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Abstract

This paper describes a four-week project in active shape and appearance modeling,
including experiments in shape and appearance modeling and a brief look at the
fundamental theory. Shape modeling derives a statistical shape model from a set
of example objects annotated with landmark points to generate new, similar object
shapes. Shape modeling can be extended by gray-level modeling, where a simi-
lar technique is used to derive a statistical gray-level model by sampling the gray
levels from example images. Shape and gray-level models can be combined into
an appearance model, which describes the way shape and gray levels of an object
vary from image to image.

We usedMATLAB to design and implement an appearance model based on
preannotated images. Our primary goal was to design a model that can be used
to generate new, similar images. Our secondary goal was to use the model for
segmentation by fitting the model to a new unknown image.

A key component of this project is our research into the field of active ap-
pearance modeling, in the interest of learning more about the field and apprising
ourselves of the recent work of scientists in this area. T.F. Cootes and C.J. Taylor
of the University of Manchester have provided definitive work in statistical shape
and appearance modeling for the past few years [3], thereby enriching the fields
of computer vision and medical image analysis. We have sought to explore their
methodology by creating our own basic shape and appearance modeling system
that can be adapted to many different types of objects.
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Chapter 1

Background

There is no denying the inherent diversity of all natural life. Humans come in all
shapes, sizes, and colors. Even identical twins are not absolutely identical. Yet,
as much as we vary, our physiology and our health and well-being are dependent
upon strict parameters that set us apart from all other creatures, parameters that
physicians use to perform a basic appendectomy, for example, or to determine
whether a CT scan reveals a deadly astrocytoma or a benign acoustic neuroma.
Parameters that allow security cameras to differentiate a potted palm in the lobby
of the First National Bank from the bank’s president. We have come to rely more
than ever on the aid of computers for analysis and diagnosis of medical maladies;
for generating descriptions of missing persons; for biometric security systems; and
much more.

Ironically, at the core of our diversity lies an instinctive inclination to spot
examples of nonconformity. We are attracted to a beauty spot on the cheek, an
asymmetric smile, or an interesting skin tone. Our reaction to severe deformity can
range from mild fascination to utter revulsion. But regardless of how we react to
something new or out of the ordinary, the fact that we react at all, given this wealth
of diversity, indicates our sensitivity to certain limits in appearance. As we will
show later in this paper, the manipulation of an average human face more than four
or five standard deviations from the mean will produce an image that is caricaturish
or grotesque, if not unrecognizable.

Model-based vision is a type of computer vision that makes use of some prior
knowledge of the object to be modeled, how it looks, how it can change, and so
on. A key issue when building models is not only the need for flexibility to cover
the variations present among the objects in such a training set, but also the need to
restrict this flexibility so as to be able to represent only “legal” or “plausible” ex-
amples of similar objects. Deciding how to deal with the balance between rigidness
and flexibility often entails knowing something about the nature of the modeled ob-
jects, for example, finding a set of permissible transformations of the model shape.

Active shape modeling (ASM) and active appearance modeling (AAM) are
two interrelated kinds of model-based vision that provide solutions to deal with the
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CHAPTER 1. BACKGROUND 6

rigidity/flexibility problem using statistical analysis of the training corpora—a set
of images of similar objects. ASM and AAM make use of patterns of variability
based on shape and gray-level intensity values, respectively. They capture how the
object changes by statistically modeling the training set, not by considering the
nature of the modeled objects.

Processing the training set produces a mean object, from which all objects
in the training set may be seen to vary. Modeling allows us to define specific
descriptive parameters for the objects, but because it also provides ranges for those
parameters, it also allows us to evaluate whether similar objectsnot belonging
to the original training set may be considered of the same class. It is therefore
suitable for “objects” such as living creatures, which can vary widely within the
strict confines of what precisely defines them as a species.

The normal distribution is a perfect stage for ASM and AAM, but these are
not without limitation. Discretized behavior or nonlinear dependencies cannot be
modeled with ASM and AAM without modifying them to deal with those nonlin-
earities.

Timothy F. Cootes and Christopher J. Taylor of the Division of Biomedical
Engineering, University of Manchester, have led the field in these areas for the past
few years [2] [3] [4] [5], providing methods for building shape and appearance
models that we have also sought to emulate for this project.

Although we have limited our scope to building statistical shape and appear-
ance models and running tests with AAM, it is worth noting that both ASM and
AAM have found use in medical image segmentation and analysis, criminal in-
vestigations and in generating facilitated sketches of alleged criminals, simulated
age progression for finding missing children, predicting the outcomes of plastic
surgery, and much more. Lanitis et al. [5] have performed experiments in visualiz-
ing age progression. Vetter and Romdhani [12] have developed illustrations of fa-
cial manipulations, showing ranges between masculine and feminine, thin to round
features, and more. Other applications are even finding their way into mainstream
attention. A recent study [7] used appearance-modeling techniques to analyze the
emotional content of the Mona Lisa’s smile. It is certainly evident that new appli-
cations and improved techniques in these areas will continue to be developed as
time goes on.



Chapter 2

Project Overview

In this project we have built statistical shape and appearance models (and attempted
to build active appearance models) of the human face, heart, and spine. These
models are flexible in the sense that they can also be used with other kinds of
annotated image sets. We describe the methods we used to build these models and
illustrate a number of applications.

The construction of shape and appearance models involves several steps, which
were developed by Cootes and Taylor [3]. First, images to be analyzed must be
consistently annotated with landmark points that can be used for correspondence
among the images. Prior to building a shape model, images must be aligned along
these landmark points. A shape model is built by applying principal component
analysis to the coordinates of the landmark points.

The next step is building a gray-level model.1 To do this, all objects must be
warped to a mean shape using corresponding landmark points. The gray-level val-
ues of the resulting shape-free patches are sampled and normalized. The statistical
model of the gray-level variation is then built by applying principal component
analysis to the samples of gray-level values.

The last step is to build an appearance model by combining the shape and gray-
level models into one model, and applying principal component analysis to the data
one more time. In this way, the appearance model controls both the shape of the
image and its gray-level variations, taking into account the correlation between
shape and gray level.

We have mostly followed Cootes and Taylor’s methods, incorporating some
modification as became appropriate. One of the most significant changes we made
was in the order of the steps: we took the steps of aligning, cropping, and normal-
izing the images out of the algorithm, and incorporated them into a preprocessing
phase, so that these smaller tasks would not become part of the computations for the
models. We felt this step was necessary but quite time-consuming to implement.

1We have favored the termgray levelfor our report, where others use this term interchangeably
with texture. Additionally, where we use the termappearance, we mean it exclusively in the sense
of a combined shape and gray-level model.
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CHAPTER 2. PROJECT OVERVIEW 8

This was one area in which we perceived the time constraints of the four-week
scope of the project period. (Another task that proved infeasible during the allotted
time frame proved to be implementing an active appearance model.) We decided
to focus our priority on being able to implement our models in as many ways as
possible during the project period, instead of spending the time in refining and op-
timizing the steps involved in building the models themselves. In this report, we
describe the steps we took, along with any modifications, in the same order that we
implemented them.

Chapter 3, Data, describes in detail the three data sets we were given for our
implementation, including the number of images in each set and how they were
annotated.

Chapter 4, Preprocessing, explains the several steps we needed to take before
we could use the data. The chapter describes the aligning of objects in the images,
warping techniques we tested, and the process of gray-level normalization we used.

Chapter 5, Building the Models, includes descriptions of principal component
analysis, the covariance matrix and modes of variation, a presentation of the statis-
tical appearance models we constructed, as well as examples of approximation/re-
construction of faces.

Chapter 6, Manipulating Faces, shows some interesting applications of the ap-
pearance model, including generating caricatures and “anti-images,” and generat-
ing smiles upon faces that originally bore a neutral expression.

Chapter 7, Active Appearance Models, describes correcting model parameters
during a search and iterative model refinement.

In the final chapter, we present an assessment of what we have done, and of-
fer some concluding remarks, and in the Appendix, we present the body of our
MATLAB code that we developed and used to perform the processes in this report.



Chapter 3

Data

3.1 Our data sets

We looked at images of the human heart, lower spine, and face, which had been
preannotated with two-dimensional landmark points.

The faces data comprised 240 JPEG images of 40 different people, 7 female
and 33 male. Individuals were photographed in various aspects—facing slightly
left, facing slightly right, facing forward under diffuse lighting conditions, and fac-
ing forward while illuminated from one side—and with various facial expressions,
including neutral, smiling, and “joker” (some arbitrary expression). Some of the
males had beards or mustaches, and none of the subjects wore glasses. These im-
ages were annotated manually using 58 landmark points lying on seven paths: the
jawline, mouth, two eyes, two eyebrows, and nose.

The cardiac data consisted of 14 MR slices, annotated manually with 30 land-
mark points outlining two concentric rings that make up the inner and outer wall of
the left ventricle. For both the cardiac and face data, each image was accompanied
by a file containing the full set of landmark coordinates for that image. Landmark
points were numbered consecutively in a single path. That file also contained in-
formation on the type of annotation points, such as whether points were internal or
located on an outside border, and whether they lay on closed or open paths.

The spine data, which was given as a singleMATLAB structure, included 20
X-ray images, annotated with 100 landmark points. The landmark points were
given in two matrices, one for thex-coordinates, and one for they-coordinates. No
information about the paths was provided.

Our first task was bringing the data into a consistent format. For the faces and
cardiac data sets, it was a matter of automating the loading procedure that would
allow us to work with the data inMATLAB , which included manually stripping
the files of any lines containing nondata (headings and other commented-out infor-
mation). Finally, the faces and cardiac landmark points were given in coordinates
relative to the size of the images, so it was necessary to recalculate those coordi-
nates, so that all coordinate systems corresponded.
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CHAPTER 3. DATA 10

3.2 Annotation

Annotation is the marking of images with landmark points to describe some object
of interest contained in the image. These points may be set at key intersections
and along object boundaries. Although the images we utilized were preannotated,
it is worth noting that the placement of landmark points in medical images is not
trivial. There are many techniques for annotating images, and among the many
goals of model-based vision are accurate and robust methods for automating this
vital step. Landmark points are commonly used for two- or three-dimensional
images. Their purpose is to describe the invariant shape of an object, one that
should not change even after rotation, translation, or scaling. Each object in a set
of images must be demarcated with the same number of landmark points. In a data
set of similar shapes, although object shapes themselves may vary from image to
image, a landmark point in one image should correspond precisely to a landmark
point in another image that fulfills the same structural description, such that all
landmark points in all images correspond to one another consistently.

