a cubic spline with 8 nodes, and minimizing Eq. 23 using
AdamW optimizer with learning rate η = 0.1 in two stages:
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• Coarse optimization: discretizing the curve into 16 points, and taking 350 gradient steps;
• Finetuning: discretizing the curve into 64 steps, and taking 250 gradient steps.

This procedure takes roughly 50 minutes on an A100 NVIDIA GPU per interpolation image pair.

Each interpolating geodesic γ has two components: γs = (xs, t(s)). To produce Fig. 4, we chose smax = argmaxs t(s)
and visualize xsmax , and σmax = t(smax).

PF-ODE sampling trajectories To generate PF-ODE sampling trajectories, we use the 2nd order Heun solver (Karras
et al., 2022) with 64 steps, and solve from t = 80 to tmin = 0.135 corresponding to log SNR(tmin) = 4. This is to
avoid instabilities for small t. We parametrize the geodesic directly with the entire sampling trajectory γt = (xt, t) for
t = T, . . . , tmin, where the t schedule corresponds to EDM2 model’s sampling schedule.

We then fix the endpoints of the trajectory, and optimize the intermediate points using AdamW optimizer with learning
rate η = 0.0001 (larger learning rates lead to NaN values) and take 600 optimization steps. This procedure took roughly
2 hours on an A100 NVIDIA GPU per a single sampling trajectory.

To visualize intermediate noisy images at diffusion time t, we rescale them with σdata√
σ2
data+σ

2
t

before decoding with the

VAE deocoder, to avoid unrealistic color values, where we set σdata = 0.5 as in Karras et al. (2022).

E.3 Molecular data

Approximating the base energy function with a neural network We follow Holdijk et al. (2023) and represent the
energy function of Alanine Dipeptide in the space of two dihedral angles ϕ, ψ ∈ [−π, π). We use the code provided by
the authors at github.com/LarsHoldijk/SOCTransitionPaths, which estimates the energy U(ϕ, ψ). However,
even though the values of the energy U looked reasonably, we found that the provided implementation of ∂U∂ϕ , and ∂U

∂ψ

yielded unstable results due to discontinuities.

Instead, we trained an auxiliary feedforward neural network Uθ to approximate U . We parametrized with two hidden
layers of size 64 with SiLU activation functions, and trained it on a uniformly discretized grid [−π, π]× [−π, π] into
16384 points. We trained the model with mean squared error for 8192 steps using Adam optimizer with a learning rate
η = 0.001 until the model converged to an average loss of ≈ 1.5. This took approximately two and a half minutes
on an M1 CPU. In the subsequent experiments, we estimate ∇xU(x) with automatic differentiation on the trained
auxiliary model.

Generating samples from the energy landscape To generate samples from the data distribution p0(x0) ∝
exp(−U(x0)), we initialize the samples uniformly on the [−π, π]× [−π, π] grid, and use Langevin dynamics

dx = −∇xU(x)dt+
√
2dWt (64)

with the Euler-Maruyama solver for dt = 0.001 and N = 1000 steps.

Training a diffusion model on the energy landscape To estimate the spacetime geodesics, we need a denoiser
network approximating the denoising mean x̂0(xt, t) ≈ E[x0|xt]. We parametrize the denoiser network with

from ddpm import MLP
model = MLP(

hidden_size=128,
hidden_layers=3,
emb_size=128,
time_emb="sinusoidal",
input_emb="sinusoidal"

)

using the TinyDiffusion implementation github.com/tanelp/tiny-diffusion. We trained the model using the
weighted denoising loss: w(λt)∥x̂0(xt, t)−x0∥2 with a weight function w(λt) =

√
sigmoid(λt + 2) and an adaptive

noise schedule (Kingma and Gao, 2023). We train the model for 4000 steps using the AdamW optimizer with learning
rate η = 0.001, which took roughly 1 minute on an M1 CPU.

