
Computer Vision
A 12-week project

Reńee Anderson
renee@itu.dk
081169-xxxx

Vedrana Andersen
vedrana@itu.dk

130274-xxxx

Lars Pellarin
pellarin@itu.dk

280979-xxxx

Project supervisor: Dan Witzner Hansen
IT University of Copenhagen, February – May 2006

Acknowledgments

Thanks to Dan Witzner Hansen, our project advisor, whose hard work, dedication, and
tenacious love of the field of computer vision are nothing short of inspirational.

Cover-page:Warping the ITU building using a flawed homography, making the case that failure need not be

ugly.

Contents

1 Homographies, Mosaic, and Warping 6
1.1 Projective Geometry and Transformations of 2D 6

1.1.1 Homogeneous Coordinates 6
1.1.2 A Model for the Projective Plane 7
1.1.3 Homography Matrix . 7
1.1.4 Homographies in Images . 8

1.2 Homography Estimation . 8
1.2.1 Overview . 8
1.2.2 Direct Linear Transformation 9
1.2.3 Normalization . 10
1.2.4 Implementation . 10
1.2.5 Results . 11

1.3 Image Mosaic . 12
1.3.1 Overview . 12
1.3.2 Backward Mapping . 12
1.3.3 Bilinear Interpolation . 12
1.3.4 Hat-Weighting Function . 13
1.3.5 Implementation . 13
1.3.6 Results . 15
1.3.7 Automatic Stitching . 17

1.4 Sequence-to-Map Homography . 19
1.4.1 Implementation . 19
1.4.2 Results . 19

1.5 Warp Sequence . 22
1.5.1 Implementation . 22

1.6 Affine Rectification . 22
1.6.1 Theory . 23
1.6.2 Implementation . 23
1.6.3 Results . 23

2 Single-View Geometry, Stereo, and RANSAC 25
2.1 Projection Matrix . 25
2.2 Single View Metrology . 26

2.2.1 Preliminaries . 27
2.2.2 Geometric Representation 27
2.2.3 Algebraic Representation . 28
2.2.4 Implementation . 29
2.2.5 Results . 29

3

4 CONTENTS

2.3 Fundamental Matrix . 32
2.4 Fundamental Matrix Estimation . 33

2.4.1 Theory . 33
2.4.2 Implementation . 33
2.4.3 Results . 35

2.5 RANSAC . 36
2.5.1 Theory . 36
2.5.2 Implementation . 36
2.5.3 Results . 37

2.6 Camera Calibration . 38
2.6.1 Theory . 38
2.6.2 Implementation . 38
2.6.3 Results . 39

3 Tracking 40
3.1 Models for Tracking . 40

3.1.1 Probabilistic Model . 40
3.1.2 Kalman Filter . 41
3.1.3 Constant-Velocity Model . 42

3.2 Simple Object Tracking . 43
3.2.1 Implementation . 43
3.2.2 Results . 44
3.2.3 Further Experimentation . 44

3.3 Eye Tracking . 46
3.3.1 Implementation . 47
3.3.2 Results . 47

3.4 Particle filtering . 50
3.4.1 Implementation . 51
3.4.2 Results . 52

3.5 Robust Background Subtraction . 55

CONTENTS 5

Introduction

An introduction to a report is supposed to set the tone and provide an outline of what is
to come. Very well, here it is. We have been participants in the project cluster entitled
Computer Vision, and this report describes our work for the past 12 weeks, a period of
time that passed astonishingly quickly. We found ourselves needing, at the end, to halt
production in its tracks; otherwise, the report could easily have blossomed beyond its
present borders, covering topics far and wide, over the line at infinity.

Our work in the project cluster included attending lectures and completing three
mandatory assignments. The three major sections of this report mirror the environs of
these assignments (but do not confine them overly strictly). Each concept is treated in
three parts: theory, implementation, and results.

Chapter 1 keeps to the realm of 2D, presents the concepts of homogeneous coor-
dinates, as well as homographies and how to estimate them from manually selected
point-pairs. We carry out a simple experiment that maps a moving figure in an image
sequence onto a 2D blueprint of the scene. Finally, we stitch images together to form
mosaics and tilings.

In Chapter 2 we enter the realm of 3D, moving between the world and the image by
means of the projection matrix. We take a look at single-view metrology and calculate
unknown heights of objects in an image. We study the fundamental matrix, epipolar
lines, and camera calibration. And we examine the RANSAC robust estimator, which
best-fits a line (or homography, or fundamental matrix) despite the presence of outliers.

Chapter 3 is about tracking. We add the time dimension to our images and inves-
tigate some of the basic probabilistic tracking models, namely Kalman and particle
filtering and the constant-velocity model, and we experiment with person-tracking and
eye-tracking.

In short, we have studied some basic elements of Computer Vision, and tried our
hand at many of its more well-known algorithms. We have done as much as we could
given this 12-week time frame, but we fully appreciate that the field of Computer Vision
is vast, brimming with useful and fascinating applications.

One note to the reader,Computer Visionwas originally intended to be a regular
course at the IT University of Copenhagen, our university. Due to a paucity of student
interest that we cannot fathom, the course was changed at the last moment to a so-called
project cluster—for which lectures are fewer than for a regular course, and exercises
are to be carried out independently in our small group settings, whereas regular course
students might have benefitted from organized exercise sessions complete with lab in-
structor. We hope that the reader will look patiently on the discussions that follow and
bear in mind that this written work is both a combination of what we have learned
from textbooks, articles, and lectures, as well as a strong dose of our own subjective
reasoning and speculation.

Chapter 1

Homographies, Mosaic, and
Warping

1.1 Projective Geometry and Transformations of 2D

In this section, we briefly introduce the major concepts of 2D geometry used in com-
puter vision and in our first assignment for this project. These concepts can also be
generalized to 3D space. We begin with an explanation of homogeneous coordinates,
given their ubiquitous use in computer vision, and move on to introduce homographies.
We describe the results from our first assignment for this project: the implementation
of a function that estimates the homography between a pair of images. We put this
function to use for the second two parts of the assignment, where we use homography
for merging images into a mosaic, displaying tracking data and affine rectification.

1.1.1 Homogeneous Coordinates

A point in a plane is usually represented by a coordinate pair, so we identify the plane
with R2. A (non-vertical) line in a plane can be represented by its slope and intercept,
so any line can also be said to have two degrees of freedom. Instead of representing
points and planes by pairs of numbers, however, we will use homogeneous coordinates
for points and lines, which makes the representation of certain geometrical entities very
simple.

Using homogeneous coordinates, a 2D point(x,y)> can be represented byx =
(sx,sy,s)>, wheres is an arbitrary scaling factor. Lineax+ by+ c = 0 is represented
by l = (a,b,c)>, which is also equivalent to(s′a,s′b,s′c)> for any scaling factors′.
We can thus use the following simple rules (using the symbol× to represent the cross
product):

1. Pointx lies on linel if and only if x>l = 0.

2. The intersection of two linesl andl′ is the pointx = l× l′.

3. The line through any two pointsx andx′ is the linel = x×x′.

Parallel lines therefore intersect in the points(x,y,0)>, which do not correspond to
any finite points in the planeR2, but which can be added to the plane asideal points
(points at infinity). Ideal points lie on theline at infinity, represented by(0,0,1)>,

6

1.1. PROJECTIVE GEOMETRY AND TRANSFORMATIONS OF 2D 7

which we also add to the real plane. The resulting plane is called theprojective plane
P2.

1.1.2 A Model for the Projective Plane

If we look at the homogeneous representation for a point(sx,sy,s)>, s∈ R, as a col-
lection of points inR3, we see that it forms a ray through the origin (see Fig. 1.1).
Intersecting this ray with the planez = 1, we again have a point in the plane. Ideal
points (x,y,0) are rays parallel to the planez = 1, and therefore do not intersect it.
Similarly, if we look at the homogeneous representation of a line inR3, it corresponds
to a plane passing through the origin. We can again obtain the line by intersecting this
plane withz= 1. The line at infinity corresponds to a plane parallel toz= 1.

Figure 1.1: A model of the projective plane. Points and lines are represented by rays and planes,
respectively, through the origin. Figure from Hartley and Zisserman [4].

1.1.3 Homography Matrix

Homogeneous coordinates allow for very elegant representation of projective transfor-
mations, also calledprojectivitiesor homographies. A homography is a transformation
of P2 that maps straight lines to straight lines, and it can be represented simply as
the multiplication of the homogeneous 3-vectors (representing the points) by a non-
singular 3×3 matrix: x′1

x′2
x′3

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

or in matrix form,x′ = Hx, whereH is thehomography matrix.

Matrix H is homogeneous—the transformation will not be changed if we multiply
H with the arbitrary scaling factor. Additionally, matrixH is non-singular, so we can
find an inverse mapping asx = H−1x. Another property of a homography is that under
the point transformationx′ = Hx, a line transforms asl′ = H−>x.

In their most general form, homographies will preserve only straight lines, but de-
pending on the level of structure inH, some additional properties may be preserved—
parallelism (affine transformations), ratios of lengths, angle (similarity transforma-
tions), length and area (Euclidian transformations).

8 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

1.1.4 Homographies in Images

The process of taking a photograph is modeled by a central projection of 3D world
coordinates onto a 2D image coordinate system (as we will discus in Section 2.1). The
central projection between two planes is a homography (it preserves straight lines),
and therefore we will often use a homography when relating the planes in two images.
For further detail on homographies and how they are estimated, please see Section 1.2,
below.

In this report, we use two examples of projective transformations that arise in per-
spective images, both of which are illustrated in Figure 1.2.

��

��
��

��

��

��
�� �� �� �� ��

��������������

planar surface

image 2image 1

R,t

x

X

x

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
�� �

�
�
�

�
�
�
�

�
�
�
��

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

X

x

ximage 1

image 2

Figure 1.2: Homography examples.Left: A plane is captured by a camera from two differ-
ent positions. The same three corresponding points are represented in each plane.Right: An
object is photographed at different angles by a rotating but otherwise stationary camera. The
corresponding pointsx andx′ are represented in both Image1 and Image2.

On the left we have images of the same scene plane taken from different locations.
The transformation between the images of the plane is a homography, because the
acquisition of each image is a central projection (and therefore a homography for the
given plane), and the concatenation of two homographies is still a homography. This
is the setting we’ll use for basic homography estimation (Section 1.2), an exercise
that finds the homography of two different views of the same wall of lockers. We’ll
also use this setting for a sequence-to-map homography and warp-sequence exercise
(Section 1.4 and 1.5), in which we map an image sequence to a 2D image. In this
setting, the homography will only be valid foroneworld plane in the images at a time.
If the object in the two images occupies more than one plane, for example, a walland
the floor, either one would need to use two homographies, one for each plane, or one
would need to use the Fundamental Matrix, F, which we will discuss in section 2.4.

On the right in Figure 1.2, we have two images with the same camera center, with
the camera rotating about its vertical axis. The corresponding points in two images
are related by a central projection between two planes, which is a homography, so in
this situation we can relate whole images with the homography. This is the situation at
hand for composing an image mosaic, which we describe in Section 1.3.