3.3 Paths

Our landmark points lay on artificial “paths” that that allowed us to better visualize
contours when studying the shapes. Some of these paths were open, such as the
paths outlining each vertebræ. Other paths were closed, as with the eyes and mouth
of the faces.

Designing one algorithm that could handle the different kinds of paths using
the information provided would be a challenge. We could have ignored the paths,
and simply plotted the unconnected landmark points, but in some cases, such as
when we wanted to view extreme modes of variation, the result would be not more
than a collection of random-looking dots, too jumbled to interpret meaningfully.
We therefore preferred keeping the paths for visualization, so we needed to find an
appropriate means to work with them.

We decided to implement ashape plot function that allowed us to manually
divide paths for the face, heart, and spine images. For example, in the cardiac im-
ages, where the landmark points formed two roughly concentric rings, we divided
the single path into two, so that the result would not include an extraneous, un-
desired line connecting the last point of the outer circle with the first point of the
inner circle. The face data sets included seven paths, some of open, some closed.
For the spine data, we used four open paths, one for each vertebra.



Chapter 4

Preprocessing

The preprocessing of the raw, original images was a vital first step toward being
able to work meaningfully with them. Before the objects in the image files could be
properly analyzed, compared, or manipulated, we needed to level the playing field:
cardiac cross sections and spines needed to occupy the same area in the coordinate
plane, and faces needed to be brought into some semblance of consistency. The
preprocessing steps we used included the following and are illustrated in Figure
4.1:

1. Iterative shape alignment, which included the translation, rotation, scaling,
cropping, and masking of the image;

2. Warping of the image landmark points to the mean;

3. Normalization of gray values to reduce variation in lighting conditions and
other factors, such as the presence of facial hair, freckles, etc.

Preprocessing all 228 face images took 625 seconds on a standard PC. The result-
ing images and their corresponding shapes thus served as the input data for our
statistical appearance model.

4.1 Iterative shape alignment

We built an initial shape model from the raw, unprocessed data of the face and
cardiac images. In both models, the two most-significant modes of variation were
translations in thex andy directions. The third mode of variation was scale. To
remove variations attributable to translation, rotation, and scale, it is generally de-
sirable to align the shapes into a common coordinate frame.

Translation and rotation in face and cardiac cases were unlikely to be important
factors for shape modeling, given that they were artifacts of the image-capturing
process. However, the correlation between scale and shape could be useful infor-
mation, especially when dealing with medical images—differences in scale could
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CHAPTER 4. PREPROCESSING 12

Figure 4.1: Preprocessing. Two sample face images and their corresponding shapes, de-
picting preprocessing steps: translation and cropping, shape alignment, masking, warping
of landmark points to the mean, and normalization of gray values.
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be important symptoms of a real physiological anomaly, but we could not evalu-
ate this ourselves. Similarly, if children’s faces had been included with the faces
data set, correlation between scale and shape would be very useful indeed, as chil-
dren’s faces are not merely smaller than adults’, their features are also in different
proportion compared with adults.

When subsequently informed that when analyzing the shape of the heart, the
diameter is not as important as the relative thickness of the walls, and in consider-
ation of the fact that children’s faces were not included with the face images, we
decided to permit scale as a mode of variation for the cardiac images. Doing so
also made our preprocessing procedure simpler, as the same steps could then be
applied to all of our data.

“Procrustes analysis” is a commonly used iterative method [4] [9] for aligning
shapes so that each shape occupies a common coordinate system. This alignment
procedure is applied to the vectorsx obtained by concatenatingx andy coordinates
of landmark points.

1. Translate all images so that the center of gravity of landmark points is at the
origin.

2. Find an initial initial estimation of the mean shapex̄0 and scale it so that
|x̄| = 1.

3. Record the first estimate asx̄0 to define the default reference frame.

4. Align all the shapes with the current estimate of the mean shape.

5. Re-estimate mean from aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with ¯x0

and scaling so that|x̄| = 1.

7. If not converged, return to4.

Convergence is declared if the estimate of the mean does not change signifi-
cantly after an iteration.

Aligning the two images in the step 4 could be done in different ways, depend-
ing on which transformations are allowed. In the case of 2-D similarity, permitted
transformations include translation, scaling, and rotation. In other words, aligning
the images properly entails finding a transformation

T(x) =
(

a −b
b a

)
x+

(
tx
ty

)
so that the sum of the distances of each shape to the mean is minimized.
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Implementation

We aligned our shapes using similarity transformations, and in accordance with
the iterative steps outlined by Cootes and Taylor, which we modified slightly. We
initially translated images in such a way that the center of gravity was in the center
of the image, and after the final alignment, we scaled all the shapes back using
the same scaling factor for all shapes, so that landmark point coordinates would
correspond to pixel coordinates.

Instead of deciding upon criteria for achieving convergence beforehand, we
elected to always run the alignment over ten iterations. We then looked at the
changes of mean estimate. As can be seen in Figure 4.2, it is clear that convergence
is relatively easily achieved after only two iterations.

Figure 4.2: Iterative shape alignment. Graph depicts convergence occurring in two itera-
tions of Procrustes alignment algorithm.

4.2 Warping the images

To build a gray-level model of the object, we needed to sample gray-levels across
the image. However, it would have been pointless to do the gray-level sampling
at this stage: although the object shapes were aligned, they were not identical and
there was no guarantee that pixels with same coordinates represented the same part
of the object from image to image.

Therefore, an intermediate step was to warp (geometrically transform) all im-
ages in such a way that the objects in the resulting images all had the same shape.
The logical choice for the target shapes was the mean shape itself, so our goal was
to transform each training imageI into a new imageI ′ in such a way that the set of
n landmark pointsxi were mapped to new positionsx′i . To do this, we needed to
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find a vector-valued mapping functionf that satisfied

f(xi) = x′i , ∀i = 1. . .n

We studied and compared two warping functions, piecewise-linear and thin-
plate spline warps.

Piecewise-linearwarping assumes the mapping functionf to be bilinear in a local
region and zero everywhere else. The convex hull of the landmark points is
first partitioned using a triangulation algorithm, and a different linear trans-
formation is applied to each triangle. Piecewise-linear warping is applicable
only to the convex hull of landmark points, and it provides a continuous but
not quite smooth deformation.

Thin-plate spline warping, popularized by Bookstein [1], leads to smooth defor-
mation and is not constrained to the convex hull of landmark points, but is
more difficult to calculate.1

Figure 4.3 illustrates the comparison between piecewise-linear and thin-plate
spline warping. The difference between the two warping methods is evident outside
the convex hull of landmark points, but it is rather small within the convex hull.

Implementation

We encountered a few images that could not be warped using the piecewise-linear
method, for example, that method could not handle the inversion of a triangle—a
triangle that has one orientation in the original image, but another orientation in the
target image. The thin-plate splines method could deal with the inverted triangles,
but the result was often so distorted and implausible that it should be eliminated.
See Figure 4.4 for an example of such an implausible result.

Although all of our algorithms support piecewise-linear and thin-plate spline
warping, we elected to use the piecewise-linear warping combined with bilinear
interpolation for the faces data set, given its much smaller computing time com-
pared with the thin-plate spline implementation available to us. We decided to use
thin-plate spline warps for the heart and spine data sets, however, because each set
contained only a few images, which did not pose too great a problem computation-
ally.

In order to remove unwanted effects from the area outside the convex hull of
the landmark points, we applied a “mask” to all images, leaving only the area inside
the convex hull visible. The result of the warping was a set of shape-free image
patches, each image with different gray-level structures; our gray-level model is
based on those structures.

1WhereasMATLAB is prepackaged with a piecewise-linear warp function, we relied on code
written by John F. Meinel, Jr. (copyright 2002, jfmeinel@engineering.uiowa.edu) to perform the
thin-plate spline warps.
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Figure 4.3: Comparison of piecewise-linear and thin-plate spline warping techniques. The
top set of images depict a relatively straightforward warp, given the similarity of the mean
and the image shapes. The bottom set of images depict a more complicated warp. In both
cases, the comparison between the two warping techniques is very subtle inside the convex
hull boundaries. The “difference” subfigures show the difference between the two warped
images.
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Figure 4.4: Example of an unacceptable warp. Piecewise-linear method simply gives up
and produces no result; thin-plate spline method produces implausible result.
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4.3 Iterative Gray-Level Normalization

Having warped the images to the mean shape, we were just one preprocessing step
away from being able to build a gray-level model. Some of our shape-free image
patches tended to be rather light or dark, so we needed to normalize the images to
minimize the effects of global lighting.

First, we needed to decide on the area of interest (the object we plan to model),
which is usually the area inside a convex hull of the outer landmark points, but it
can also be made to incorporate some of the background. From this step, we then
sample the gray values of each pixel inside the area of interest.

Gray-level normalization is an iterative process, analogous to the shape align-
ment. We applied normalization to the lengthn vectorsg obtained by sampling the
gray-level values of every pixel within the convex hull of landmark points, accord-
ing to the following steps:

1. Find an initial estimation of the mean vectorḡ.

2. Normalize all the samplesg by applying scalingα and offsetβ that best
match the vector of normalized mean

α = g· ḡ, β = (g·1)/n

gnew = (g−β1)/α

3. Re-evaluate the normalized meanḡ by finding a mean of the new sample
values and then applying scaling and offset to the mean vector, so that the
resulting vector has zero mean and unity variance.

4. If not converged, return to2.

Convergence can be declared when the estimate of the mean does not change sig-
nificantly after iteration.

Implementation

We elected simply to iterate a certain number of times, and plot the change of
mean estimation. An example of this plot is given in Figure 4.5. It is evident that
the convergence was achieved after just three iterations, and very nearly so after
only two.

To be able to visualize our images, after the normalization we returned the
sample values to the range of[0,255], using the same scaling and offset for all
samples.

We considered including part of the background to serve as a border for the
cardiac images, but ultimately we decided not to do that. First, it was not necessary
in our estimation, and it made our process easier, as all data sets could be handled
in the same way.
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Figure 4.5: Iterative gray-level alignment, depicting convergence after just three iterations.

Normalization resulted in low-contrast images with a washed-out, gray look to
them. This was because the range[0,255] must cover the gray-level variety of all
the normalized images, but the result was that most images utilized only a small
portion of this range.