Spacetime geodesics With a trained denoiser x̂0(xt, t), we can estimate the expectation parameter µ (Eq. 22) and
thus curves energies in the spacetime geometry (Eq. 23).
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In Section 4.2, we want to interpolate between two low-energy states: x1
0 = (−2.55, 2.7) and x2

0 = (0.95,−0.4).
To avoid instabilities for t ≈ 0, we represent them on the spacetime manifold as θ1 = (−2.55, 2.7, tmin), and
θ2 = (0.95,−0.4, tmin), where log SNR(tmin) = 7. We then approximate the geodesic between them, by parametrizing
γ as a cubic spline with 10 nodes and fixed endpoints γ0 = θ1, and γ1 = θ2 and discretize it into 512 points. We then
optimize it by minimizing Eq. 23 with the Adam optimizer with learning rate η = 0.1 and take 10000 optimization
steps, which takes roughly 6 minutes on an M1 CPU.

Annealed Langevin dynamics To generate transition paths, we use Annealed Langevin dynamics (Algorithm 1)
with the geodesic discretized into N = 512 points, K = 128 Langevin steps for each point on the geodesic γ, and
use dt = 0.0001, i.e., requiring 65536 evaluations of the gradient of the auxiliary energy function. We generate 8
independent paths in parallel, which takes roughly 27 seconds on an M1 CPU.

Constrained transition paths Constrained transition paths were also parametrized with cubic splines with 10 nodes,
but discretized into 1024 points.

For the low-variance transition paths, we chose the threshold ρ = 3, and λ = 0 for the first 1200 optimization steps,
and λ linearly increasing from 0 to 100 for the last 3800 optimization steps, for the total of 5000 optimization steps
with the Adam optimizer with a learning η = 0.01. This took just under 6 minutes on an M1 CPU.

For the region-avoiding transition paths, we combine two penalty functions: h1 is the low-variance penalty described
above, but with ρ1 = 3.75 threshold, and h2 is the KL penalty with ρ2 = −4350 threshold. We define λ1 as in the
low-variance transitions, and fix λ2 = 1. The optimization was performed with Adam optimizer, learning rate η = 0.1,
and ran for 4000 steps for a runtime of just under 5 minutes on an M1 CPU.

The reason we include the low-variance penalty in the region-avoiding experiment is because KL(p(·|θ∗) || p(·|γs))
can trivially be increased by simply increasing entropy of p(·|γs) which would not result in avoiding the region defined
by p(·|θ∗).

F KL Fisher-Rao flow as primal and dual geodesics

On a statistical manifold, one can define the Fisher-Rao (or the natural gradient) flow as (Müller et al., 2024)

dθs = I−1
θs
∇θf(θs)ds, (65)

where f is some objective function. It is a continuous version of the natural gradient ascent (Martens, 2020) and can be
interpreted as taking infinitesimally small steps in the direction of steepest ascent of f . However, in contrast to the
vanilla gradient flow, the sizes of the steps taken are measured with KL-divergence instead of the Euclidean norm.

It turns out that the Fisher-Rao flow of the KL divergence has a straight line solution in either η or µ parametrization.
Lemma 6 (KL Fisher-Rao flow). Let θ∗ ∈ Θ. If µ and η are invertible, then

dθs = −λI−1
θs
∇θ1 KL(θs||θ∗)ds =⇒ η(θs) = (1− e−λs)η(θ∗) + e−λsη(θ0) (66)

dθs = −λI−1
θs
∇θ2 KL(θ∗||θs)ds =⇒ µ(θs) = (1− e−λs)µ(θ∗) + e−λsµ(θ0) (67)

Proof. If µ and η are invertible, we have

I−1
θs

=

((
∂η(θ)

∂θ

)⊤(
∂µ(θ)

∂θ

))−1

=

(
∂µ(θs)

∂θ

)−1(
∂η(θs)

∂θ

)−⊤

(68)

The Fisher-Rao metric is always symmetric, which also implies:

I−1
θs

=

(
∂η(θs)

∂θ

)−1(
∂µ(θs)

∂θ

)−⊤

. (69)

Now assume dθs

ds = −λI−1
θs
∇θ1 KL(θs||θ∗). Then, from Lemma 3

d

ds
η(θs) =

∂η(θs)

∂θ

d

ds
θs

= −λ ∂η(θs)
∂θ

(
∂η(θs)

∂θ

)−1

︸ ︷︷ ︸
=I

(
∂µ(θs)

∂θ

)−⊤
∂µ(θs)

∂θ

⊤

︸ ︷︷ ︸
=I

(η(θs)− η(θ∗))

= −λ (η(θs)− η(θ∗)) .