1.2 Homography Estimation

1.2.1 Overview

As described in the preceding section, a homography is a projective transformation that
can allow us to relate the features of two images. In two separate images, an object is
captured from two different perspectives—an object such as a person, a landscape, a

1.2. HOMOGRAPHY ESTIMATION 9

set of points. With our eyes we can easily locate matching landmark points between
the images. The homography is the interpretive tool the computer needs to perform
this same task.

Our objective is now to implement the general homography estimation algorithm.
For our assignment we were given two images of a wall of lockers (see Figure 1.3),
captured from two different camera positions. The images provide a lot of correspond-
ing points. Through manual corresponding-point selection, we were to calculate the
homography for the two images such that, in the end, we could choose any point in one
image and the function would return the corresponding point in the second image. The
setting in this situation is as on the left-hand case of Figure 1.2, which means that the
homography is limited to one plane, the front plane of the lockers.

The homography is a represented by a 3× 3 matrix of numbers, which will be
calculated on the basis of a few matching points (or lines) that we must first choose
manually. We provide the first few examples, and the computer calculates the homog-
raphy matrix,H, which relates them and all other corresponding points.

1.2.2 Direct Linear Transformation

We will use a simple linear algorithm, Direct Linear Transformation (DLT) for esti-
mating the homography from point correspondences.

We know that for each pair of corresponding pointsx = (x,y,z) andx′ = (x′,y′,z′)
we haveHx = x′. HavingHx andx′ as (possibly different) homogeneous representation
of the same point. Their cross product, therefore, must be 0, or

x′×Hx = 0

This equation gives rise to three homogeneous linear equations in the elements ofH,
but only two of those are linearly independent. Those two independent equations can
be written as follows:[

0> −w′x> −y′ix
>

w′x> 0> −x′x>

] h1

h2

h3

 = 0

wherehj> are the rows of the matrixH.
There are 8 degrees of freedom for the homography, thus requiring a minimum

of four non-collinear point pairs. Stacking the equations obtained from all available
corresponding points, a homogeneous linear system is built, which can be written as

Ah = 0

whereA is a 2n×9 matrix, the entries of which are obtained from the coordinates ofn
corresponding point pairs as explained in the two above equations, andh is a 9-vector
of the elements ofH.

Four point correspondences will lead to an exact solution of the system, while more
than four point correspondences result in the over-determined system of equations. If
the point coordinates of the over-determined system are noisy, there will not be an exact
solution, but we can find the least-squares solution of the.

The solution to this system is found using Singular-Value Decomposition (SVD)
of matrix A. The singular vector corresponding to the smallest singular value is the
solution toh. That is, if A = UDV>, the solution to the system is the column ofV
corresponding to the smallest entry in the diagonal matrixD.

10 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

1.2.3 Normalization

Hartley and Zisserman ([4], p. 108) emphasize,

Data normalization is anessentialstep in the DLT algorithm. It mustnot
be considered optional.

Normalization ensures that the result of the homography will be invariant with respect
to scale and coordinate origin, along with improved accuracy of results. Of key benefit
is that coordinate values will all be of similar magnitude. Without normalization, it
is possible to have image coordinate values(x,y,w)>, wherex and y can often be
two or more orders of magnitude greater thanw, which is usually 1. In later steps,
multiplication with non-normalized coordinates will produce results that differ even
more widely in magnitude, withxy, xx, andyy often being in the order of at least 104,
compared withxw and yw, which would be on the order of 102, andww products,
which would be on the order of unity. This kind of divergence serves to amplify any
errors brought on by the presence of noise in the images. Normalization eliminates
these wide disparities and ensures a more accurate result.

The normalization scheme we used is theisotropicscaling: translating the point set
to origin and scalingx andy coordinate equally, so that the average distance from the
origin is equal. This results in point set where the average point is(1,1,1)>.

1.2.4 Implementation

The estimation ofH comprises the following steps.

1. The user chooses at least four non-collinear matching point pairs.

2. Represent the 2D point coordinates using homogeneous coordinates. This is eas-
ily done by adding a third dimension to all points and setting that third dimension
to 1 (see Section 1.1.1).

3. Normalize the point coordinates for each image independently. Normalization
itself comprises two steps:

(a) The points are centered the around the origin.

(b) The points are scaled, so that the average distance between the point coor-
dinates and the origin is equal to

√
2.

The results of the normalization proces are two normalized sets of coordinates
and two transformation matrices,T andT′, one for each image.

4. Construct matrixA, as explained previously, using the normalized image coor-
dinates.

5. Calculate the SVD ofA. We construct a 3×3 matrix, H̃, from the nine values
in the last column ofV. H̃ is thereby the result of performing the direct linear
transformation on the two sets of normalized coordinates.

6. Denormalization. We now derive the final homographyH from H̃ as well as the
transformation matricesT andT′, which are derived during the normalization
process:

H = T′−1H̃T

1.2. HOMOGRAPHY ESTIMATION 11

Figure 1.3: User-selected corresponding point pairs. The best choices for selection are corners
or the small locks on the locker doors.

Figure 1.4: Testing the estimated homography.Left: The user clicks the imageI at will to select
points. Right: MATLAB uses the homography to find the matching points and plots them inI ′.
Note that Point 6, which is not on the same plane as the lockers, does not map correctly, though
all other points are fairly accurate.

1.2.5 Results

After estimating our homography, we test it on the pair of images. First, we selected
four point pairs (see Fig. 1.3) and computed the homography. Figure 1.4 shows the
homography in action, as points are selected in the first image,I , and the corresponding
points in the second image,I ′, is calculated and plotted automatically. Again, we note,
the homography only applies to a single world plane at a time. The four point pairs must
all be initially chosen from the wall of lockers, for example. One will then observe that
when testing the homography by choosing a point on the ceiling, the homography will
not return a properly matched point (e.g., point 6 in Fig. 1.4)

We note also that the accuracy of the homography depends heavily on the accuracy
of the user hand-picking the original point pairs. One must take care to choose point
correspondences that are 1) located on the same world plane, 2) spread around the
whole image, and 3) as accurately placed as possible—obvious matching corners, for
example. Picking more points will also improve the estimation of the homography.

To test the homography in the reverse order, that is, to find coordinating points inI
given points fromI ′, simply multiply the coordinates inI ′ with H−1.

12 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

1.3 Image Mosaic

Here our task was to create a function that reads in a sequence of images, and then,
based on their pairwise homographies, maps the images together into a single image,
or mosaic (for a given base image). A number of options for interpolating and merging
images are suggested for testing.

1.3.1 Overview

When a sequence of images is taken from a single location, the relation between images
is a homography, as explained in Section 1.2 (see also Figure 1.2). By computing
the homographies that relate the overlapping frames, we can handle the perspective
transformation when going from one image to another. If we choose one of the images
from a sequence as the base image, we can transform all the others to fit the same
perspective. We can then “stitch” overlapping photos onto each other to form a single
big image, such as a panorama of a scene.

In our implementation, the homography was estimated by first selecting point cor-
respondences manually (by clicking in the image using the mouse) and thereafter com-
puting the homography with the DLT algorithm as explained above. The images to be
stitched onto the reference image were then transformed (warped) according to the ho-
mography, using back-mapping and two different interpolation settings. As for pasting
the images into the corresponding positions, we tried both simple averaging and the
‘hat function” technique.

1.3.2 Backward Mapping

Having to warp an imageI onto the base imageIb, and having the homographyH from
the image to the base, it is feasible to visit all the pixels inI and transform them to the
base according to the homography. This approach doesn’t guarantee a good result, as
some pixels in the base reference frame might not be evaluated; additionally, it doesn’t
allow for any interpolation. Instead, all warping is done usingbackward mapping—
visiting all the pixels in the base reference frame and checking which pixels would be
transformed to the position according to the inverse homography,H−1.

Using this approach, we first needed to forwards-map the corners of the imageI to
determine the final size of the composite image, as well as the region of the composite
image that is covered byI , so that our back-mapping wouldn’t end up outside of image
I .

1.3.3 Bilinear Interpolation

Another thing to consider when using backward mapping is interpolation. When we
look back from a pixel position in the base image, we get non-integer values in the
imageI . In these cases, the most straightforward solution is to do simple rounding and
adopt the nearest-neighbor pixel value, but the resulting image will be jagged.

A better solution is to use bilinear interpolation and find the blending ratio from the
pixel values of the 4 nearest pixels, where the different pixels are weighted more the
closer they are to the location we want to interpolate. Each intensity value of the RGB
color image is computed as follows:

I(x,y)≈ (1−b,b)
[

I(bxc,byc) I(dxe,byc)
I(bxc,dye) I(dxe,dye)

](
1−a

a

)

1.3. IMAGE MOSAIC 13

wherex andy are non-integer local image coordinates, and

a = x−bxc

b = y−byc

are the corresponding weight values in horizontal and vertical directions. The improve-
ment achieved using bilinear interpolation, and its cost in terms of computing time are
illustrated in Figure 1.6.

1.3.4 Hat-Weighting Function

When blending two images, the question arises of how to deal with transition boundaries—
as certain areas of the base image will always be overlapped by another image, some-
times more than one, and the transitions between the two are often undesirably obvious.
Initially, we used a simple averaging function for the overlapping parts of the image
and rounding for interpolation.

We then augmented the blending method by incorporating ahat functionto avoid
transition boundaries. The idea is that we want to blend two images gradually from
one to another. Therefore, when the two images are stitched, overlapping pixels will
be weighted depending on their distance to the image center. In other words, a pixel
“weighs” more the closer it is to the center of its image frame. In this way, a smoother
transition is achieved. The weights used were linear in each direction and ranged from
0 at the image edges to 1 in the center, as shown in Figure 1.5), while in Figure 1.6 we
show the improvement achieved by using the hat function.

Figure 1.5: The hat-weighting function of an image area of 640x320 pixels.

1.3.5 Implementation

The following describes the steps we took to stitch two images into a mosaic. For a
mosaic consisting of more than two images, these steps would need to be repeated for
each subsequent image to be stitched.

1. The user selects point correspondences manually. A minimum of four point
correspondences are needed to estimate the homography.

2. The homography is estimated using the normalized DLT algorithm.

3. Hat weights are computed for both images.

4. The corners of the image to be warped are forward-mapped to the base image,
the sizes and position of the two images are evaluated, and the base image is

14 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

Figure 1.6: Comparison of stitching variants.Row 1: The original three images to be stitched.
Row 2:Rounding used for interpolation, and averaging for the overlapping parts.Row 3:Round-
ing used for interpolation, and hat-function weights for the overlapping parts.Row 4: Bilinear
interpolation used for interpolation, and hat-function weights for the overlapping parts.Right:
Detail of images. The computation time for the three methods: 13.8 seconds, 14 seconds, and
73 seconds on the same machine.

1.3. IMAGE MOSAIC 15

Figure 1.7: Mosaic of four images, uncropped.

zero-padded to accommodate the new image. The homography is adjusted ac-
cordingly.