Chapter 5

Building the Models

After all the preprocessing was finished, we were left with a certain number of
images, each one contributing two components to the models:

1. A set of landmark points aligned to the mean shape.

2. A shape-free patch with gray-level values normalized to match the mean
gray level.

The termmean shapeindicates the mean of all landmark points in an entire set of
annotated images.Mean gray levelsignifies the mean of all vectors obtained by
sampling the gray levels inside the shape-free patch.

We used the sets of landmark points to build a statistical shape model, and the
shape-free patches to build a statistical gray-level model. The procedures for build-
ing the shape and gray-level models are very similar, the key method being princi-
pal component analysis (PCA). To build an appearance model we combined shape
and gray-level modeling and applied principal component analysis once more, so
as to take into account the correlation between shape and gray level.

We begin this chapter with a short explanation of PCA, as it is obviously an
important method used in building the models of statistical distribution. We then
explain the process of building shape, gray-level, and appearance models in more
detail, and finally, we present the models themselves, as given below.

We ended up building a total of six complete appearance models:

1. The complete faces data set: 228 images—all facial expressions, all posi-
tions, including frontal and oblique (±30◦)

2. Frontal-only faces, all facial expressions: 151 images

3. Frontal-only faces, neutral facial expressions only: 40 images

4. Frontal-only faces, smiling facial expressions only: 40 images

5. The cardiac data set: 14 images

6. The spinal data set: 20 images

20
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5.1 Principal component analysis

Principal component analysis (PCA) [8] is a powerful statistical technique that is
used for reducing the dimensionality of multi-dimensional data. We’ll start the
explanation of the basic idea of PCA with a small illustration.

A tailor taking measurements for making a suit will be able to represent each
of his customers with a set of numbers. Assuming that there aren measurements
taken, each customer can be represented as a point (vector) inn-dimensional space

x = (x1,x2, . . . ,xn)T

A set of s customers is then represented as a distribution ofs points in n-
dimensional space

xi = (xi1,xi2, . . . ,xin)
T , i = 1, . . . ,s

There are some observations we can make about this distribution. First, each
individual measurement is confined to a certain range and has a more-or-less nor-
mal distribution within that range. Second, many of the measurements are corre-
lated: as one measurement increases, the others will generally also tend to increase.
The first observation makes us assume that the measurements form a kind of clus-
ter, or cloud, inn-dimensional space, the density of the cloud being highest in the
middle. The other observation makes us infer a certain shape (hyper-ellipsoid) or
direction for this cloud. It is impossible to visualize this in many dimensions, but
in 3-D it might be a flattened zeppelin shape pointing in a certain direction.

We can easily imagine that an experienced tailor should be able to make a suit
even if some of the measurements are missing. It is also reasonable that some of the
measurements are more important than others. PCA takes this a step further—it is
used to find a combination of measurements that will provide the best information
about the data.

The basic purpose of performing PCA is to find an orthogonal coordinate sys-
tem for our data cloud, in such a way that the greatest variance lies on the longest
axis (first principal component), the second greatest variance lies on the second-
longest axis, and so on. For a data cloud with the flattened zeppelin shape, the
first principal component would be the line through the middle along the length of
it. We can then use the projection of the data cloud on the first axis as the initial
approximation of the data cloud, and we can improve the approximation by adding
more axes. The spread of the data along a certain axis provides information on how
important that axis is for the approximation.

It is important to note that PCA uses a linear model to describe the data, so
it can only handle linear behavior. Any nonlinear dependencies between the mea-
surements (for example a quadratic dependency or discretized data) would present
a problem.

Our (math-loving) tailor could then build a statistical model from the data he
collected, and he could decide to use a smaller number of values to represent each
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of his clients. Those values would generally be linear combinations of the original
measurements. This model could also be used to generate plausible, statistically
probable measurements, from which our tailor could make suits that will probably
fit some of his customers.

A way of calculating principal components is by finding eigenvectors and
eigenvalues of the covariance matrix.

5.1.1 The covariance matrix

Looking just at one measurementX, for example neck-to-shoulder, across the
whole data set, we can measure its spread by calculating the variance

var(X) = ∑s
k=1(Xk− X̄)2

s−1

Standard deviation is the second root of variance.
To see how two measurementsX andY vary with respect to one another, we

can use covariance

cov(X,Y) = ∑s
k=1(Xk− X̄)(Yk−Ȳ)

s−1

Obviously, cov(X,Y) = cov(Y,X) because of the commutativity of multiplication.
Positive covariance indicates that the two measurementsX andY increase together.
If covariance is negative, it means that as one measurement increases, the other
decreases. Zero covariance indicates independent measurements.

Havingn measurements, we can calculate the covariance of any two measure-
ments. The covariance matrix is the matrix containing these covariances of all pairs
of measurements—the element in theith column andjth row is the covariance be-
tweenith and jth measurement. The covariance matrix is of sizen×n, and it is
symmetrical because of the commutativity of covariance. The diagonal gives the
variance for each individual measurement.

Expressed in terms ofspointsxi in n-dimensional space, the covariance matrix
is

S=
1

s−1

s

∑
i=1

(xi − x̄)(xi − x̄)T

wherex̄ = 1
s ∑s

i=1xi is the mean of the data, or rather, a vector containing the means
of all measurements.

The covariance matrix for the tailor’s data set would probably contain only
positive values, since we expect that as one measurement increases, the others
generally do also.

To achieve the task of PCA, one basically needs to find a coordinate system in
which the covariance matrix for the data is diagonal (coordinates are not mutually
dependent), and elements on the diagonal are in sorted order. This is equivalent to
finding the eigenvectors of the covariance matrix and sorting them by their corre-
sponding eigenvalues.
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5.1.2 Eigenvectors and eigenvalues

After finding and sorting the eigenvaluesλi of the covariance matrixS, the eigen-
vectorφ1 corresponding to the largest eigenvalue is the direction of the first princi-
pal component, andλ1 is the covariance along the first principal component. The
second eigenvector corresponds to the second principal component, and so on.

If we put all eigenvectorsφi into ann× p matrix Φ, we can express any of the
pointsx using

x = x̄+Φb

whereb is a p-dimensional vector of new coordinates given by

b = ΦT(x− x̄)

If we put only the firstt < p eigenvectors into ann× t matrix Φ, we can ap-
proximate the pointsx by

x ≈ x̄+Φb

whereb is at-dimensional vector given by

b = ΦT(x− x̄)

The number of eigenvectors to retain,t, can be decided by looking at the pro-
portions of the total variance that are represented by the firstt principal compo-
nents. For example, we might look at the proportion between∑t

i=1 λi and∑p
i=1 λi .

5.1.3 Having fewer points than dimensions

The covariance matrix will always be of sizen×n, no matter how many (or how
few) points there are in then-dimensional space. But, if there are just two points,
there is only mode of variation, and it is on the line connecting the points. Adding
a third point will increase the number of modes of variation only if that third point
is not on the line between the first two points. Withspoints, there will always be at
mosts−1 modes of variation. This means that the covariance matrixS will never
have more thans−1 nontrivial eigenvalues, because it will never have more than
s−1 linearly independent rows (or columns).

If we want to apply PCA to a data set in which there are fewer points than
dimensions, we can calculate the eigenvectors and eigenvalues of then×n covari-
ance matrixSusing a smallers×smatrix, which can provide considerable savings
computationally.

The covariance matrixS can be written as

S=
1
s
DDT

whereD is obtained by subtracting the mean from each data vector and storing
these means in a new matrix.
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We define ans×s matrixT as

T =
1
s
DTD

and calculate its eigenvectorsei . It can be shown that the vectorsDei are all eigen-
vectors ofS, but not necessarily of unit length. The remaining eigenvectors ofS
are trivial, i.e., they have zero eigenvalues.

In conclusion, if there arespoints inn-dimensional space, the number of modes
of variation will not exceed max(n,s−1).

5.2 Building the shape model

To build the shape model of an object, we need a set of aligned example shapes
described by landmark points. With 2-D images annotated withn landmark points,
we can represent each shape with a 2n element vectors, obtained by concatenating
thex andy coordinates of landmark points

s= (x1, . . . ,xn,y1, . . . ,yn)

A set ofs images is a then distribution ofs pointssi in 2n-dimensional space,
and we can apply PCA to it to obtain the model

s= s̄+Psbs

wheres̄ is the mean shape vector,Ps is a set of orthogonal modes of variation (the
eigenvectors of the covariance matrix), andbs is a set of shape parameters.

The variance for each mode of variation is given byλs (the eigenvalues of the
covariance matrix). The total number of modes can be chosen so that the model
represents some proportion of the total variance of the data.

By varying the parametersbs, we can vary the shape. To generate plausible
shapes, similar to those in the training set, each of the parametersbsi needs to be
limited to a certain range, usually±3 standard deviations of the corresponding
mode, i.e.,±3

√
λsi .

We can visualize each mode of variation by varying a corresponding parameter
within its specified range, and leave other parameters at zero. Figure 5.1 illustrates
our shape model, based on 151 images from the faces data set, in which we see the
first four modes of variation, visualized using the landmark paths alone. It is not
difficult to guess at what some of the modes of variation might be, for example,
slight left/right oblique angle, small/large mouth, upturned/downturned angle. It is
important to note that these guesses will often not be fully accurate, as modes of
variation usually represent some unknown combination of characteristics.

In Figure 5.3, we see some plausible and implausible shapes, all made using
the frontal-faces data base. The first two shapes have parameters that are all within
the range of±3 s.d. from the mean. The second two shapes, however, have pa-
rameters that vary widely from this range, and the resulting face shapes, although
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Figure 5.1: Visualization of faces shape model, showing the four most significant modes
of variation from top to bottom. The middle column depicts the mean shape, with left and
right columns showing± 3 s.d. for each of the three modes. Percentages represent the
portion of total variations in the set of images used to build the model, and are cumulative
in nature. The first two modes of variation together represent 41% of all variation; the first
three modes together represent 49%; and so on.
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Figure 5.2: Another visualization, face shapes as shown in Fig. 5.1, made using mean gray
levels.
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still vaguely human, are clearly unusable for representing average human faces. To
generate these implausible shapes, it was necessary to use the more robust thin-
plate spline method, as piecewise-linear warping produced no result.

Another way of visualizing the shape model is seen in Figure 5.2, which depicts
the same face shapes as in Figure 5.1, but with images that use the mean gray-level
variation. We include this figure here for the purposes of visualization only, as
it is not otherwise possible to produce this visualization until after building the
gray-level model.

Figure 5.3: Four example shapes. Top row, shape only. Bottom row, shape visualized
using mean gray-scale values. The first two shapes are within the range±3 s.d. from the
mean. The second two shapes are examples of implausible results that occur when given
parameters are too far beyond the specified range.