(70)
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Therefore, for f(s) = η(θs)− η(θ∗), we have:

f ′(s) = −λf(s), (71)

whose unique solution is f(s) = f(0)e−λs, which translates to

η(θs)− η(θ∗) = (η(θ0)− η(θ∗)) e−λs =⇒ η(θs) = (1− e−λs)η(θ∗) + e−λsη(θ0). (72)

Similarly for dθs

ds = −λI−1
θs
∇θ2 KL(θ∗||θs) we have

d

ds
µ(θs) =

∂µ(θs)

∂θ

d

ds
θs

= −λ ∂µ(θs)
∂θ

(
∂µ(θs)

∂θ

)−1

︸ ︷︷ ︸
=I

(
∂η(θs)

∂θ

)−⊤
∂η(θs)

∂θ

⊤

︸ ︷︷ ︸
=I

(µ(θs)− µ(θ∗))

= −λ (µ(θs)− µ(θ∗)) ,

(73)

which implies

µ(θs)− µ(θ∗) = (µ(θ0)− µ(θ∗)) e−λs =⇒ µ(θs) = (1− e−λs)µ(θ∗) + e−λsµ(θ0). (74)

G Expectation parameter estimation code

1 import jax
2 import jax.random as jr
3 import jax.numpy as jnp
4

5 def f(x, t, key): # Implemenation of the expected denoising
6 pass
7

8 def sigma_and_alpha(t): # Depends on the choice of SDE and noise schedule
9 pass

10

11 def mu(x, t, key):
12 model_key , eps_key = jr.split(key , 2)
13 eps = jr.rademacher(eps_key , (x.size ,), dtype=jnp.float32)
14 def pred_fn(x_):
15 return f(x_ , t, key=model_key)
16 f_pred , f_grad = jax.jvp(pred_f , (x,), (eps ,))
17 div = jnp.sum(f_grad * eps)
18 sigma , alpha = sigma_and_alpha(t)
19 return sigma **2/ alpha * div + jnp.sum(f_pred ** 2), f_pred

Listing 1: JAX Implementation of µ estimation

H Additional image interpolation results

We perform an additional experiment comparing interpolation methods between images. Using the PF-ODE, we recover
a clean image x0 from each point along a spacetime geodesic γs. We compare this geodesic-based interpolation to
a standard baseline that interpolates in the noise space xT using spherical linear interpolation (SLERP). While the
standard interpolation, SLERP, produces sharper intermediate images, it results in significant semantic shifts. In contrast,
our geodesic interpolation yields more blurred images but preserves the semantic content across the interpolation path.
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Figure 8: Spacetime geodesic decodes to less realistic images, but introduces less semantic changes than standard
interpolations.

I Broader societal impact

The use of generative models, especially those capable of producing images and videos, poses considerable risks for
misuse. Such technologies have the potential to produce harmful societal effects, primarily through the spread of
disinformation, but also by reinforcing harmful stereotypes and implicit biases. In this work, we contribute to a deeper
understanding of diffusion models, which currently represent the leading methodology in generative modeling. While
this insight may eventually support improvements to these models, thereby increasing the risk of misuse, it is important
to note that our research does not introduce any new capabilities or applications of the technology.

J Licences

• EDM2 model (Karras et al., 2024): Creative Commons BY-NC-SA 4.0 license
• ImageNet dataset (Deng et al., 2009): Custom non-commercial license
• SDVAE model (Rombach et al., 2022): CreativeML Open RAIL++-M license
• OpenM++ (OpenMP Architecture Review Board, 2008): MIT License
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