5. The new image is warped onto the base image using backward-mapping and
bilinear interpolation. In the region where the two images overlap, the hat-
weighting function is used to determine the blending ratio.

1.3.6 Results

Figure 1.6 compares the various stitching techniques that we tried: 1) rounding for
interpolation with averaging for overlap; 2) rounding for interpolation, and hat-function
weights for overlap; and 3) bilinear interpolation for interpolation, and hat-function
weights for overlap.

The first method did not incorporate the hat function, and resulted in quite visi-
ble transition borders (row 2 of Fig. 1.6). The other two methods did utilize the hat-
weighting function (rows 3 and 4 in Fig. 1.6), and indeed border transitions are no
longer apparent. However, when simple rounding is used instead of bilinear interpola-
tion, the edges of objects (such as the eaves of the roof in row 3) often appear jagged.
Jagged edges are no longer evident when hat and bilinear interpolation are used to-
gether (see detail in row 4, right).

The computation time for the three methods was as follows: 13.8 seconds, 14 sec-
onds, and 73 seconds on the same machine, respectively. We note that use of both hat
and bilinear interpolation results in significantly longer computation time as compared
with the other two methods, but for images of this size, bilinear interpolation with hat
seems well worth the extra investment in time.

We note that, when stitching panoramic images together, the mosaic takes a char-
acteristic bow-tie shape, an effect of the shift in camera angle relative to the scene, that
results in the apparent flaring of the images as they get farther and farther from the
center image. When presenting stitched images in a mosaic, one must decide whether
to preserve the black border or crop, and this will always depend on the context and the

16 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

Figure 1.8: Tiling made of 9 images of the ITU building. Size of the small images 640×480;
size of the final image mosaic 1627×971. Note obvious break in the stairwell, far left, which is
a result of flawed image capture.

1.3. IMAGE MOSAIC 17

expected illustrative purpose of the mosaic. For Figure 1.7, we have retained the black
border instead of cropping.

In addition to horizontally stitched mosaics, we also tried our hand at tiling images
together. The mosaic shown in Figure 1.8 is the result of tiling nine images of the ITU
(which we took ourselves). We first merged images vertically, producing three rows,
and then merged those into a completed mosaic. To deal with the black edges, we
changed the original implementation of the mosaic function slightly, which allowed
for a mistake to creep in—the staircase at the far left reveals a very slight break in
continuity. This was caused by the photographer not tiling the scene perfectly; the
images in the left column are not vertically aligned, so the staircase is missing from the
middle photograph. The stitching of the stairs, therefore, was forced to occur between
the bottom-left and top-left image (i.e., non-neighboring images), and the homography
(calculated from two homographies estimated between neighboring images) was not
robust enough to span the gap.

1.3.7 Automatic Stitching

As an aside to the mandatory assignments, we experimented with the concept of auto-
mated stitching. The reader should take note that we are not offering a fully fledged
implementation here, but simply presenting what we tried and observed. Using a video
sequence panning over a scene, we developed the following suggested implementation:

1. Extract points from each image using a Harris corner detector.1

2. From this collection of points, find the putative correspondences from image to
image by cross-correlation matching:

• Sample a 7×7 area around each point and correlate with the 7×7 neigh-
borhood around all the points in the other image.

• Use the point with the highest correlation coefficient as the putative corre-
sponding point.

3. Eliminate outliers using RANSAC. (We did not implement the final two steps;
more detail on the RANSAC method in Section 2.5):

• Build a modelH for a sample of 4 putative correspondences using the DLT
algorithm.

• Find support for the model by counting the number of putative correspon-
dences that are inliers. A putative correspondence(m,m′) is an inlier if
‖m′H−m‖ < t, where the estimated thresholdt is based on a table in
Hartley and Zisserman ([4], p. 119).

• Iterate until a suitable model is found.

• Rebuild the homography from the new set of inliers.

Figure 1.9 illustrates the output of Harris corner detection. Figure 1.10 shows the set
of putative correspondences connected with lines, so that inliers (horizontal lines) and
outliers (non-horizontal lines) can be clearly distinguished.

1Harris corner detection is a filter detecting the maximum gradient variation for all directions. We used
Peter Kovesi’s Matlab implementation of the Harris corner detector [5].

18 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

Figure 1.9: Points output from Harris corner detection on two overlapping images.

Figure 1.10: Putative matching points connected by lines. Points are from Fig. 1.9, and include
those that gave the highest cross-correlation match. Outliers (non-horizontal lines) and inliers
(horizontal or near-horizontal lines) can be easily distinguished.

We were hoping to be able to implement a fully automatic stitching algorithm that
would take any sequence of images and put them together into one mosaic, with no in-
tervention from the user. This approach would have had a few more problems than the
difficulties outlined by Hartley and Zisserman for their automatic homography compu-
tation [4]. We cannot know the ratio of outliers/inliers of our points computed from
neither the corner detector nor the cross-correlation, so we have to assume a 50% risk.
Further more, it may even be higher. Also, the threshold for the Harris corner de-
tector would have to be set manually from an estimation of how many points would
be needed. For a fully automatic procedure, we suggest analyzing the images for the
amount of variation and use that analysis for setting the corner-detector threshold.

We experienced that several points are repeatedly counted as matches when cross-
correlating, which means that points are assigned to more correspondences than one—
this should be prevented by enforcing a tighter constraint to the “winner takes it all”
procedure Hartley and Zisserman use. But as we were not intended to do this for our
assignment, we had to move on with a slight shrug.

1.4. SEQUENCE-TO-MAP HOMOGRAPHY 19

1.4 Sequence-to-Map Homography

For this section, we have made a component that could be used in a tracking system.
We are given an image sequence, captured by a still (surveillance) camera, in which
a person is seen walking on the ground floor of the ITU building. We are also given
the corresponding tracking data obtained by segmenting the person in the sequence.
Additionally, we were given a 2D structural map of the ITU’s ground floor. The task
was to display the tracking data from the image sequence on the 2D map.

1.4.1 Implementation

The transformation from the ITU building’s ground floor to the map is a scaling, so it
is surely a homography. Additionally, the transformation of the ground floor plane to
the camera’s image plane is a central projection, which is also a homography. (This
can be verified by the fact that straight lines remain straight.) Because the concatena-
tion of two homographies produces another homography, we can confirm that it is a
homograply that defines this transformation from the imaged ground floor to the map.
In short, we are presented with a situation similar to that sketched in Figure 1.2, left.

To solve this task we first inspected the given data. We decided to crop the map of
the ground floor so that it covered approximately the same area of the ground floor as
seen in the image sequence.

The tracking data consisted of three bounding rectangles: one containing the upper
body of the person, one containing the legs only, and one containing the whole figure,
as illustrated in Figure 1.11. We decided to track the mid-point of the low side of the
whole-figure rectangle, since that point is actuallyon the ground floor, directly under
the person’s center.

Implementation then proceeded according to the following steps:

1. The user manually selects corresponding points from the map and one of the
image sequence frames.

2. The homography between the image sequence and the map is estimated using
the DLT algorithm.

3. A set of points (one point per frame) is extracted from the tracking data.

4. Tracking points are transformed using the estimated homography.

5. The original sequence is displayed in parallel with the display of tracking data
on the map (Fig. 1.11, bottom row).

6. A plot of the complete path of the walker is produced on the map (Fig. 1.12).

1.4.2 Results

When observing the data on the map, a number of additional pieces of information can
be obtained that cannot be directly estimated from the image sequence. For instance,
Figure 1.12 depicts the actual shape of the walker’s path, with all angles and directions
preserved. If we know the measurements of the ITU building from the map, we can
make a scaling of the tracking data to derive information about the position of the
person on the ground floor. Additionally, from observing the tracking data on the map
over time, we could estimate the velocity of the person.

20 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

Figure 1.11:Top row: The input. Left, one frame from the image sequence, with all tracking
data superimposed.Right, the original map of the ground floor.Bottom row:The output.Left,
a frame from the image sequence with the tracking point plotted (corresponding to the center of
the red rectangle’s lower edge), andRight,the partial path corresponding to the frame displayed
on map.

Figure 1.12: The complete path of the walker, plotted atop a portion of the 2D map. The slightly
erratic nature of the path is caused by segmentation noise, not the homography.

1.4. SEQUENCE-TO-MAP HOMOGRAPHY 21

Figure 1.13:Top-left: The 2D map, with the part covered by original image sequence shown
outlined in red, and the part covered by the final sequence outlined in blue.Lower-left: A single
frame from the original image sequence, with the parts covering the final sequence outlined in
blue. Lower-right: A frame from the final sequence obtained by warping the original sequence,
with the outline of the map superimposed.

22 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

The accuracy of the mapping depends fully on the accuracy of the tracking data
and the estimated homography. Tracking data are sometimes “shaky”, resulting in a
somewhat noisy-looking path. It is possible that the appearance of the path could be
improved by smoothing the tracking data, which we indeed try later in this report using
the Kalman algorithm (Section 3.2), which finds the likeliest path given noisy data.

It is difficult to assess the accuracy of the homography estimation: it looks rather
good, but could likely be improved if we were able to find more point correspondences.
It is important to note that the homography mapping is accurate only while the person is
walking on the ground plane. When the walker ascends the stairs, he leaves the ground
plane—the result of which is that the homography becomes more and more inaccurate
as the distance between him and the ground floor increases.

1.5 Warp Sequence

This an extension of the sequence-to map task from the previous section. It involved
making a function that would take the following input: an image sequence from a fixed
camera, a 2D map, and the homography between the image sequence and the map. (The
same image sequence and 2D map from Section 1.4 were used.) The function should
then warp every image from the sequence onto the map, creating a new sequence.

1.5.1 Implementation

The given homography maps only the ground plane to the 2D map, so only those parts
of the images in the sequence occupied by the ground floor itself will be correctly
mapped. Meanwhile, only a fraction of the map is visible in the sequence. Therefore,
the first and the biggest challenge was to decide on the dimensions of the final im-
age and its location in the map. The second challenge was the implementation of the
warping itself.

The part of the map visible in the sequence is shown in Figure 1.13 (top-left, red
quadrilateral). The dimensions that we chose to use for the final sequence is marked by
the blue rectangle in the same image. In the lower-left image, the part of the original
sequence that is to cover our chosen frame is outlined.

Finally, after changing the coordinates, the homography from the final to the orig-
inal sequences needed to be determined. Having all the dimensions and the homogra-
phies between them, we could start warping each image from the image sequence. We
used backwards mapping, and because the original sequence covers the whole of the
final one, we didn’t need to concern ourselves with staying within the dimensions of
the images. Simple rounding was used instead of some better interpolation method.
After warping each image from the sequence, the outline of the map was printed on top
of it. One image from the resulting sequence is shown in Figure 1.13 (right).

1.6 Affine Rectification

For this task, we were asked to make a function that performs an affine rectification of
an image, as follows: 1) Calculate the vanishing linel of a plane in an image and form
the projective transformationH that takesl to the line at infinity; 2) Affinely rectify
the image according toH using backwards mapping; and 3) Compare the images both
before and after affine rectification.