5.3 Building the gray-level model

To build the gray-level model of an object, we need a training set of gray-level-
normalized shape-free patches obtained by warping each image to the mean shape.
We sample the gray value of each pixel in the patch, and this must be done over
the same area that we sampled when doing the gray-level normalization. If, at that
phase, we incorporated some of the background into the area of interest, we would
need to include it at this phase as well. If there arem pixels inside the patch, we
can represent the gray-level variation of each patch by am-element vectorg.

A set of s images is therefore a distribution ofs pointsgi in m-dimensional
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Figure 5.4: The faces model based on gray-level intensity values. The first four modes of
variation are shown.
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space, and we can apply PCA to it to obtain the model

g = ḡ+Pgbg

whereḡ is the mean gray-level vector,Pg is a set of orthogonal modes of variation,
andbg is a set of shape parameters.

The gray-level variations of the image can be generated from the parameters
Pg, and the normalization parametersα andβ .

The gray-level shape model exhibits the same mean shape throughout the model.
The modes of variation are based solely on the gray-level intensity values of the
images in the data set. These might be expressed in terms of overall contrast (low
vs. high), white teeth vs. dark opening between the lips, dark facial hair vs. light,
and so on. Figure 5.4 illustrates the first four modes of variation obtained with this
model.

When implementing the gray-level model, we did not consider the normaliza-
tion parameters, so the images generated by our model often have relatively low
overall contrast. For example, note the upper-left image of Figure 5.4, which shows
a face image source-lit from the person’s left. When viewed together with all the
images in the data set, images with source lighting stand out in marked contrast to
the rest of the images, as these faces are starkly shaded on one side. With overall
shape not in consideration for this model, it is not surprising that source lighting
would be represented in this first mode of variation. Source lighting was only ever
used on the left side of the face, however. The opposite of this image (upper left),
was generated according to model calculations, even though there was no face in
the original image set that resembled the face depicted here.

A similar example of such a phenomenon can be seen with face images that
include dark facial hair and their opposites. The opposite images feature the sem-
blance of matching facial hair that is all white, or white skin tones in the same
areas, although there were no images in the original data set that featured people
with white facial hair.

5.4 Building the appearance models

One rather straightforward way of combining shape and gray-level variation into a
single model would be to concatenate the shape vectorss and gray-level vectorsg
into a single observation vector, and then apply PCA to such data. However, Cootes
and Taylor ([3]) propose another method, which we have followed, and which is
described below.

First shape and gray-level models need to be built, and each object needs to be
represented by the shape parametersbs and the gray-level parametersbg. For each
object, we then generate the concatenated vector

a =
(

Wsbs

bg

)
=

(
WsPT

s (s− s̄)
PT

g (g− ḡ)

)
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Figure 5.5: Appearance model ofall faces in the faces data set, depicting variations in
both shape and gray level. The middle column depicts the mean appearance, with left and
right columns showing± 3 s.d. for each of the three most significant modes of variation.
Percentages cumulatively represent the portion of total variations in the set of images used
to build the model.
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whereWs is a diagonal matrix of weights for each shape parameter, allowing for
the difference in units between the shape and gray-level models.

This leaves us with a set of appearance vectorsai , i = 1, . . . ,s that represent
both the shape and gray levels of the objects. Since there may be correlations be-
tween the shape and gray-level variations, we apply a further PCA to these vectors,
obtaining the model

a = Paba

wherePa is a set of orthogonal modes of appearance variation, andba is a set
of appearance parameters controlling both the shape and gray levels of the mode.
Note the absence of the mean appearance vectorā from the expression. Mean
appearance is necessarily zero, as bothbs andbg have zero mean.

Due to the linear nature of the model, we can express the shape and grey-level
vectors directly as functions of appearance parameters

s= s̄+PsW−1
s Pasba

g = ḡ+PgPagba

where

Pa =
(

Pas

Pag

)
in such a way that the number of rows ofPas corresponds to the length of the shape
vectors, and the number of rows ofPag corresponds to the length of the gray-level
vectorg.

To summarize:
s= s̄+Qsba

g = ḡ+Qgba

where
Qs = PsW−1

s Pas

Qg = PgPag

For given appearance parametersba, we can synthesize an image by calculating
shape and gray-level vectors. We generate the shape-free patch from the gray-level
vector, and we obtain landmark points from the shape vector. Finally, the shape-
free patch is warped to the shape.

5.4.1 Choice of shape parameter weights

When concatenating the shape and gray-level parameters, we need to take into
account the difference in units between the shape and gray-level models, so we
multiply each shape parameter with a certain weight. Those weights are obtained
by systematically displacing each shape parameter for the images in the training
set, and measuring the effect of the displacement on the sampleg. The root-mean-
square change ing per unit change in shape parameterbsi gives the weightwsi to
be applied to that parameter.
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A simple alternative is to setWs = rI , wherer2 is the ratio of the total intensity
variation to the total shape variation.

When implementing our appearance models we chose the other, simpler, alter-
native. So, all the shape parameters were multiplied with the scalarr, and calculat-
ing the shape vectors from the appearance parametersba reduced to

s= s̄+
1
r

PsPasba

5.5 All our models

All of the appearance models we built have in common that one doesn’t need to
think about the nature of the modeled objects, or about the choice of the landmark
points. All of the data can simply be fed into this statistical model. The only data-
specific aspects of the model concern the sizes of the objects in terms of translating
and cropping, the paths used when visualizing shapes, and possibly the warping
method used, as some data proved more difficult to warp than others.

We were therefore able to build a variety of face models, and we could simply
choose which faces to include from the data set of 240 faces.

All faces

Our first complete model, incorporating shape, gray level, and appearance, was
based onall faces in the faces data set. A total of 228 images were used to build
the model (12 of the 240 original images proved to be unwarpable, cf. 4.2), and
all facial expressions (neutral, smiling, “joker”), positions (frontal, oblique), and
lighting effects (diffuse and source lighting) are included. For all the models, we
present only the modes of variation inappearance. Figure 5.5 presents the first
four modes, which, given the diversity of the original images, reveals a sundry
collection of variance. The most significant mode of variation is the occurrence
of oblique views, perhaps not surprisingly, as it indeed meets the eye with jar-
ring effect. Other modes of variation seem to include wide and round vs. narrow
and jutting chin structure, source-lighting, and upturned vs. downturned mouths.
Again, it is impossible to guess the complete nature of a single mode of variation,
but certainly some characteristics are more obvious than others.

Frontal faces

Figure 5.6 illustrates appearance models of our second complete model, which was
based on allfrontal face images. Therefore, oblique-angled poses are not longer
included in the training set, and do not affect the modes of variation. Smiles,
frowns, source lighting, and general shape are all still in evidence, however. We
start to see the representation of more subtle variance, such as in the thickness of
the lips, or the presence of facial hair.
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Figure 5.6: Appearance model of allfrontal faces from the faces data set. All facial ex-
pressions and lighting conditions are represented.
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Neutral faces

In our third model, we only those images withneutral expressions and diffuse
lighting conditions. Figure 5.7 illustrates this model, whose modes of variation
in appearance are becoming quite subtle. The first mode of variation seems to
encompass the structure of the chin, as well as whether the features of the face turn
upward or downward. In the second mode of variation, there seems to be a contrast
of female vs. male characteristics.

Smiling faces

Our fourth model is similar to our neutral-faces model, above, except that we now
kept only images of faces withsmilingexpressions. The first three modes of vari-
ation for this model can be seen in Figure 5.8. Overall shape of the face remains
a significant factor in all three modes, and the quality of the smiles—toothy, tight-
lipped, wide, narrow—also plays a role.

It is most interesting to note that the modes of variation—along with the people
seen in the pairs of opposites—in the neutral set of faces in Figure 5.7 nearly ex-
actly correspond to those in Figure 5.8, though the faces appear on opposite sides
in each the two figures. We can calculate the modes of variation within a range of
standard deviations from the mean, but this is done arbitrarily; in other words, the
algorithm does not, for example, put small noses always on the left and large noses
always on the right. So chins may be wide at−3 standard deviations in one model,
while in another model, chins might be wide at+3. The similarity of the faces
depicted in these two images is furthermore less surprising, given that the same 40
people are represented in both data sets. Correspondence is not perfect, because
other factors are of course in play, such as the quality of the smile, and so on.

Cardiac cross sections

Our fifth complete model (see Fig. 5.9) was made from the cardiac data set, which
comprised just 14 images. Still, the model did produce modes of variation, for
example the overall shape (round/oblong), and the thickness of the chamber wall,
which, as we learned previously, could be of significance for medical analysis.

Spines

Finally, our sixth complete model was based on the 20 spine images (Fig. 5.10).
Gray-level normalization made it difficult for the vertebræthemselves to be seen in
the images, so we have plotted the shapes atop the images. Even without having
done so, the overall shape is very much apparent, with the first mode of variation
showing obvious curvature as compared with the others.
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Figure 5.7: Appearance model ofneutral faces and diffuse lighting conditions only. This
model is based on 40 images in all.
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Figure 5.8: Appearance model ofsmiling faces only. This model is based on a total of 40
images.
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Figure 5.9: Appearance model for the cardiac cross sections, showing variations in both
shape and gray level. As with previous figures, the middle column depicts the mean appear-
ance, with left and right columns showing± 3 s.d. for each of the three most significant
modes of variation. Percentages cumulatively represent the portion of total variations in
the set of images used to build the model.
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Figure 5.10: Spine appearance model with shape plotted on top, showing the first three
modes of variation and±3 s.d.



Chapter 6

Manipulating Faces

6.1 Approximating faces

Having built shape, gray-level, and appearance models for a set of data, we can
use those models to approximate images using just a subset of the all modes of
variations. The images should be annotated with a set of landmark points.

For example, any shapes can be approximated as

s≈ s̄+Psbs

wherePs is a sub-matrix of a matrix containing all modes of variation, andbs is a
projection of a parameter vector into a subspace of parameter space

bs = PT
s (s− s̄)

Similarly, any gray-level vector and any appearance vector can be approximated
using the gray-level and appearance models.

We compared the two different ways of projecting. In both cases we started
by creating a shape vector from the set of landmark points, and by creating a gray-
level vector by sampling the image warped to the mean shape. We could then obtain
the projected shape and gray-level parameters separately from the shape and gray-
level vectors using the respective models. Alternatively, we could use the shape and
gray-level vectors to create an appearance vector in the same way as when building
the appearance model, and subsequently obtain projected appearance parameters
from the appearance model.

We used approximation techniques on our faces data sets, but note that these
techniques are in fact generic, and can be used in a variety of ways with other kinds
of data.

In Figures 6.1 and 6.2, we see the comparison of the two methods. The number
of parameters was always determined so that the model covered the same propor-
tion of total variance foreachmodel. We can immediately see that to cover a
certain proportion of total appearance variance, we generally needed two-thirds of
the modes in order to cover the same proportion of separated shape and gray-level

39



CHAPTER 6. MANIPULATING FACES 40

Figure 6.1: Approximating faces showing the comparison of two methods, using images
taken from the training set. In rows 1 and 3, shape and gray-level models are used sep-
arately to recreate the original image. In rows 2 and 4, the shape and gray-level appear-
ance vectors are combined to replicate the original. Efficiency of the combined method
is markedly better, in that only 2/3 the number of modes are required to produce a result
comparable to the separated shape/gray-level method.
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Figure 6.2: Approximating faces showing the comparison of two methods, using images
not included in the training set. In rows 1 and 3, shape and gray-level models are used sep-
arately to recreate the original image. In rows 2 and 4, the shape and gray-level appearance
models are combined to replicate the original. Both methods produce comparable results,
though the latter method requires fewer than 2/3 the number of modes.
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variance. This presents considerable savings in terms of the number of modes, with
comparable results.

We evaluated the quality of the approximation subjectively, by simply looking
at the images. The quantitative method that measures the quality of the fit can
be implemented, but it would not provide a result of value, as we do not invert
the gray-level normalization—the reason the resulting images are generally lighter
than originals.

In fact, to provide a complete reconstruction, the appropriate pose (scale, trans-
lation, and rotation) should also be applied, and our algorithm does not provide
pose-matching. Instead we pre-aligned the test images with the main shape for the
model.

For Figure 6.1, the two faces were taken directly from the training set, so we
were attempting to approximate faces that we already “knew”: this could be used as
a kind of face coder. We found the results quite satisfactory. For the approximations
in Figure 6.2, we started with 40 neutral-face images. We made a training set of 37
of the face images, which left 3 for the purposes of testing. Our model was based
on these 37 training images and their original landmark points. Approximation of
the new test images was obviously less successful than in Figure 6.1, but given the
small training set, it was not wholly unexpected, and we were satisfied with the
result we did achieve.

6.2 Generating caricatures

Now begins a bit of fun for our project. We used our appearance model to generate
caricatures and “anti-images” from original images, with some selected examples
shown in Figure 6.3. For the caricatures, we generated images bymultiplying
the vector of parameters by a certain number, usually 2, sometimes 3. So in the
parameter space, the resulting images are 2 (or 3) times further from the mean
appearance than the original, but on the line connecting the mean and the original.
Facial features were thereby exaggerated linearly. For example, if the original’s
eyes were lighter in color than the mean, the resulting caricature would feature
very light eyes. If a mouth was slightly downturned compared with the mean, the
caricature face would show a more exaggerated frown, and so on. The resulting
images looked very much like hand-drawings of professional caricaturists, and we
enjoyed them very much.

The anti-images are also the results of manipulating the appearance parameters,
presenting the exactoppositeof the original. If the original face was narrow, the
anti-image would have a broad, round face. If the original had a downturned mouth,
the anti-image would have a smile. Thin lips counter-matched full lips. Squinting
eyes became round, open eyes. There were some surprising results as well, for
example, original images with dark facial hair could result in either an anti-image
with white facial hair, or no facial hair at all. One original image of a woman
produced an anti-image that was quite masculine; this is possibly because the vast
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Figure 6.3: This and next page: Anti-images and caricatures. The mean appearance and
original images are included for comparison. These images were produced using the
neutral-face and smiling-face models.
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Figure 6.4: Anti-images and caricatures, continued. The mean appearance and original
images are included for comparison. These images were produced using the neutral-face
and smiling-face models.
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majority of images used to build the appearance model were men, and our mean
appearance was therefore decidedly masculine.

6.3 Forced smiles

We had images of 40 people with both neutral and smiling expressions, and so we
decided to see if we could produce a smile on a neutral face using our model. We
left five people (10 images) for testing our model, and used remaining 35 people
(70 images) to build the model on. There is a variety of ways to model facial
expressions. We implemented and tested two: mean smile and nearest-neighbor
smile.

To add a mean smile to a neutral face, we looked at all of our faces in para-
meter space. We calculated the mean parameters for a neutral face and a mean
parameter for a smile face. The difference between mean smile parameters and
mean neutral parameters is a mean smile vector, and any neutral face can be forced
to smile by adding the mean smile vector to its parameters. The mean smile vector
is characteristic for an entire training set, and it makes all faces smile in the same
way.

A basic idea behind the other method, nearest-neighbor smile, is that people
with similar facial features probably smile in similar ways. To add the nearest-
neighbor smile to a neutral face that is not from the same data set, we looked at the
face in parameter space and found its nearest neutral neighbor from the training
set. We then looked at the way that face smiled, that is, we found the smile vector
for that particular face by subtracting the neutral expression parameters from the
smile parameters. We than added the smile vector to our testing face.

Figure 6.5 illustrates some examples of applying the smile to neutral faces. We
also included the original smile—the images of the real-life smiles belonging to
the faces that we tried to make smile.

When testing our model, we noticed the rather broad variety of the nearest
neighbor smiles, caused by the fact that the people in the original smile images
smiled however they liked. In other words, the authors of the data set obviously
didn’t specify what kind of smile the person should make when being photographed.
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Figure 6.5: This and next page, forced smiles: applying a smile to neutral faces. The origi-
nal images of the subjects actually smiling are included for comparison with our generated
smiles.
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Figure 6.6: Forced smiles, continued. Applying a smile to neutral faces. The original
images of the subjects actually smiling are included for comparison with the generated
smiles.



Chapter 7

Active Appearance Models

Statistical appearance models, as presented in Chapter 5 can be used to search
images for new instances of the objects they represent. This is active appearance
modeling (AAM). In this chapter we will present the basic idea of the AAM search.

Although this idea is simple, after some initial implementation attempts it
proved rather demanding (to implement)—we were dealing with large data, and
processing times were lengthy. In some attempts the available memory ran out be-
fore the task could be completed. There are ways of manipulating data to deal with
these problems, but we could not fit them into a four-week project. However, since
we did examine the theory and implementation of AAM, we decided to include it
in the report.

AAM search is an optimization method method based on two fundamental
algorithms: part of the optimization common to all searches is learned in advance
in a learning algorithm, and the optimization is finalized in case-specific iterative
model refinement. We will introduce both algorithms here.

7.1 Learning

AAM search is treated as the optimization problem, that is, trying to minimize
the difference between the actual image and the synthesized object delivered by a
model. This differenceδg is based on the difference between gray-level vectors

δg = gimage−gmodel

= gimage−g(ba)

whereba is vector of appearance parameters used to synthesize the image.
The dimensionality of the appearance models has been reduced by PCA, but

it is generally still quite high, making this problem to appear as a cumbersome,
highly dimensional optimization. Still, Cootes and Taylor [3] propose a simple and
elegant AAM search solution.

The key observation is that each search is a similar optimization problem, and
that it is possible to learn how to solve those problems in advance using the training
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images. It is proposed that the spatial pattern of difference sampleδg can be used
to predict the needed correction of the model parametersδba, which will lead to
a better fit, i.e. which will minimizeδg. The simplest model we can arrive at
constitutes a linear relationship

δba = Aδg

Cootes et al. (2001 [2]) show that this simplistic approximation suffices to produce
a satisfactory result.

For a moment, let’s consider the size of the matrixA. The length of the para-
meter correction vectorδba is the number of modes of variation, and it certainly
does not exceed (and very probably is equal to) the number of example images,s.
(It is actuallys−1, but let’s ignore the one.) The length of the gray-level error vec-
tor δg corresponds to the number of pixels sampled when building the appearance
model,m, and this can be quite large. The matrixA must have sizes×m—a rather
large matrix.

The matrixA needs to be estimated, and this is the core of the learning process.
A set of experimentsp is conducted, displacing the appearance parameters of the
images in the training set and recording the effect of the change on the gray-level
vector. Alternatively, images generated by the model can be used. Parameter
changes are recorded in thes× p matrix δB, and the changes in the gray-level
vector are recorded in them× p matrix δG. The experimental results are then fed
into the multivariate regression framework to obtainA from the relationship

δB = AδG

Without going into detail about multivariate regression, let’s just observe that
this is an underdetermined system. The principal component regression can be a
path toward estimatingA, which entails projecting the largeG matrix into a certain
subspace that captures the major part of the variation inG.

What information does the matrixA carry, and is there a way of visualizing
this information? Theith row of the matrixA is a lengthmvector corresponding to
the change in theith parameter. This row can be visualized as the image patch, and
it gives the weights attached to different areas of the sampled patch—the areas that
exhibit the largest variations when theith parameter is changed have the largest
weights.

Implementing the learning algorithm also raises some practical questions: How
many displacements should one use, and how large should these displacements be?
Should the parameters be displaced at once or separately, randomly or systemati-
cally? Some of the answers can be obtained only through experimentation, and the
Master’s thesis of Mikkel Stegmann [9] provided many valuable answers.

However, the learning algorithm alone was already too-big a bite for the four-
week project period, and when we found we could not succeed with it to the degree
we felt would be appropriate, we refocused our efforts back to building our appear-
ance models and working with them in other ways.



CHAPTER 7. ACTIVE APPEARANCE MODELS 50

In Figure 7.1 we show the result of our attempts to estimate matrixA. Both
patches in the figure are the visualizations of the first row of matrixA, that row
corresponding to the change in the first parameter. The patch on the left side of
the figure was created using our normal model, with images size 280×280 pixels.
We didn’t use the regression method, and we can see how seriously undetermined
matrix A is, despite the fact that the process of twice randomly displacing the
parameters for each of the 40 training images, making 80 displacements in total,
took more than an hour.

Figure 7.1: Estimating matrixA. Both patches are the visualizations of the first row of
matrix A, the row corresponding to the change in the first parameter. The left patch was
created using our normal model, with images size 280×280 pixels. The right patch was
obtained after downsampling the images to a smaller size.

The right patch was obtained after downsampling the images to size 70×70
pixels, and changing the learning algorithm so that it systematically displaced each
of the 39 parameters twice for each of the 40 images, resulting in 3120 displace-
ments. The improvement is obvious, but we still didn’t get the smooth resulting
image as presented in the literature.