1.6. AFFINE RECTIFICATION 23

1.6.1 Theory

For a given imaged plane, we can construct a transformation that will recover the affine
properties of that plane. This is called affine rectification.

The important invariant for affine transformation isparallelism. Therefore, one of
the objectives of affine rectification is to recover parallelism in the chosen plane. To do
that, a transformation is needed that will push the identified line at infinity of a chosen
plane to its canonical position. In other words, we are searching for a transformationH
that will map the line at infinityl = (l1, l2, l3)> to (0,0,1)>. Or, written in matrix form,
we are looking for the 3×3 matrixH, such that

H−>(l1, l2, l3)> = (0,0,1)>

It can easily be shown that the matrix

H =

 1 0 0
0 1 0
l1 l2 l3

meets this criterion, but it is not the only matrix with this desired property.Any ho-
mography matrix withl> in its bottom row will map the linel to (0,0,1)>. We can say
that the affine rectification is defined up to an arbitrary affine transformation.

Having affinely rectified an image, one recovers affine properties for a given plane
and all planes parallel to it. Still, properties that are not invariant under affine trans-
formations, such as angles, will not be recovered. It is possible to go one step further
and perform the metric rectification of an image by finding a transformation that maps
imaged circular points to their canonical positions. The additional constraints required
for metric rectification can, for example, be obtained from two sets of orthogonal lines.

1.6.2 Implementation

We performed affine rectification on an image using the following steps, the results of
which are depicted in Figure 1.14:

1. The user defines a plane by selecting two sets of imaged parallel lines.

2. The line at infinity for a given plane is calculated, and an initial rectification
transformation matrix is constructed.

3. The corners of the original image are transformed to estimate the size and posi-
tion of the rectified image. Scaling is determined, such that the rectified image
has roughly the same size as the original. This scaling and initial rectification
comprise the final rectification transformation.

4. The final rectified image is created using backwards mapping and simple round-
ing (for efficiency).

1.6.3 Results

Figure 1.14 shows two affine rectifications that we performed on a single image, select-
ing first one and then another imaged plane. As expected, the windows on a selected
side of the building are transformed to parallelograms. Note how parallel lines in the
original image, i.e., those that intersect at a chosen vanishing line, are transformed into
true parallel lines after affine rectification, depending on the selected plane.

24 CHAPTER 1. HOMOGRAPHIES, MOSAIC, AND WARPING

Figure 1.14: Two affine rectifications of a single image.Top-left: The original image.Center
column:The selected planes.Right column:Affine rectification of the left and right sides of the
building in the original image.

Chapter 2

Single-View Geometry, Stereo,
and RANSAC

In this chapter, we study the concepts of single- and double-view geometry, providing
a brief description of theprojection matrixand thefundamental matrix. We look at the
RANSAC method for finding the most probable linear solution given measurements of
inliers and outliers. Lastly, we touch upon camera calibration.

2.1 Projection Matrix

The process of taking a photograph is, in short, a mapping of the 3D world onto a 2D
surface, the image. We can analyze this mapping by developing a camera model, which
typically constitutes a simple central projection.

For a convenient reference frame, we introduce a coordinate system whose origin
lies at the camera center, with thexy plane parallel to the image plane, and thez-axis
perpendicular to the image plane, as illustrated in Figure 2.1. Thez-axis, also called
theprincipal axis, intersects the image plane in the aptly namedprincipal point. The
distancef between the camera center and the image plane is called thefocal distance.

Figure 2.1: World coordinateX is projected onto the image plane at pointx. The focal length
f is the distance between the camera center and the image plane along thez-axis. Figure from
Hartley and Zissermann [4].

If we now represent the 3D world coordinates by the homogeneous vectorX =
(X,Y,Z,1)>, and the 2D image coordinates (ignoring for now the coordinate in the
z-direction,z = f) by x = (x,y,1)>, the central projection around the origin can be

25

26 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

expressed in terms of matrix multiplication:

x =

 f 0 0 0
0 f 0 0
0 0 1 0

X

To allow for an arbitrary coordinate origin in the image plane, (in practice, usu-
ally one of the corners of the image), we generalize by including a translation. The
expression becomes

x =

 f 0 px 0
0 f py 0
0 0 1 0

X

where(px, py)> are the (image) coordinates of the principal point.
The matrix

K =

 f 0 px

0 f py

0 0 1

is referred to as thecamera calibrationmatrix, and its entities areinternal camera
parameters. We can now write simply

x = K [I |0]X

In Section 2.6, we touch upon the camera calibration matrix, and what is gained if the
internal camera parameters are known.

It is generally undesirable to have a coordinate system that is defined by the position
and orientation of the camera (which can also change from image to image). Instead we
would rather use theworld coordinate frame. The two coordinate frames are connected
by a translation and a rotation, which lead to the expression

x = K [R | t]X

whereR is a 3×3 rotation matrix, andt is a 3×1 translation vector, while the coordi-
natesX are now expressed in the world coordinate frame.

The 3×4 matrix
P = K [R | t]

is called theprojectionmatrix, and parametersR andt, which relate the camera’s orien-
tation and position to the world coordinates, are theexternalparameters of the camera.
This is the model we will use, and in this model it is the projection matrix that relates
the 3D world coordinates to the image coordinates.

An even more general expression can be obtained when introducing non-square
pixels for charge-coupled device (CCD) cameras and a skew.

2.2 Single View Metrology

In their seminal paper, “Single View Metrology,” Antonio Criminisi et al. [1] describe
how aspects of the affine 3D geometry of a scene may be measured from a single
perspective image without knowledge of the camera’s internal calibration or position.
It is, however, assumed that some geometric information can be determined from the
image: the vanishing line of a reference plane, and a vanishing point for reference
direction.

2.2. SINGLE VIEW METROLOGY 27

The following measurements can be extracted from an image: 1) distances be-
tween planes parallel to the reference plane (up to a common scale factor), 2) the area
and length ratios on a plane parallel to the reference plane, 3) the camera’s location.
Criminisi et al. describe two approaches: a geometric approach, which is based on
cross-ratios, and an algebraic approach, which (among other advantages) allows for
metric calibration from multiple references.

In this assignment, we calculated distances between parallel planes using both the
geometric and algebraic methods.

2.2.1 Preliminaries

To be able to use the methods described by Criminisi et al. [1], we needed first to
determine the vanishing line of a reference plane, as well as a vanishing point for the
reference direction, which could be any direction not parallel to the reference plane.

The reference plane in a scene is typically the ground plane, in which case its van-
ishing line is the horizon. The reference direction, usually orthogonal to the reference
plane, is therefore usually the vertical direction. To simplify the discussion from here,
we’ll stick to the expressions ground plane, horizon, and vertical direction. With this
setup, the computation of various distances between planes parallel to the reference
plane is simply the computation of the heights of certain objects in the scene.

To obtain the horizon, we first determined the two vanishing points for the two sets
of imaged parallel lines in the directions that define the ground plane. We then con-
structed the horizon as the line passing through these vanishing points. For the vertical
direction, we needed a set of imaged vertical parallel lines. All of these lines could
be rather easily obtained from images depicting structures such as walls, windows, or
stairs.

In Figure 2.4 we see an example image showing the sets of user-selected lines,
which have been plotted in blue. The horizon calculated on the basis of these lines
is shown plotted in red. We also have an image where we can see the position of the
distant vanishing points in relation to the finite image.

2.2.2 Geometric Representation

Our first step was determining the relationship between the heights of objects in the
scene and the camera height. From the basic geometry of the camera illustrated in
Figure 2.2, it is clear that the horizon is the intersection of the image plane with a plane
parallel to the reference plane and passing through the camera center. This means that

Figure 2.2: Basic geometry given a camera in a certain location relative to the ground plane and
the vertical direction. Image taken from Criminisi et al. (with modifications [1]).

28 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

any scene point projected onto the horizon is at the same height (distance from the
ground plane) as the camera was when the image was made.

If there is a vertically oriented object on the ground plane in the scene, its base point
Xb and top pointXt are projected onto the image pointsxb andxt , respectively, which
are collinear with the vertical vanishing pointv (see also Fig. 2.3). The line joining
these three points intersects with the horizonl in a single pointc, which back-projects
onto the scene pointC, which is at camera height.

Figure 2.3: The height of the top plane relative to the camera height as viewed in the image.
Image from Criminisi et al. ([1]).

For the situation illustrated in Figure 2.3, the four pointsxb, xt , c, andv define a
cross-ratio

d(xb,c)d(xt ,v)
d(xt ,c)d(xb,v)

=
d(Xb,C)d(Xt ,V)
d(Xt ,C)d(Xb,V)

which is basic invariance under projectivity.
Using the fact thatV is a point at infinity, and defining camera heightZc and object

heightZ, this reduces to
Z
Zc

= 1− d(xt ,c)d(xb,v)
d(xb,c)d(xt ,v)

Note that the signs in this expression depend on the ordering of the cross-ratio, so one
should take care or use signed distances.

The ordering ambiguity of the cross-ratio can be avoided using an alternative ap-
proach (described in Hartley and Zissermann [4], p. 220–222). We can look at the line
containing the four pointsxb, xt , c, andv as a 1D affine rectification problem. It is
enough to find the homography that will push the pointv to its position at infinity; the
affine properties of the line (length ratios) are thereby restored.

Having established the connection between the scene heightZ and the camera
heightZc, it is enough to have one known reference height (either scene or camera)
to compute all other scene heights usingZc as a link.

2.2.3 Algebraic Representation

For algebraic representation of single view metrology, a scene coordinate system is
defined withx- andy-axes spanning the ground plane, and thez-axis representing the

2.2. SINGLE VIEW METROLOGY 29

vertical direction. This choice of the coordinate frame constrains the parametrization
of the 3×4 projection matrixP as

P = [vx vy αv l̄]

wherevx andvy are (unknown) vanishing points in thex- andy- directions,v is the
vertical vanishing point,̄l = l/‖l‖ is the (normalized) horizon, andα is a scale factor.
Only the last two columns ofP have an influence on the measurements of heights.

Our base and top points are now represented asXb =(X,Y,0,1)> andXt =(X,Y,Z,1)>,
and their images arexb = PXb andxt = PXt , respectively. Exploiting various proper-
ties of the projection matrix, it is possible to obtain the relation

αZ =− ‖xb×xt‖
(l̄ ·xb)‖v×xt‖

which gives the connection between the scene heights and the scale factor, because
the values on the right side are calculated from the image. With one known reference
height, one can calculateα, which can then be used for calculating other scene heights.

If more than one reference distance is known, then an estimate ofα can be derived
from an error minimization algorithm, stacking the linear equations in a matrix, and
finding the solution by means of single-value decomposition. This is refered to as
metric calibration.

2.2.4 Implementation

We implemented both the geometric and the algebraic approaches. Since the algebraic
approach allows for metric calibration, that was our preferred method and is described
here.

• The user defines the ground plane and the vertical direction by selecting lines in
the image.