7.2 Iterative Model Refinement

Once obtained, the result of the learning algorithm produces a firm foundation
for the optimization in AAM search. Given a method for predicting parameter
correction needed to be made to achieve a better fit, we can construct an iterative
search method.

1. Initially, the model object synthesized using the parametersba is placed over
the image to be searched, and the image is sampled below the model object.
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2. Error vectorδg = gimage−gmodel, and error|δg|2 are evaluated.

3. The predicted displacementδba = Aδg is computed.

4. The candidate parameter vector is found byba new = ba +δba, usingk = 1.

5. The object is synthesized using candidate parameters, the image is sampled
below the object, and the error vector and error are calculated.

6. If the fit has improved, the candidate parameter can be accepted, otherwise
k = 1.5, k = 0.5, k = 0.25, etc. should be tried until the best fit is found.

7. If an improvement has been made in the last iteration, return to step 2.

Just to restate, the material presented in this chapter covers the basic idea of
AAM search, and we did not get into the details of dealing with the pose (scaling,
translation, and rotation) of the objects across the image. Our algorithm could
not take pose and overall gray-level into consideration, as we had planned on pre-
aligning and pre-normalizing the testing images.



Chapter 8

Conclusions

Computer Science seems to encompass at least two schools of thought. In one,
we try to make computers think and compute for us in ways that our feeble brains
cannot. In the other, we try to make computers think like us, a process that is always
more complicated, painstaking, and precise than one would intuitively expect. We
found the same with our project. For example, active appearance models perform
the same function that we do ourselves when we “discover” a new face on the
street: in the blink of an eye, we match the stranger’s appearance to the model of
expectations we have assembled over the course of our life. If the parameters all
seem to lie within the mean range, we might not look twice. However, if they do
seem to vary beyond the mean, we might crane our neck for one or two more search
iterations. We do this automatically, and we do it continually, all our lives.

AAM is one method for computer vision. Building statistical shape and ap-
pearance models from a set of annotated images allows us to represent both the
mean shape and the appearance of objects, as well as their significant modes of
variation. We can use AAM to locate similar objects in new images.

By the end of the project period, we found ourselves thoroughly impressed by
the depth and breadth of this field. We realized that the scope of our project could
easily accommodate a great many more aspects, which we wish we had the time
to pursue. And we now also appreciate how the scope of this topic itself could
be expanded to include more work with active appearance models, tracking and
segmentation, and other applications.

We are happy with the amount of literature we managed to swallow during this
period, the number of implementations we were able to make, and the amount of
coverage we have written. We have limited the scope of our modeling procedures
to images of the face, spine, and heart, but it would be nice to have the opportu-
nity to make our own data: take photographs, for example, and do the annotation
ourselves. We now know it is a process for the patient-of-heart, but the success
of the model depends on it. We also think it would be fun to try our hand at 3-D
appearance modeling, for example, modeling the shape and gray level of such 3-D
surfaces as a human face—or play with specific facial-expressions models, such as
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age progression, or emotion.
In all, this was an enjoyable and thoroughly fascinating topic for us, and we

look forward to exploring it further one day.



Appendix A

Matlab code

By the end of the project, we found ourselves with quite a large collection of
MATLAB functions. Only some data-specific functions used for visualization
are not included here. This body of code also may also be found online at
www.itu.dk/people/vedrana/AAM. We have grouped the functions into sections
consistent with the rest of the report. Major functions are given first, with the
smaller, helping functions presented at the end.

A.1 Preprocessing

All the manipulation of the data during preprocessing was done in a singledata
cell-array, so that a celldata{i} contains all information aboutith image:

data{i}{1} contains matrix representation of the image.

data{i}{2} contains landmark point coordinates inn×2 matrix.

data{i}{3} contains additional information about landmark points, closed/open,
inner/outer... This was not used.

data{i}{4} contains matrix representation of the image warped to the mean shape.
We decided not to overwrite original image, but we could have done that too.

function data = preprocessing(data,size,warp_type)

% performs all the preprocessing of the data

% size is the new size of the images

%-------------------------------------------

tic

data = translate_and_crop(data,size);

[data, mean_s] = align_shapes(data);

data = mask_images(data);

data = warp_to_mean(data, mean_s,warp_type);

data = mask_warped(data, mean_s);

data = normalize_gray(data, mean_s);

toc
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function data = translate_and_crop(data,size)

% translates and croppes images (and coresponding landmark points)

% to a desired size in such a way that the center of gravity of

% landmark points is ends the center of the image.

%-----------------------------------------------------------------

m = length(data);

for i=1:m

fprintf(’... Translating and cropping image %g out of %g.\n’,i,m);

y_center = round(sum(data{i}{2}(:,1))/length(data{i}{2}(:,1)));

x_center = round(sum(data{i}{2}(:,2))/length(data{i}{2}(:,2)));

y_min = y_center - size(2)/2;

x_min = x_center - size(1)/2;

data{i}{1} = data{i}{1}(x_min:x_min+size(1)-1,y_min:y_min+size(2)-1);

data{i}{2}(:,1) = data{i}{2}(:,1)-y_min+1;

data{i}{2}(:,2) = data{i}{2}(:,2)-x_min+1;

end

function [data, mean_s] = align_shapes(data)

% perfomrs iterative alignment of all shapes

%-------------------------------------------

max_iter = 10;

m = length(data);

[y x] = size(data{1}{1});

% reading shape data

for i=1:m

sh(:,:,i) = data{i}{2};

end

len = norm(mean(sh,3));

mean_s = fix(mean(sh,3));

% iterative shape alignment - finding the best mean

for iter=1:max_iter

fprintf(’... Aligning, iteration %g out of %g.\n’,iter,max_iter);

for i=1:m

sh(:,:,i) = align(sh(:,:,i),mean_s);

end

new_mean_s = fix(align(mean(sh,3),mean_s));

change(iter) = norm(new_mean_s-mean_s);

mean_s = new_mean_s;

end

figure, plot(1:max_iter,change), axis([0 max_iter+1 -0.00005 inf])

xlabel(’iteration number’), ylabel(’change of the mean shape estimate’)

mean_s = mean_s*len;
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% applying the final alignment

for i=1:m

fprintf(’... Aligning image %g out of %g.\n’,i,m);

cp = data{i}{2};

tform = cp2tform(cp,mean_s,’linear conformal’);

data{i}{1} = imtransform(data{i}{1},tform,’XData’,[1 x],’YData’,[1 y]);

data{i}{2} = align(cp,mean_s);

end

function output = align(input,target)

% aligns landmark points of the input image with the target image

%----------------------------------------------------------------

tform = cp2tform(input,target,’linear conformal’);

output = (fliplr(flipud(tform.tdata.T(1:2,1:2)))*input’)’+...

ones(size(input,1),1)*(tform.tdata.T(3,1:2));

function output = fix(input)

output = input/norm(input);

function data = mask_images(data)

% applies a mask to each image, leaving just a convex hull obtained

% from landmark points

%------------------------------------------------------------------

m = length(data);

[x y] = size(data{1}{1});

[X_matrix,Y_matrix] = coordinate_matrices(x,y);

for i=1:m

fprintf(’... Masking image %g out of %g.\n’,i,m);

im = data{i}{1};

cp = data{i}{2};

K = convhull(cp(:,1),cp(:,2));

data{i}{1} = uint8(im).*uint8(inpolygon(X_matrix,Y_matrix,cp(K,1),cp(K,2)));

end

function data = warp_to_mean(data,mean_s,warp_type)

% warps an image to a shape free image
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% warped images are added to data, original images are not overwriten

%--------------------------------------------------------------------’

m = length(data);

% reading data

for i=1:m

cm(:,:,i) = data{i}{2};

end

% warping and adding warped images to database

for i=1:m

fprintf(’... Warping image %g out of %g.\n’,i,m);

data{i}{4} = im_warp(data{i}{1},data{i}{2},mean_s,warp_type);

end

function data = mask_warped(data,mean_s)

% aditional masking of warped images to eliminate posible unwanted border

% effect after the warping

%------------------------------------------------------------------------

m = length(data);

[x y] = size(data{1}{1});

% reading data

for i=1:m

cm(:,:,i) = data{i}{2};

end

% finding and applying mean shape mask

mean_mask = create_mask(mean_s,x,y);

for i=1:m

fprintf(’... Masking image %g out of %g.\n’,i,m);

data{i}{4} = data{i}{4}.*mean_mask;

end

function data = normalize_gray(data,mean_s)

% perfomrs iterative normalization of all shape-free patches

%-----------------------------------------------------------

max_iter = 10;

m = length(data);
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[x y] = size(data{1}{1});

% find mean shape mask

in = find(create_mask(mean_s,x,y));

% sample inside the mask, and make initial normalization

a = [];

for i=1:m

fprintf(’... Reading image %g out of %g.\n’,i,m);

a = [a, fix(double(data{i}{4}(in)))];

end

% iterative normalization - finding the best mean

for iter=1:max_iter

mean_a = fix(mean(a,2));

for i=1:m

a(:,i) = normalize(a(:,i),mean_a);

end

change(iter)=norm(mean_a-fix(mean(a,2)));

fprintf(’... Normalizing, iteration %g out of %g.\n’,iter,max_iter);

end

figure, plot(1:max_iter,change), axis([0 max_iter+1 -0.1 inf]),

xlabel(’iteration number’), ylabel(’change of the mean appearance estimate’)

mean_a = fix(mean(a,2));

% appying the final normalization and returning to uint8

min_a = min(min(a));

max_a = max(max(a));

for i=1:m

fprintf(’... Normalizing image %g out of %g.\n’,i,m);

data{i}{4}(in) = uint8(255*(a(:,i)-min_a)/(max_a-min_a));

end

function output = normalize(input,target)

alpha = input’*target;

beta = sum(input)/length(input);

output = (input-beta)/alpha;

function output = fix(input)

output = (input-mean(input))/std(input);

A.2 Building the Models

All the information about shape, gray-level and appearance models is stored in
a singlemodel cell-array, so that a celldata{1} contains all information about
shape model, celldata{2} contains all information about gray-level model and
cell data{3} contains all information about appearance model:

data{i}{1} contains mean vector.
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data{i}{2} contains a matrix composed of eigenvectors.

data{i}{3} contains a vector of eigenvalues.

data{i}{4} contains a vector of percentage of a total variation.

data{i}{5} contains a matrix composed of all data vectors.