• The user selects reference heights (known heights) by clicking the line segments
on the image and inputing the known measurements. To ensure that the selected
line segments are vertical, after the user clicks the top pointxt , the line connect-
ing xt and the vertical vanishing pointv is plotted. The user should then click
the base pointxb on the plotted line.

• The user selects unknown heights in a similar way. (See Fig. 2.4, right.)

• The scale factorα is calculated from the metric calibration algorithm.

• Unknown heights are computed.

• A new figure is generated, depicting the reference heights and calculated heights
superimposed on the image.

2.2.5 Results

In Figure 2.5, we display some of the obtained measures. The top-left image is an ex-
ample of scene heights obtained fromone reference height. In the top-right image,
three reference heights were used for metric calibration. In both images, the esti-
mated door height falls in the range 297–203 cm. The estimated chair height varies

30 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

Figure 2.4: Preliminaries.Left: Sets of user-selected reference lines, shown in blue. The user-
selected lines are used to calculate the vertical vanishing point and the horizon (shown in red).
Center: Depiction of the position of the distant vanishing points in relation to the finite image.
Right: Plot of top and base points and height representations (blue) of objects in the scene (cf.
Fig. 2.6).

Figure 2.5: SVM results.Top left: Four heights that were calculated from a single reference
height. Top-right: Three reference heights used for metric calibration.Bottom row: Further
examples of height estimations. Reference heights are shown in blue, calculated heights are
shown in green, and the horizon is given in red. The camera height is given in green, and can be
found near the middles of the horizon lines.

2.2. SINGLE VIEW METROLOGY 31

Figure 2.6: Comparison of and algebraic (middle column) and geometric (right column) method.
Top row:Well chosen top and base points.Middle and bottom rows:Poorly chosen top and base
points.

much more; because the chair has no vertical edges, it is difficult to choose well-
corresponding base points for any given top point.

The measurements shown in Figure 2.5, bottom-row middle and bottom right,
were obtained using the same settings: the same horizon and vertical vanishing point.
Among other distances, we estimated the heights of the metal tree cylinders (which we
knew to be 90 cm tall); these estimations fell in the range of 88–91 cm. The estimated
height of the woman varies as much as 6 cm, again due to the difficulties of having to
choose corresponding top and base points.

Comparing the geometric and algebraic methods, we often noticed rather large fluc-
tuations between consecutive estimations using the same method, but we also noticed
significant differences between the results obtained from the two methods. This was
most evident in one of the images and some of our observations are shown in Fig-
ure 2.6. In the first row, we have an example of well chosen corresponding top and
base points (collinear withv), and in that case the results obtained by the two methods
were very similar to each other. In the middle and bottom rows, however, we see the
results of poorly chosen top and base points (not collinear withv), and the results from
two methods differed greatly. Clearly, these are poorly defined problems and we cannot
expect correct results. However, we did observe that the two methods each handle this
difficulty in ways that are very different from each other. The algebraic method seems
to be more sensitive to this type of problem, whereas the geometric method seems more

32 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

robust. It would therefore be advisable to enforce the collinearity of the pointsxt, xb,
andv as an integral part of the implementation. This could be done, for example, by
fitting a line throughv that minimizes the sum of square distances fromxt andxb. Note,
however, that this recommendation is based on a very limited number of observations.

2.3 Fundamental Matrix

When images of the same object are taken from two different views, the resulting
situation is illustrated in Figure 2.7. A pointx from the imageI is back-projected as
a ray through the camera centerC. In another imageI ′, this ray projects to a linel′.
The linel′ is called theepipolar line for x, and it is on this line that we must search for
pointx′.

Regardless of which pointx we choose to start with in the imageI , its epipolar
line in another image will always contain the image of the camera centerC. Hence, all
epipolar lines intersect at a single point called theepipole.

Figure 2.7: A pointx in the image to the left becomes a linel′ in the image on the right. Figure
from Hartley and Zisserman [4].

The geometry between these two views is independent of scene structure, depend-
ing only upon the internal parameters of two cameras and their relative positions. How-
ever, we can find the relation between two images without knowing those parameters
explicitly.

Aligning the world coordinates with the coordinate frame of the second view, the
projection of the world pointsX onto imagesI andI ′ can be expressed as

x = K [R | t]X

x′ = K′ [I |0]X

where the rotation matrixR and the translation vectort relate the orientations and po-
sitions of the two cameras. Introducing a skew-symmetric matrixT, which defines the
cross product witht, and using various properties of symmetric and skew-symmetric
matrices, a relation

x′>Fx = 0

can be obtained [6], whereF = K′−>TRK−1 is thefundamentalmatrix that encapsu-
lates the two-view geometry.

Matrix F is homogeneous and singular, becauseT is singular. As a consequence,
matrix F maps points onto lines, and because the pointx′ lies on the epipolar linel′,

2.4. FUNDAMENTAL MATRIX ESTIMATION 33

the mapping defined byF is the mapping between points in one image and the epipolar
lines in the other:

l′ = Fx

It can additionally be shown thatF> is the fundamental matrix of the pair in the oppo-
site order.

2.4 Fundamental Matrix Estimation

Estimation of the fundamental matrixF was not a mandatory part of the assignment,
and we have implemented it primarily for our own information. The first part of the
task was to make a function for which, given a set of point correspondences, returns
the fundamental matrix. Secondly, a function should be made that displayed points in
one image and the corresponding epipolar lines in another image.

2.4.1 Theory

The fundamental matrixF must satisfy the condition

x′>Fx = 0

and this means that it is possible to estimateF, given enough point correspondences.
Indeed, the algorithm for estimating the fundamental matrix from point correspon-
dences is similar in nature to the algorithm for estimating a homography from point
correspondences (see Section 1.2), as well as a host of similar estimation problems.
We have described the calculation for homography estimation in some detail; we will
provide comparatively less detail here.

Each point correspondence gives rise to one linear equation; therefore, in the min-
imal case one would need 7 points to estimateF, since the last 2 constraints are found
in the fact thatF is homogeneous and singular.

The singularity constraint is not linear in the elements ofF and is therefore cumber-
some to enforce [6], so we ignored the singularity constraint and used 8 points to find
the initial linear solutionF̃. We then enforced the singularity constraint by replacing
F̃ with the closest singular matrix,F, wheredetF = 0, using SVD [4] and by finding
the smallest singular value ofF̃ and setting it to 0. As usual, normalization is required
for improved accuracy of the result; in fact, in the case of estimating the fundamental
matrix, it is considered the key to success. Normalization is discussed in more detail in
Section 1.2.

Hartley and Zisserman [4] advise that the 8-point computation for the fundamental
matrix is therefore done in two steps: 1) derivation of the linear solutionF̃, and 2)
enforcement of the singularity constraint and the replacement ofF̃ with F, the closest
singular matrix toF̃.

2.4.2 Implementation

Our implementation therefore comprised the following steps:

1. The user selects at least 8 point correspondences.

2. The point sets are normalized (translated and scaled).

34 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

Figure 2.8: Estimation of the fundamental matrix using the 8-point algorithm.Top row: Point
correspondences used for estimation ofF. Middle row: Epipolar lines determined by the corre-
sponding points. The epipoles (locations where epipolar lines meet) reveal camera locations: the
epipole in theleft image is where the camera was when theright image was captured, and vice
versa (the left epipole is outside the boundary of the image).Bottom row:Testing points and the
corresponding epipolar lines.

2.4. FUNDAMENTAL MATRIX ESTIMATION 35

Figure 2.9: Further testing of estimations of the fundamental matrix for a pair of images.

Figure 2.10:Left: The effects of a non-singular fundamental matrix, i.e., if Step 5 of the 8-point
algorithm is omitted. Epipolar lines do not meet in a single point.Right: Results of enforcing
singularity using the SVD method.

3. A linear system is composed by adding a row to the matrixB for each point
correspondence.

4. The solution of the linear system is found as the smallest singular value ofB
(please see Hartley and Zisserman [4], or our implementation, for an explanation
of how B is calculated).

5. Using another SVD, the initial solution is replaced by the closest singular matrix
(i.e., replacing the last column ofV by zeros).

6. The final solution that matches the original data is obtained by de-normalization.

7. Plot the epipolar lines in both images.

8. Plot the points in one image and the corresponding epipolar lines in a second
image.

2.4.3 Results

Figure 2.8 displays two images of a scene, each taken from rather different positions
and angles. The top row shows the point correspondences that were used to estimate

36 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

the fundamental matrix. In the second row, we have plotted the corresponding epipolar
lines in both images, and in the third row are the results of the test of the estimated fun-
damental matrix, with points and corresponding epipolar lines plotted together. Epipo-
lar lines meet in the epipole, and by looking at the figure we can verify that the epipole
is the image of the camera center of the other view.

Figure 2.3 is another example of two images taken from slightly different positions
and angles, for which we calculated and tested the fundamental matrix.

Figure 2.10 demonstrates the effects of a non-singular fundamental matrix. The
epipolar lines do not meet in a common epipole when Step 5 of the algorithm, replacing
the initial solution with the closest singular matrix, is omitted.

2.5 RANSAC

We implemented the RANSAC algorithm for estimating a line. The RANdom SAmple
Consensus algorithm is a robust estimator, one that can find the best estimate of a line
from a set of points, even given a large proportion of outlying points.

2.5.1 Theory

When fitting a straight line through a set of 2D points, the least-squares solution (for
example, SVD) will provide the best-fit line, such that the distances between all points
in the set and the line are as small as possible. These methods are especially conve-
nient when the set of points already suggests a line. But when the set of points includes
obvious outliers, and we can intuitively presume (or know already) that the outliers rep-
resent some error or belong to some other data set, it becomes clear that least-squares,
executed over the entire data set, will return a solution that can be quite different from
the apparent one. We want a method that will ignore the outliers, and return a solution
that approaches or meets our expectations.

RANSAC, being a robust estimation algorithm, best-fits a line by testing all or a
subset of all possible lines (with large data sets, it is time-consuming and unnecessary
to check every possible point pair), and then returns the line with the mostsupport,
that is, the line with the greatest number of corroborating inliers. Since outliers will
normally be cast among the solutions with the least support, it is not probable that the
algorithm will return a best-fit line that includes them.

In Computer Vision the RANSAC algorithm is often used for automatic computa-
tion of homographies and fundamental matrices, since automatically determined set of
corresponding points usually contains outliers. We present our attempt of automatic
homography estimation in section 1.3.7.

2.5.2 Implementation

The RANSAC algorithm is presentedin Hartley and Zisserman [4] for RANSAC robust
estimation, which was adapted from Fischler and Bolles [2]. The algorithm asks for
the threshold on the number of inliers, and then iterates until the suitable line is found.
We simplified our implementation by setting the number of trials as input.

1. Determine number of iterationsn, and the distance thresholdt.

2. Forn iterations do:

2.5. RANSAC 37

Figure 2.11: Plots illustrating RANSAC execution.Top row:Four random samples.Second row,
left: Best sample (out of 20);Right: SVD-fitted line through the inliers of the best sample.

• Randomly choose two different points from the data set, and estimate the
line that connects them.

• Count the number of points that lie within the threshold distance from the
line—the inliers (support) for the sample.