The gray-level cell-array has a couple of additional information needed for recon-
struction:

data{2}{6} contains indices of pixels inside the sampled area.

data{2}{7} contains original size of the image.

The appearance cell-array has additional information:

data{3}{6} contains a weighting factor.

function model = build_model(data)

% builds all three models

%---------------------------------------

model = build_shape_model(data);

model = build_gray_model(data,model);

model = build_combined_model(data,model);

function model = build_shape_model(data)

m = length(data);

% reading shape data

shapes = [];

for i=1:m

shapes = [shapes, data{i}{2}(:)];

end

% building shape model

[mean_s,phi,lambda,perc_var] = calculate_model(shapes);

% updating model

model{1}{1} = mean_s;

model{1}{2} = phi;

model{1}{3} = lambda;

model{1}{4} = perc_var;

model{1}{5} = shapes;
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function model = build_gray_model(data,model)

% builds gray-level model

%--------------------------------------------

m = length(data);

orig_size = size(data{1}{1});

mean_s = model{1}{1};

% find mean shape mask

in = find(create_mask(break_vector(mean_s),orig_size(1),orig_size(2)));

% sample inside the mask

grays = [];

for i=1:m

grays = [grays, double(data{i}{4}(in))];

end

% building gray-level model

[mean_g,phi,lambda,perc_var] = calculate_model(grays);

% updating model

model{2}{1} = mean_g;

model{2}{2} = phi;

model{2}{3} = lambda;

model{2}{4} = perc_var;

model{2}{5} = grays;

model{2}{6} = in;

model{2}{7} = orig_size;

function model = build_combined_model(data, model)

% builds a combined model from the shape and gray model

%------------------------------------------------------

% reading shape model and gray model

mean_s = model{1}{1};

phi_s = model{1}{2};

lambda_s = model{1}{3};

shapes = model{1}{5};

mean_g = model{2}{1};

phi_g = model{2}{2};

lambda_g = model{2}{3};

grays = model{2}{5};

% building combined model

weight = (sum(lambda_g)/sum(lambda_s))^0.5;

combined = [weight*phi_s’*(shapes-repmat(mean_s,1,size(shapes,2)));...

phi_g’*(grays-repmat(mean_g,1,size(grays,2)))];

[mean_c,phi,lambda,perc_var] = calculate_model(combined);
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% updating model

model{3}{1} = mean_c;

model{3}{2} = phi;

model{3}{3} = lambda;

model{3}{4} = perc_var;

model{3}{5} = combined;

model{3}{6} = weight;

function [mean_d, phi, lambda, perc_var] = calculate_model(data_matrix)

% performes principal component analysis on the data

%----------------------------------------------------------------------

mean_d = mean(data_matrix,2);

[phi,score,lambda] = princomp(data_matrix’,’econ’);

perc_var = lambda*100/sum(lambda);

function model_variations(nom, max_var, model, warp_type, type)

% nom - number of modes displayed

% max_var - limits for mode variation

% type - (optional) type of data: faces, hearts, spines (’f’, ’h’, ’s’)

% first figure - shape variations of mean-gray image

% second figure - gray variations of shape-free image

% third figure - combined appearance variations

% eventualy fourth figure - shape variations

%----------------------------------------------------------------------

par = diag(max_var*ones(1,nom));

for figure_nr = 1:3

figure,

perc_s = model{figure_nr}{4};

for mode=1:nom

image = generate_image((-par(mode,:)),model,figure_nr,warp_type);

subplot(nom,3,(mode-1)*3+1), im_show(image)

if mode==1, title(sprintf(’-%d s.d’,max_var)), end

ylabel(sprintf(’mode %d\n(%d%%)’,mode,round(perc_s(mode))))

image = generate_image(0,model,figure_nr,warp_type);

subplot(nom,3,(mode-1)*3+2), im_show(image)

if mode==1

if figure_nr==1 title(sprintf(’mean shape’))

elseif figure_nr==2 title(sprintf(’mean gray’))

elseif figure_nr==3 title(sprintf(’mean appearance’))
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end

end

image = generate_image(par(mode,:),model,figure_nr,warp_type);

subplot(nom,3,(mode-1)*3+3), im_show(image)

if mode==1, title(sprintf(’+%d s.d’,max_var)), end

end

end

if nargin==5 shape_variations(nom,max_var,model,type), end

function image = generate_image(par,model,type,warp_type)

if type==1 image = generate_shape_image(par,model,warp_type);

elseif type==2 image = generate_gray(par,model);

elseif type==3 image = generate_combined(par,model,warp_type);

end

function shape_variations(nom, max_var, model, type)

% nom - number of modes displayed

% max_var - limits for mode variation

% type - (optional) type of data: faces, hearts, spines (’f’, ’h’, ’s’)

%----------------------------------------------------------------------

par = diag(max_var*ones(1,nom));

figure

for mode=1:nom

perc_s = model{1}{4};

shape = generate_shape((-par(mode,:)),model);

subplot(nom,3,(mode-1)*3+1), shape_plot(shape,’r’,type)

if mode==1, title(sprintf(’-%d s.d’,max_var)), end;

ylabel(sprintf(’mode %d\n(%d%%)’,mode,round(perc_s(mode))))

subplot(nom,3,(mode-1)*3+2), shape_plot(model{1}{1},’b’,type)

if mode==1, title(’mean shape’), end;

shape = generate_shape(par(mode,:),model);

subplot(nom,3,(mode-1)*3+3), shape_plot(shape,’r’,type)

if mode==1, title(sprintf(’+%d s.d’,max_var)), end;

end

A.3 Generating Images

function image = generate_combined(parameters, model, warp_type)

% reading shape, gray and appearance models

mean_s = model{1}{1};

phi_s = model{1}{2};

mean_g = model{2}{1};
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phi_g = model{2}{2};

in = model{2}{6};

orig_size = model{2}{7};

mean_c = model{3}{1};

phi_c = model{3}{2};

lambda = model{3}{3};

weight = model{3}{6};

% generating shape and shape-free gray image

t = length(parameters);

c = ((lambda(1:t)).^0.5).*parameters(:);

Q_s = phi_s*phi_c(1:size(phi_s,2),:)/weight;

Q_g = phi_g*phi_c(size(phi_s,2)+1:end,:);

s = mean_s + Q_s(:,1:t)*c;

g = mean_g + Q_g(:,1:t)*c;

gray = zeros(orig_size);

gray(in) = uint8(g);

% warping image to shape

image = im_warp(gray,break_vector(mean_s),break_vector(s),warp_type);

shape_mask = create_mask(break_vector(s),orig_size(1),orig_size(2));

image = uint8(image).*uint8(shape_mask);

function image = generate_shape_and_gray(param_s, param_g, model, warp_type)

% reading shape and gray models

mean_s = model{1}{1};

phi_s = model{1}{2};

lambda_s = model{1}{3};

mean_g = model{2}{1};

phi_g = model{2}{2};

lambda_g = model{2}{3};

in = model{2}{6};

o_size = model{2}{7};

% generating shape and shape-free gray image

s = generate_shape(param_s, model);

gray = generate_gray(param_g, model);

% warping image to shape

image = im_warp(gray,break_vector(mean_s),break_vector(s),warp_type);

shape_mask = create_mask(break_vector(s),o_size(1),o_size(2));

image = uint8(image).*uint8(shape_mask);
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function shape = generate_shape(parameters, model)

% reading shape model

mean_s = model{1}{1};

phi = model{1}{2};

lambda = model{1}{3};

% generating shape

t = length(parameters);

shape = mean_s + phi(:,1:t)*(((lambda(1:t)).^0.5).*parameters(:));

function image = generate_gray(parameters, model)

% reading gray model

mean_g = model{2}{1};

phi = model{2}{2};

lambda = model{2}{3};

in = model{2}{6};

orig_size = model{2}{7};

% generating shape-free gray image

t = length(parameters);

g = mean_g + phi(:,1:t)*(((lambda(1:t)).^0.5).*parameters(:));

image = zeros(orig_size);

image(in) = uint8(g);

function image = generate_shape_image(parameters, model, warp_type)

% reading model

mean_s = model{1}{1};

o_size = model{2}{7};

% generating shape and main gray image

s = generate_shape(parameters, model);

gray = generate_gray(0, model);

% warping main gray image to shape

image = im_warp(gray,break_vector(mean_s),break_vector(s),warp_type);

shape_mask = create_mask(break_vector(s),o_size(1),o_size(2));

image = uint8(image).*uint8(shape_mask);
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function show_reconstructed(test,indices,perc,model,warp_type);

J=length(perc);

for i=1:length(indices)

index = indices(i);

orig = test{index}{1};

figure, subplot(2,J+1,1), im_show(orig), title(’original’)

subplot(2,J+1,J+2), im_show(orig), title(’original’)

for j=1:J

per = perc(j);

nom = modes_needed(per,model); % just for the sake of displaying it

reco = reconstruct_shape_and_gray(test,index,per,model,warp_type);

subplot(2,J+1,j+1), im_show(reco)

title({’reconstructed,’;sprintf(’%2d%%’,per);...

sprintf(’%2d s + %2d g’,nom(1),nom(2))})

reco = reconstruct_combined(test,index,per,model,warp_type);

subplot(2,J+1,J+j+2), im_show(reco),

title({’reconstructed,’;sprintf(’%d %%’,per);...

sprintf(’%2d combined’,nom(3))})

end

end

end

function par_c = project_combined(test,index,nom,model,warp_type)

shape = test{index}{2};

image = test{index}{1};

mean_s = model{1}{1};

phi_s = model{1}{2};

lambda_s = model{1}{3};

mean_g = model{2}{1};

phi_g = model{2}{2};

lambda_g = model{2}{3};

in = model{2}{6};

o_size = model{2}{7};

phi_c = model{3}{2};

lambda_c = model{3}{3};

weight = model{3}{6};

gray = im_warp(image,shape,break_vector(mean_s),warp_type);

g = gray(in);

b = [weight*phi_s’*(shape(:)-mean_s);phi_g’*(double(g)-mean_g)];

par_c = phi_c(:,1:nom(3))’*b./((lambda_c(1:nom(3))).^0.5);

function [par_s,par_g] = project_shape_and_gray(test,index,nom,model,warp_type)

shape = test{index}{2};
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image = test{index}{1};

mean_s = model{1}{1};

phi_s = model{1}{2};

lambda_s = model{1}{3};

mean_g = model{2}{1};

phi_g = model{2}{2};

lambda_g = model{2}{3};

in = model{2}{6};

o_size = model{2}{7};

par_s = ((phi_s(:,1:nom(1)))’*(shape(:)-mean_s))./((lambda_s(1:nom(1))).^0.5);

gray = im_warp(image,shape,break_vector(mean_s),warp_type);

g = gray(in);

par_g = (phi_g(:,1:nom(2)))’*(double(g)-mean_g)./((lambda_g(1:nom(2))).^0.5);

function image = reconstruct_combined(test,index,perc,model,warp_type);

shape = test{index}{2};

image = test{index}{1};

nom = modes_needed(perc,model);

par_c = project_combined(test,index,nom,model,warp_type);

image = generate_combined(par_c, model,warp_type);

function image = reconstruct_shape_and_gray(test,index,perc,model,warp_type);

shape = test{index}{2};

image = test{index}{1};

nom = modes_needed(perc,model);