• If the support is the highest achieved, save the line.

3. Return the best line.

In sum, RANSAC performs an initial estimate for the data set, essentially dividing
the set into two subsets, inliers and outliers. The best-fit is then made on the basis of
the inliers only, and this can be done by means of least-squares, SVD, Huber, or some
other robust norm. The model is evaluated by consensus, and depends heavily on the
criteria initially declared for the distance threshold.

In our implementation SVD-fitted the final line trough the set of inliers of the best
sample returned by RANSAC.

In step 1 of the algorithm the number of iterations has to be set. How can one
know when sufficient number of samples has been tested? A usual practice is to test so
that there is a 99% chance of finding at least one sample with all inliers. The needed
number of iterations can be calculated from the probability that any data point is an
inlier.

2.5.3 Results

Figure 2.11 displays RANSAC in action. In this example, we chose to run 20 iterations
over the 100-point data sets. In the top row we display few of the evaluated samples,
with different number of support. In the bottom row we have a best sample as returned
by RANSAC, and also the SVD-fitted line trough the inliers of the best sample. Note

38 CHAPTER 2. SINGLE-VIEW GEOMETRY, STEREO, AND RANSAC

that the line fitted trough the inliers has less support than the best sample. (It is also
possible that the line fitted trough the inliers hasmoresupport then the best sample.)

2.6 Camera Calibration

For this exercise, we were given the following calibration matrix:

K =

 640 0 320 0
0 640 240 0
0 0 1 0

and our task was to make a function that displays the normal to a plane in the image.

2.6.1 Theory

The camera’s internal calibration matrixK gives the transformation between the image
pointx and the directiond = K−1x of a ray defined byx and the camera center.

The directiond is expressed in terms of the camera’s coordinate frame, so it is
not particularly useful in and of itself if we don’t know the orientation of the camera.
However, with two directions available, we can measure the angle between two rays
passing through the camera center, and then we can also measure the angle between two
scene lines from their vanishing points. This allows for the formulation of a number of
orthogonality relationships among vanishing points and lines.

To solve the task we used the following relation:

If a line is perpendicular to a plane then their respective vanishing pointv
and vanishing linel are related byl = ωv and inverselyv = ω∗l ([4], p.
219),

whereω andω∗ are the image of the absolute conic and the dual image of the absolute
conic, respectively, which relate toK by ω = (KK>)−1 andω∗ = KK> ([4], p. 210).

2.6.2 Implementation

To simplify the selection of a plane, we limited the problem by stipulating that planes
would be defined by a scene rectangle. This can easily be extended to any plane for
which the vanishing line can be calculated.

1. ω∗ is calculated usingω∗ = KK>.

2. The user selects a plane by clicking on the corners of the rectangle.

3. The vanishing linel of a plane and the center of the rectangle are calculated.

4. The vanishing point for the normal direction is calculated usingv = ω∗l.

5. The normal is plotted as a line connecting the center of the rectangle and the
vanishing point for the normal direction.

Additionally, a function that estimates the camera calibration matrix purely on the basis
of the image’s dimensions was made, so as to enable the use of images with other
dimensions.

2.6. CAMERA CALIBRATION 39

Figure 2.12: Normals to the plane from camera calibration. The user chooses planes by clicking
corners to make rectangles (blue), from which the normal to the plane can be calculated (red).
Vertical normals were generally well calculated, but note that in the left image, for example, the
normal to the cabinets and the normal to the drawers do not meet at the vanishing point where
the lines defined by the sides of the table meet. This is probably caused by the poor estimation
of the calibration matrix.

2.6.3 Results

Results can be seen in Figure 2.12. One should keep in mind that these results were
obtained without a correct calibration matrix. Still, we can see that the direction of the
normal was quite well calculated.

Chapter 3

Tracking

3.1 Models for Tracking

Tracking models are often integrated within one another. The Kalman filter and particle
filtering are both included among the general set of probabilistic tracking models and
the constant-velocity model can be integrated into either Kalman or particle filtering.
We will discuss each of these models in turn, and present implementations for both
Kalman filtering and particle filtering.

3.1.1 Probabilistic Model

Tracking is about inferring the motion of an object throughout an image sequence. A
moving object can be said to have a certain underlying state—which usually consists
of such variables as its position and velocity, but often other variables as well. From
frame to frame, we obtain measurements, which tell us something about the state of
the object.

Two of the most common problems in tracking are uncertainty, wherein the accu-
racy of observed results is a function of probability, and the presence of noise, wherein
errors are introduced before the result can be observed and measured.

In the probabilistic model, the state of the object at theith frame is the random
variableX i , the measurement obtained inith frame is the random variableY i , and we
use the notationyi for thevalueof the variable.

Supposing we know what the measurements tell us about an object’s state, there
are two issues we must concern ourselves with:

Prediction: When there is a sequence of previous measurementsy0, . . . ,yi−1, how
can we predict the state for the next frame? That is, we wish to represent
P(X i |y0, . . . ,yi−1).

Correction: Having also obtained a measurement for the current frame, how do we
estimate the current state? That is, we wish to representP(X i |y0, . . . ,yi).

We simplify the problem considerably by assuming that only the immediate past
matters, and that the measurement depends only on the current state. Those indepen-
dence assumptions make it possible to use mathematical induction and Bayes’s rule to

40

3.1. MODELS FOR TRACKING 41

obtain the following expressions for prediction,

P(X i |y0, . . . ,yi−1) =
∫

P(X i |X i−1)P(X i−1|y0, . . . ,yi−1)dX i−1

and correction,

P(X i |y0, . . . ,yi) =
P(yi |X i)P(X i |y0, . . . ,yi−1)∫

P(yi |X i)P(X i |y0, . . . ,yi−1)dX i

We now need to find a representation of the tracking problem, one that is strong
enough to do the tracking, but simple enough for the above expressions to be evaluated.

If we consider only linear dynamic models and linear measurement models, both
with Gaussian noise, all densities will be Gaussian, and their integrals are quite well
behaved. We can then obtain the analytical solution for the representation, which we
present in Kalman filtering. In case of non-linear models there is no general solution,
but one approach is to integrate using sampling of the probability distributions, as we
present it particle filtering.

3.1.2 Kalman Filter

Our dynamic model now consists of a state and a measurement, both random variables
with a normal probability of a certain mean and covariance. If we denote the valuex
of a Gaussian random variable with meanµ and covariance matrixΣ asx ∼ N(µ;Σ),
we can write our dynamic model as

xi ∼ N(Dixi−1;Σdi)
yi ∼ N(Mixi ;Σmi)

In 1960, R.E. Kalman published a solution to this problem, known as the discrete-
data linear filtering problem [8]. We can also make use of his algorithm to produce not
only probable but reasonably accurate results for use in tracking.

The discrete Kalman filter operates within the framework of optimal estimation
theory. It is an algorithm that recursively estimates a moving object’sstateand the
uncertainty, returning the best estimate in the assumptions of linear systems.

Four equations make up the basic algorithm, which essentially takes the estimated
state of the object from the previous frame in the sequence and estimates the ob-
ject’s state (position) in the next frame—thepredictionupdate. Once the measured
state is known, the algorithm recalculates the estimation taking the measurement into
account—the correction update.

Following are the Kalman equations, which serve as a general recipe for imple-
mentation. We also present a simple example from our assignment in Section 3.2. As-
suming we know the initial statex−0 and covariance matrixΣ−

0 , the prediction-update
equations are

x̂−i = Di x̂+
i−1

Σ−
i = Σdi +Di Σ+

i−1D>
i

and correction-update equations are

Ki = Σ−
i M>

i (Mi Σ−
i M>

i +Σmi)
−1

x̂+
i = x̂−i +Ki(yi −Mi x̂−i)

Σ+
i = (I−Ki Mi)Σ−

i

42 CHAPTER 3. TRACKING

(from Forsyth and Ponce [3]). These equations provide a recursive solution. First,
based on the previous state wepredictthe new statêx−i , where the model ofuncertainty
is the state covariance matrixΣ−

i . After we obtain the measurement for the current
frame, wecorrect the state estimation̂x+

i , again with uncertainty in the covarianceΣ+
i .

The corrected state estimation is the combination of two terms. The first term is the
predictionx̂−i , and the second term is theinnovation, (yi −Mi x̂−i), which is based on
the current measurementyi . It is thegain matrix Ki that serves as a kind of weighting
function between the two terms, which in essence evaluates whether the estimated state
relies more on the prediction or the (generally noisy) measurement. We can see that
with a very noisy measurement (large entries in the measurement covariance matrix
Σmi), the gainKi would have small entries, making the correction rely predominantly
on the prediction.

The Kalman filter general solution is such that the state and measurement covari-
ances and matrices could change from frame to frame. We will focus on a much simpler
case.

3.1.3 Constant-Velocity Model

The constant-velocity model is the model we needed to build for the assignment. We
consider that one feature point moves with constant velocity between frames. We in-
clude both the position and the velocity of the object in the state vector

x = (x,y, ẋ, ẏ)>

In doing so, we implicitly save all information needed about the past states in terms of
velocity.

With the units of velocity expressed in terms of frame rate, we describe the linear
dynamic model as

xi = Dxi−1 +d

whereD is thestate transition matrix

D =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

andd represents zero-mean Gaussian system noise, with covariance matrixΣd.

At every frame we are provided with the estimation of the point’s position, so we
describe the measurement model by

yi = Mxi +m

whereM is themeasurement matrix

M =
[

1 0 0 0
0 1 0 0

]
andm is zero-mean Gaussian measurement noise, with covariance matrixΣm. In this
model, the measurement matrixM maps a four-dimensional state to a two-dimensional
position, so even though we only see the position of the object, we can still estimate
the whole state vector.

We can now use the Kalman filter to track the moving object. There are still a
few things to consider, however. We need to supply the initial state and covariance
estimates. More importantly, we often need toestimateboth system and measurement
noise. Those settings will greatly influence the estimation.

3.2. SIMPLE OBJECT TRACKING 43

3.2 Simple Object Tracking

As an assignment, we were given a function that returned a set of measurements (×
symbols in Fig. 3.1, left), roughly tracing the outline of a circle in a counter-clockwise
direction. If we assume that this path was made by an object that does not make such
erratic movements, we can therefore assume that errors were introduced somehow into
the measurements. (Note, due to random generation, measurements were different for
each execution.) Our task was to estimate the underlying path of the moving object, and
plot the estimation (as in Fig. 3.1, right). Later in the assignment, we would be expected
to apply our working Kalman implementation in some eye-tracking exercises.

Figure 3.1:Left: Given path, corrupted by noise. The× symbols represent discrete measure-
ments.Right: Noisy path shown with estimated underlying states (black dots).

3.2.1 Implementation

To develop our Kalman filter, we used the model described in the previous section
and implemented it directly. Apart from functions that implement the equations of
the Kalman algorithm, only additional functions are those for visualizing the results:
plotting predictions, estimations and uncertainty regions.