[par_s,par_g] = project_shape_and_gray(test,index,nom,model,warp_type);

image = generate_shape_and_gray(par_s, par_g, model,warp_type);

A.4 Manipulating Faces

function show_caricature_combined(victims,indices,perc,times,model,warp_type);

nom = modes_needed(perc,model);

for i=1:length(indices)
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try

index = indices(i);

shape = victims{index}{2};

orig = victims{index}{1};

[par_c] = project_combined(victims,index,nom,model,warp_type);

anti = generate_combined(-1*par_c, model,warp_type);

zero = generate_combined(0, model,warp_type);

cari = generate_combined(times*par_c, model,warp_type);

figure

subplot(141), im_show(anti), title(’anti image’)

subplot(142), im_show(zero), title(’mean image’)

subplot(143), im_show(orig), title(’original’)

subplot(144), im_show(cari), title(’caricature’)

catch

fprintf(’...Gave up on image %2d\n’,i);

end

end

function show_caricature_shape_and_gray(victims,indices,perc,times,model,warp_type);

nom = modes_needed(perc,model);

for i=1:length(indices)

try

index = indices(i);

shape = victims{index}{2};

orig = victims{index}{1};

[par_s,par_g] = project_shape_and_gray(victims,index,nom,model,warp_type);

anti = generate_shape_and_gray(-1*par_s, -1*par_g, model,warp_type);

zero = generate_shape_and_gray(0, 0, model,wapr_type);

cari = generate_shape_and_gray(times*par_s, times*par_g, model,warp_type);

figure

subplot(141), im_show(anti), title(’anti image’)

subplot(142), im_show(zero), title(’mean image’)

subplot(143), im_show(orig), title(’original’)

subplot(144), im_show(cari), title(’caricature’)

catch

fprintf(’...Gave up on image %2d\n’,i);

end

end
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function show_applied_smiles(testing,indices,training,perc,warp_type)

model = build_model(training);

[msv,par_neut,par_smile,n] = smile_parameters(model,training,perc,warp_type);

for i=1:length(indices)

index=2*i-1;

figure

subplot(231), im_show(testing{index}{1}), title(’original neutral’)

subplot(232), im_show(testing{index+1}{1}), title(’original smile’)

reconstructed = reconstruct_combined(testing,index,perc,model,warp_type);

subplot(234), im_show(reconstructed), title(’reconstructed’)

[app_ms,app_NNs] = apply_smile(testing,index,model,msv,par_neut,...

par_smile,n,warp_type);

subplot(235), im_show(app_ms), title(’mean smile’)

subplot(236), im_show(app_NNs), title(’NN smile’)

end

function [app_ms,app_NNs] = apply_smile(testing,index,model,msv,...

par_neut,par_smile,n,warp_type);

param = project_combined(testing,index,n,model,warp_type);

app_ms = generate_combined(param + msv, model,warp_type);

for i=1:size(par_neut,2)

dist(i) = norm(param - par_neut(:,i));

end

k = find(dist == min(dist));

app_NNs = generate_combined(param + par_smile(:,k) - par_neut(:,k),...

model,warp_type);

function [msv,par_neut,par_smile,n] = smile_parameters(model,training,...

perc,warp_type)

n = modes_needed(perc,model);

for i=1:length(training)/2;

par_neut(:,i) = project_combined(training,2*i-1,n,model,warp_type);

par_smile(:,i) = project_combined(training,2*i,n,model,warp_type);

end

msv = mean(par_smile,2) - mean(par_neut,2);
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A.5 Active Appearance Models

function model = learning(data,model)

tic

l = length(data);

nom(3) = length(model{3}{3});

warp_type = ’l’;

in = model{2}{6};

move = [0.5 -0.5];

%move = [0.5 -0.5 0.25 -0.25];

% initializing with empty matrices

D_g = [];

D_c = [];

for index=1:40

c = project_combined(data,index,nom,model,warp_type);

g = data{index}{1}(in);

for k=1:nom(3)

fprintf(’Learning from image %g out of %g, changing parameter %g out of %g\n’,...

index,l,k,nom(3));

for n = 1:length(move)

try

delta_c = zeros(nom(3),1); delta_c(k)=move(n);

changed = generate_combined(c+delta_c,model,warp_type);

delta_g = double(changed(in))-double(g);

D_g = [D_g,delta_g(:)];

D_c = [D_c,delta_c(:)];

catch

fprintf(’... Gave up\n’);

end

end

end

save(’D_g’,’D_g’)

save(’D_c’,’D_c’)

end

A = D_c/D_g;

model{4}{1} = A;

model{4}{2} = nom;

toc

function show_weights(nom,model)

in = model{2}{6};

orig_size = model{2}{7};
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w = zeros(orig_size);

A = model{4}{1};

for i=1:nom

w(in) = fix(A(i,:));

subplot(1,nom,i),

im_show(w);

end

function o = fix(i)

o = uint8((i-min(i))*255/(max(i)-min(i)));

A.6 Helping Functions

function cp = break_vector(vector);

% breaks length 2n vector in size (n,2) matrix

%---------------------------------------------

cp = zeros(length(vector)/2,2);

cp(:) = vector;

function [X_mat,Y_mat] = coordinate_matrices(x,y)

% matrices needed for inpolygon function

%-------------------------------------------------

X_mat = [];

for i=1:y

X_mat = [X_mat,i*ones(x,1)];

end

Y_mat = [];

for i=1:x

Y_mat = [Y_mat;i*ones(1,y)];

end

function mask = create_mask(cp,size_x,size_y)

% creates a mask covering a convex hull of landmark points

%---------------------------------------------------------

[X_matrix,Y_matrix] = coordinate_matrices(size_x,size_y);

K = convhull(cp(:,1),cp(:,2));

mask = uint8(inpolygon(X_matrix,Y_matrix,cp(K,1),cp(K,2)));



APPENDIX A. MATLAB CODE 71

function fix_axis

axis image, axis ij, box on %, axis off

function im_show(im)

imagesc(im), colormap gray, axis image, axis ij

function output = im_warp(input,cp,target_cp,warp_type)

% piecewise linear

if warp_type==’l’

[x y] = size(input);

tform = cp2tform(cp,target_cp,’piecewise linear’);

output = imtransform(input,tform,’XData’,[1 y],’YData’,[1 x]);

% tin-plate splines

elseif warp_type==’t’

tpsInfo = calcTPSInfo([target_cp,cp]);

output = deformImage(input,tpsInfo,1);

end

function n = modes_needed(perc,model)

if perc==100, for i=1:3, n(i) = length(model{i}{4}); end

else

for i=1:3

perc_var = model{i}{4};

for k = 1:length(perc_var)

tot(k) = sum(perc_var(1:k));

end

n(i) = min(find(tot >= perc));

end

end
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function shape_plot(coordinates,color,type)

% Takes in the coordinates of the shape in the form of

% length 2n vector, where n is the number of landmark points.

% Rows 1:n are x coordinates, and rows n+1:2n are y coordinates

%--------------------------------------------------------------

coordinates=break_vector(coordinates);

if type==’h’

path{1} = [coordinates(1:33,:); coordinates(1,:)];

path{2} = [coordinates(34:66,:); coordinates(34,:)];

elseif type==’f’

path{1} = [coordinates(1:13,:)];

path{2} = [coordinates(14:21,:); coordinates(14,:)];

path{3} = [coordinates(22:29,:); coordinates(22,:)];

path{4} = [coordinates(30:34,:)];

path{5} = [coordinates(35:39,:)];

path{6} = [coordinates(40:47,:); coordinates(40,:)];

path{7} = [coordinates(48:58,:)];

elseif type==’s’

path{1} = [coordinates(1:25,:)];

path{2} = [coordinates(26:50,:)];

path{3} = [coordinates(51:75,:)];

path{4} = [coordinates(76:100,:)];

end

m = length(path);

hold on

for k=1:m

plot(path{k}(:,1),path{k}(:,2),color)

end

hold off

fix_axis

if type==’h’

axis([1 80 1 80])

elseif type==’f’

axis([1 280 1 280])

elseif type==’s’

axis([1 60 1 110])

end

function show_data(data,type)

for i=1:length(data)

figure

im_show(data{i}{1}), hold on

shape_plot(data{i}{2}(:),’b’,type)

shape_plot(data{i}{2}(:),’b.’,type)
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hold off

end

function show_data_warped(data)

m = length(data);

for i=1:m

figure

subplot(211)

im_show(data{i}{1}), title(i)

subplot(212)

im_show(data{i}{4})

end

function show_faces(data,indices,sh_p)

for n=1:ceil(length(indices)/6)

figure

for j=1:6

if (n-1)*6+j<=length(indices)

index = indices((n-1)*6+j);

subplot(2,3,j),

im_show(data{index}{1}), title(index)

if sh_p==1

hold on, shape_plot(data{index}{2}(:),’b’,’f’),

shape_plot(data{index}{2}(:),’b.’,’f’), hold off

end

end

end

end

function show_faces_warped(data,indices,sh_p,mean)

for n=1:ceil(length(indices)/3)
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figure

for j=1:3

if (n-1)*3+j<=length(indices)

index = indices((n-1)*3+j);

subplot(2,3,j)

im_show(data{index}{1}), title(index)

if sh_p==1

hold on, shape_plot(data{index}{2}(:),’b’,’f’),

shape_plot(data{index}{2}(:),’b.’,’f’), hold off

end

subplot(2,3,j+3)

im_show(data{index}{4})

if mean~=0

hold on, shape_plot(mean(:),’b’,’f’),

shape_plot(mean(:),’b.’,’f’), hold off

end

end

end

end
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