We assumed that the movements in thex- andy-directions were independent, so the
noise covariance matrices would be diagonal matrices. We also wanted to supply some
information about the size of the uncertainty region; we simply extracted the uncer-
tainty in thex- andy-directions to form the diagonal elements of the state covariance
matrix (as mentioned in Trucco and Verri [7]), and plotted it as an uncertainty rectan-
gle. The diagonal entries in the covariance matrix were variances, which we expressed
in terms of standard deviation, and usually ploted the region spanning±3 standard de-
viations. A general approach is to find the eigenvectors of the covariance matrices and
form theuncertainty ellipse.

Implementation steps are therefore:

1. All settings are chosen: dynamic model, system and measurement noise, scaling
for uncertainty region.

2. State and covariance are initialized.

44 CHAPTER 3. TRACKING

3. Kalman filtering, for each frame:

• Prediction: predicted state and covariance matrix are obtained from the
Kalman filter.

• A “measurement” is obtained from the providedTrackGenerator func-
tion.

• Correction: the estimated state and covariance matrix are obtained from the
Kalman filter.

• Two plots are made—one with the predictions, the corresponding uncer-
tainty regions, and the actual measurement, the other with the state estima-
tion, the corresponding uncertainty regions, and the actual measurement.

3.2.2 Results

We tried to track the dot with different estimations of the system and measurement
noise. Results are shown in Figure 3.2. The setting that best met our expectations is in
the top tow, with rather small system noise (the point is moving nicely and uniformly
in the circle), and rather large measurement noise (causing the erratic observed path).
We set the initial position in the origin, and we see that the system finds the correct
path after a few frames. Uncertainty is initially large, but it soon becomes stable. The
other rows of the figure demonstrate how different noise settings influence the behavior
of the Kalman filter.

In the second row we set the system noise to an even smaller value (in hopes of
getting a nicer circle). As a result, the Kalman filter estimated the states mainly on the
basis of prediction; it followed the noise-free path, not really caring for the measure-
ments. So, we did get a nicer circle, just not the circle we wanted.

In the third row, the system and the measurement noise were 1000 times greater
than in the first row, but theratio between the two noises is the same. We see here
that it took more frames for the tracking to recover from bad initialization, but after
that, the overall appearance of the track was more or less the same, meaning that (once
the system stabilized) it was mainly the ratio of the two noises that determined the
weighting when estimating the states. The size of the uncertainty region was, however,
greatly influenced by the very large noises—the uncertainty regions were so big that
they didn’t even fit into the plot.

In the last row we set the system noise to be large and measurement noise to be
small; the Kalman filter behaved exactly as expected. We immediately saw that the
state estimation basically coincided with the measurement, and the uncertainty region
for state estimation was very small—the filter relied on (not very noisy) measurements.
It was, on the other hand, difficult to predict the movement of such a noisy system, and
as a result, the uncertainty regions for predictions were large.

3.2.3 Further Experimentation

The task was to try to use the Kalman filter on the tracking data provided in previous
assignments (Sections 1.4 and 1.5).

We simply passed the noisy tracking data through the Kalman filter, and we ob-
served various degrees of smoothing, depending on the choice of the noise parameters.
We had to choose settings that would successfully smooth the path, but not deform it.
The result that we consider best is shown in Figure 3.3. The system noise here was

3.2. SIMPLE OBJECT TRACKING 45

Figure 3.2: Comparison of Kalman implementation of the same noisy path, with varying sys-
tem and measurement noise.Left column:Predictions, their respective uncertainty regions and
prediction errors.Right column:Corrected state estimations, uncertainty regions for estimations
and the difference between the measurement and the state estimate.Top row: Small system
noise,Σd = 0.03I , and large measurement noise,Σm = 2I . Second row:Even smaller system
noise,Σd = 0.03I , andΣm = 2I . Third row: System and measurement noise 1000 times greater
than in top row (Σd = 30I andΣm = 2000I). Bottom row:Big system noise,Σd = I , and small
measurement noise,Σm = 0.05I).

46 CHAPTER 3. TRACKING

Figure 3.3:Left: The noisy path of the walker from the exercise in Section 1.4.Right: Smoothed
path estimated using Kalman filter and the uncertainty region (cyan). System noiseΣd = 0.003I ,
measurement noiseΣm = 10I , and the radius of uncertainty regions= 2 st.d.

very, very small, but that can be explained by the very small differences between the
frames.

We also include a small experiment, in which we kept increasing the measurement
noise until the estimated path was so smoothed that it didn’t even resemble the original.
The same result can be obtained by decreasing the system noise.

Figure 3.4: More experiments with varying noise. In all, system noiseΣd = 0.003I , while
measurement noiseΣm varies from 0.1I to 106I .

3.3 Eye Tracking

Our task was to make a Kalman filter for tracking eyes in image sequences. This task
is an extension of the previous, so we’ll not repeat the issues we already discussed
in the previous task. We were given four image sequences, each of which featured a
human subject in close-up, slowly rolling their heads. Each image sequences, therefore,
showed the two eyes of the subject tracing certain paths, which we were to calculate.

3.3. EYE TRACKING 47

Having the Kalman filter working, we only had to decide on the method that would
return an estimate for the location of the eye from each frame. We thus decided to
correlate the uncertainty area around the predicted position with the template of the
eye, and find the position that yielded the maximum correlation for each frame. To
obtain the template and initial location of the eyes, the user was to click on the eyes in
the first frame of the sequence (clicking as close to the center of each iris as possible).

One challenge was that as the subjects’ faces turned, their eyes would actually
change shape—when faces were tilted backward, for example, the eyes looked com-
paratively narrower than when the subjects faced front. Likewise, the ellipsis shape of
the eyes appeared to rotate in one direction, and then back again, over the course of a
full revolution of the head.

3.3.1 Implementation

1. All settings are chosen: system and measurement noise, scaling for the uncer-
tainty region, and the size of the template.

2. The first frame of the sequence is displayed, and the user clicks on the eyes. Tem-
plates of the determined size are taken out of the image, and the initial position
is saved.

3. The state vector and state covariance matrix are initialized.

4. Kalman filtering is performed for each frame of the sequence:

• Predictions and covariance matrices are estimated from the prediction equa-
tions. Uncertainty regions are estimated from the covariance matrices and
scaled by the scaling factor.

• Uncertainty regions are correlated with the templates. The pixel with max-
imal correlation is taken for the estimated measured position of the eye.

• Underlying states are estimated from the correction equations.

• The positions of the predicted states and uncertainty regions, measured
states obtained from correlation, and corrected estimated states are plotted
on top of the image.

5. The final path is plotted on top of the images from the sequence.

3.3.2 Results

The weak point of this tracking scheme was the correlation. The appearance of the eyes
changes a lot across the frames, as described above, and there was a substantial risk that
the correlation function would pick up some other facial feature. When that happened,
the Kalman filter would be unable to return to the right track—jumping to another
feature is definitely not a characteristic of linear measurement with the Gaussian noise.
Still, we managed to successfully track eyes in a couple of sequences. We discussed
the possibility of using a tracked eye from the previous frame as a template, to deal
with the changes in the eyes’ appearance, but then we would also need to deal with the
propagation of the error.

In Figure 3.5 is an example of a successful track. We had to experiment a lot with
different settings, changing the noise matrices, uncertainty-region scaling, and the size
of the template. It was very important to adjust the scaling of the uncertainty region

48 CHAPTER 3. TRACKING

Figure 3.5: An example of successful tracking.Top-left: Manual selection of the template and
initial positions.Top-right: The result of tracking, the complete paths of both eyes.Rows 2 and
3: Other example frames from the tracking sequence.

so that it was small enough so as to exclude any other dark facial features, such as
nostrils or eyebrows, that might be mistaken for eyes—but also big enough to contain
the entire eye. In Figure 3.6 (last row), we show an example of an uncertainty region
that is too small. The eye is too close to the edge of the uncertainty region, and because
of the zero-padding, it was not found as a point of maximal correlation. In Figure 3.7,
we give an example of an uncertainty region that is too big, such that in one frame,
the correlation becomes stranded on the nostril. The Kalman filter returns an estimated
position that is between the correctly predicted position and the wrongly measured
position, which moves the prediction for the next frame to a nostril and can never
correct itself.

Figure 3.8 provides details of two frames. The blue dot represents the predicted
position; the red× represents the measured estimated position (from correlation), and
the cyan + represents the estimated corrected state. On the left side, everything co-
incides neatly; on the right, however, is an example of the tracked object suddenly
changing direction—the prediction keeps moving in the former direction, the correla-

3.3. EYE TRACKING 49

Figure 3.6: Correlation.Left: Example uncertainty regions, the position of maximal correlation
plotted on top.Center: The template from the first frame of the sequence.Right: The result
of correlation with the position of maximal correlation plotted on top.Bottom row:Example of
failure; uncertainty region too small.

Figure 3.7: An example of unsuccessful tracking, caused by the uncertainty region being too
large.

50 CHAPTER 3. TRACKING

Figure 3.8: Details of example frames from tracking sequence. Tracking can be improved by
forward-backward filtering. Blue dots, prediction of position; red×, correlation maximum (mea-
surement); cyan +, estimate of the state.

Figure 3.9: Other eye-tracking examples.Left: The left eye is lost and subsequently recovered.

tion correctly measures the positions as going backward, and the estimated corrected
state falls in between. The performance of the Kalman filter in such situations can be
improved by forward-backward smoothing, where an estimate that fits both the past
and the future behaviors of the point is found.

Figure 3.9 shows two other examples of successful tracks. On the left is a track that
actually went astray and then recovered itself.

3.4 Particle filtering

Many natural dynamics models are non-linear, making it difficult to represent the prob-
ability P(X i |y0, . . . ,yi). Furthermore, the likelihood functionP(Y i |X i) can have mul-
tiple peaks, and the largest peak might not correspond to theright peak. An example
is a measurement that is not only noisy, but sometimes also jumps to the wrong fea-
ture. We therefore need the representation ofP(X i |y0, . . . ,yi), which allows us to keep
track of multiple peaks until it is resolved which one is the right one. One approach
is particle filtering—a method that maintains a radically different representation of the
relevant distributions than Kalman filter does ([3], from Forsyth and Ponce’s notes on
their website at http://www.cs.berkeley.edu/ daf/book.html).

The reason why we need the representation of the probability distribution is to
compute expectations, which are integrals. It is possible to represent the probability
distribution with a random set of weighted samples, and approximate the expectation

3.4. PARTICLE FILTERING 51

with the sum over the samples. This approach of integrating by sampling is called
Monte Carlo integrationand is exploited in particle filtering.

We can do our steps of prediction and correction once our probabilities are repre-
sented by samples, calledparticles. For the prediction, we start by having a representa-
tion of P(X i−1|y0, . . . ,yi−1) as the set of weighted samples. Moving the samples using
the chosen dynamic model, we can generate a representation ofP(X i |y0, . . . ,yi−1) as
another collection of samples ([3]). For the correlation, we take the samples at the
predicted position and adjust their weights.

For a workable particle filter, we also need to resample the particles at each step.
We draw the samples from original set of samples using their weights as the probability
of drawing a sample. The new set would predominantly contain particles (probably not
distinct) that appeared in the old set with high weight.

3.4.1 Implementation

Following the theory, we implemented an algorithm for a particle filter. Our imple-
mentation is simply based on a difference image obtained by background subtraction
(more in Section 3.5). We chose to use the simplest dynamic model—random motion.

Roughly speaking, we spread out a population of particles over the the image and
let them wander with a certain amount of randomness. For every frame, we evaluated
each particle’s significance by sampling the slightly smoothed difference image at the
sample’s position (which should leave a high value for a desired feature, and close
to zero otherwise). This evaluation is defining the individual weight of the particles.
By combining these weights and the particle positions, we can get a weighted-mean
position of our feature in the image. We resample our particle set without changing
the total number of particles. It means that we let the heaviest survive (and multiply),
while the particles with the small weights are likely to be discarded. And as the last
thing before moving onto the next frame, we propagate the particles by simply adding
random noise to each one. The propagation step can incorporate a certain dynamic
model, where all the particles are first moved according to some deterministic dynamics
(drift), and then individually perturbed (diffuse). We elected to use only the random,
diffuse movement for propagation.

In short, the outline of our implementation is as follows:

1. Determine the needed settings: number of particles, noise for propagation.

2. Initialize particles randomly across the image, or the part of the image.

3. Perform the particle filtering, for each frame:

• Evaluate the particles using the difference image.

• Calculate the weighted mean of all particles.

• Plot particles and the weighted mean on top of the image from the se-
quence.

• Resample particles so that the number of particles doesn’t change.

• Propagate particles.

4. The final path is plotted on top of the image from the sequence.

52 CHAPTER 3. TRACKING

3.4.2 Results

We used our particle filter on three image sequences. The fist sequence is an easy task
of tracking a single person walking in a empty room. The difference image for this
sequence gives a good segmentation, so we used it for learning about the behavior of the
particle filter. The filter performed well (see Figure 3.10). In a few empty frames before
the person entered the room, the particles were randomly moving around, sometimes
finding some noisy pixels. When the person entered the room it took a few frames
for the first particle to land on the high-valued pixel, but once that happened the result
was a nice track, with high-weighted particles staying within the body of the person
and low-weighted particles diffusely floating around. In the plot of the final path, the
first part of the path corresponds to the noisy movement before the person entered the
room. Figure 3.11 shows a detail of a tracking frame and the difference image which
was a base for tracking. We can verify that the particles are assigned high weight on
the positions where the difference image has high values.

The second sequence is our much-used film with the person walking on the ground
floor of the ITU building. We initially spread the particles only in the area around the
person, to increase the chances of the particles finding him quickly. We experimented
by changing the number of particles and the randomness of the particle propagation.
If the random propagation of particles had a relatively large standard deviation, we
observed that the particles jumped from one moving person to another, sometimes
splitting in two sets (see Figure 3.12), and often continuing to track the person with
darker clothes. When we decreased the randomness of propagation, particles stayed
with the object, and we managed to successfully track him through the sequence. A
frame from the successful track, the difference image that was the basis for the tracking,
and the final tracked path are shown in Figure 3.13. These should be compared with the
tracking paths that were provided for the previous tasks and can be seen in the figures
of Section 1.4.

We also tried, with less success, to apply the particle filter for tracking eyes. As
the basis for this tracking, we used the difference image between two corresponding
sequences—one in which the person has dark eyes, and one where the eyes were made
lighter. This difference image was rather noisy, and if we increased the randomness
of the propagation, the particles were repeatedly getting stranded on the noise (see
Figure 3.14). Decreasing the standard deviation of the random movement would result
in particles that were unable to follow the eyes. Frames in Figure 3.14 are sorted
chronologically, and we can verify that the particle filter is capable of returning from
distraction. There were unfortunately too many such distractions for this tracking.

Compared with our success in using the Kalman filter on the same data, the results
of particle filtering were a bit disappointing. However, one has to bear in mind that
the particle filter was using random motion instead of some better dynamic model.
Furthermore, particle filtering was based on the difference image, whereas we used
correlation with Kalman filtering.

In the frames where we managed to successfully track the eyes using the particle
filter, we still could not plot the path of the movement, having the the weighted mean
located in the area between the eyes, jumping from one eye to the other. This made us
discuss the possible ways of grouping the particles. We considered using thek-means
clustering algorithm to divide the particles into two groups. The location of each eye
would then be calculated as the weighted mean of the cluster, and whether the eye was
left or right would be determined by comparison with the previous frame. We roughly
implemented the algorithm, but have never used it due to the poor tracking results.

3.4. PARTICLE FILTERING 53

Figure 3.10: Tracking the person entering the empty room. We used 300 particles, and the
standard deviation of 30 pixels for the random movement.Top-left: Initialization over the whole
image, particle weights still not assigned.Middle: Tracking, plotted particle sizes correspond to
the weights. Weighted mean plotted as a red circle.Bottom-right:The resulting path. Note that
the noisy part of the path corresponds to frames before the person entered the room.

Figure 3.11: Details of the particle filtering frames.Left: Tracking frame with the particles of
different weights plotted on top of the image.Right: Corresponding difference image, which
was a base for evaluating weights.

54 CHAPTER 3. TRACKING

Figure 3.12: Three equally spaced frames illustrating the split of the particle set when tracking a
person walking in ITU building. Settings used: number of particlesN = 1000, standard deviation
for random propagationΣ = 5I .

Figure 3.13: Successful track of the person walking.Left: A frame from the tracking sequence
with the particles plotted on top.Middle: Corresponding difference image, which was a base
for evaluating the particle weight.Right: Final path; should be compared with the figures in
Section 1.4.

Figure 3.14: An attempt of tracking the eyes using particle filtering with some relatively suc-
cessful and some unsuccessful frames, with partial or complete distraction by noise. Frames are
sorted chronologically.

3.5. ROBUST BACKGROUND SUBTRACTION 55

3.5 Robust Background Subtraction

We extended simple background subtraction, which we used for the basis of our mea-
surements for particle filtering, with a more robust model. From previous experiences
with tracking techniques, we decided to use the watershed algorithm for defining the
foreground in an image from a simple absolute difference image, where an “empty”
scene (containing no objects of interest) is subtracted from all following frames in the
image sequence. All non-foreground parts of each image are then stored in a buffer of
a certain length, and we compute the histogram and choose the most frequent value for
each pixel over the length of the buffer—in our casen = 20 frames.

Following is our implementation of robust background subtraction:

• For every frame, calculate the foreground with the following steps:

– Compute the absolute difference image by subtracting the background frame
from the current frame of the sequence.

– Blur this with a small Gaussian kernel to suppress noise.

– Compute the∇x∇y image, and set all gradients less than a threshold to 0.

– Run the watershed algorithm on the gradient image.

– Morphologically close and dilate the watershed image for all values greater
than 1 (the extra dilation is used just to make sure the whole foreground is
included).

• Find the bounding box of the foreground from the maximum and minimum
foreground coordinates greater than zero. All surrounding image information
is stored in the background buffer at positioni, and the bounding-box area is
filled from a reference background image (wherei is the position in the buffer,
and loops between 1 andn).

• For each coordinate in the image, do a histogram count over the length of the
background buffer, and select the maximum count value for the final background
image used for the subtraction.

56 CHAPTER 3. TRACKING

Figure 3.15: Row 1, left: Original frame. Right: Absolute difference.Row 2, left: Gradient
image of the absolute difference.Right: Thresholded gradient image (set to 1 where bigger than
3). Row 3, left:Background area from framei. Right: Foreground area filled from buffer frame
(i−1). Row 4, left:Watershed, 8 connected components, thresholded to avoid the background
level, and dilated with a single pixel.Right: Final segmented foreground image.

3.5. ROBUST BACKGROUND SUBTRACTION 57

Conclusion

Conclusions are supposed to reiterate the tone that was set in the Introduction and
provide a small recap of what the reader has supposedly just finished reading. We will
not waste the reader’s time in that way, but merely say, “Well, there it was.”

We will also say that this project provided a great many challenges, some of which
were enjoyable and ultimately rewarding, such as image mosaic and RANSAC—some
of which were not so enjoyable, such as having to wait for large images and long image
sequences to load. With nearly every task, we looked for ways to automate the process,
which offers a tantalizing direction for us to follow once this project has concluded.

Above all, this project has given us the chance to look at our world with new geo-
metric vision; vanishing points and parallel planes seem to spring into view at every
street corner. We visualize the path of a bus changing lanes in traffic. Our gaze natu-
rally identifies landmarks and other structures that would make for an interesting image
mosaic. We wonder how we would code our everyday observations and how to create
functions that other people would find fascinating and useful. And of course, we are
always thinking about the work we have already done and how we might improve it.

“I bet I could do that better if I....What if we try....”
Perhaps soon.

Bibliography

[1] Antonio Criminisi, Ian D. Reid, and Andrew Zisserman. Single-View Metrology.
International Journal of Computer Vision, 40(2):123–148, 2000.

[2] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography.Comm.
Assoc. Comp. Mach., 24(6):381–395, 1981.

[3] D.A. Forsyth and J. Ponce.Computer Vision: A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall, 2002.

[4] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[5] P. D. Kovesi. MATLAB and Octave functions for computer vision
and image processing. School of Computer Science & Software En-
gineering, The University of Western Australia. Available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[6] Henrik Aanæs. An Introduction to Multiple-View Geometry. The Technical Uni-
versity of Denmark, Lyngby, 2003.

[7] E. Trucco and A. Verri.Introductory Techniques for 3-D Computer Vision. Engle-
wood Cliffs, NJ: Prentice Hall, 1998.

[8] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. Technical
Report, The University of North Carolina, Department of Computer Science, 1995.

58

	Homographies, Mosaic, and Warping
	Projective Geometry and Transformations of 2D
	Homogeneous Coordinates
	A Model for the Projective Plane
	Homography Matrix
	Homographies in Images

	Homography Estimation
	Overview
	Direct Linear Transformation
	Normalization
	Implementation
	Results

	Image Mosaic
	Overview
	Backward Mapping
	Bilinear Interpolation
	Hat-Weighting Function
	Implementation
	Results
	Automatic Stitching

	Sequence-to-Map Homography
	Implementation
	Results

	Warp Sequence
	Implementation

	Affine Rectification
	Theory
	Implementation
	Results

	Single-View Geometry, Stereo, and RANSAC
	Projection Matrix
	Single View Metrology
	Preliminaries
	Geometric Representation
	Algebraic Representation
	Implementation
	Results

	Fundamental Matrix
	Fundamental Matrix Estimation
	Theory
	Implementation
	Results

	RANSAC
	Theory
	Implementation
	Results

	Camera Calibration
	Theory
	Implementation
	Results

	Tracking
	Models for Tracking
	Probabilistic Model
	Kalman Filter
	Constant-Velocity Model

	Simple Object Tracking
	Implementation
	Results
	Further Experimentation

	Eye Tracking
	Implementation
	Results

	Particle filtering
	Implementation
	Results

	Robust Background Subtraction

