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1 Introduction

Image Analysis was among the courses I wanted to take in the second semester of
my studies at the IT University in Copenhagen. But the course was in the autumn
semester 2005 combined with the Signal Processing course to form the new Im-
age and Signal Processing course. At the same time, the project cluster in Image
Analysis was formed, consisting mostly of students that were planning to attend
the Image Analysis course. I decided to join the project cluster and carry out a
12-week project in Image Analysis.

The main goal of the project was to cover the complete curriculum of the old
Image Analysis course: reading material, exercises, and assignments. We attended
the lessons and exercises of the new Image and Signal Processing course, but we
had to compare the old and the new curriculum, read up on the missing parts and
do the missing exercises. Around the middle of the semester we started having
weekly project cluster meetings to discuss the more advanced topics that were left
out in the new course. We studied the materials ourselves and in turn prepared the
presentations for the rest of the group.

The supervisor of the project and Image and Signal Processing teacher, Mar-
leen de Bruijne, was exceptionally helpful during the whole project period and
always open for suggestions or discussion. Her guidance during the project cluster
meetings was invaluable, and many of our dilemmas would stay unsolved without
Marleen’s explanations.

Topics covered by the Image Analysis project introduced us to the basic con-
cepts, methods and algorithms of digital manipulation, analysis, and understanding
of images. In the first couple of lessons we covered the basics of image process-
ing: local and global histograms, gray-scale transformations, spatial and frequency
filtering, convolution theorem. In the next meetings we covered one topic (some-
times two) per meeting: restoration, feature detection using scale space, morphol-
ogy, segmentation, shape and texture, pattern recognition, color, motion. All of
the lessons were supplemented byMATLAB exercises, where we learned to use
build-in tools and we implemented our own functions.

This project report consists of the selection of exercises I completed during
the project period. Three of the exercises were mandatory assignments in the old
Image Analysis course curriculum. The rest was selected in such a way that there
is one exercise per topic. I presented the exercises in the chronological order, as
I was completing them. Most of the exercises consist of a problem formulation,
short explanation, solution that includesMATLAB code, generated images and my
comments. The depth of the explanation and the extent of my comments vary from
exercise to exercise, depending mostly on how interesting I found it to be. There is
usually no connection between exercises, so it is not a perfectly coherent material.

Finally, I want to say that the work on the Image Analysis project has more
than fulfilled my expectations. Not only I fell I obtained theoretical insight and
practical experience on the covered matter, I have also found an area around which
I want to focus the rest of my studies.
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2 Histogram equalization

From Week 2 — Simple Image Transformations

Enhance the contrast by histogram equalization. Implement your own
function and compare it (speed, look of result, histogram) to the built-
in MATLAB function.

It is often desirable to have an image with the uniform histogram because such
images have high contrast and show a great deal of gray-level detail. To obtain the
image with the uniform histogram, we can use histogram equalization.

Histogram equalization is a gray-level transformation, i.e. the intensity level
of a certain pixel in the processed image depends only on the intensity value of
the corresponding pixel in the input image. Gray values are processed using the
transformation functions = T(r), which maps pixel valuer into pixel values.
Transformation functionT for the histogram equalization has to be monotonically
increasing, so that the intensities never get inverted. Most importantly, the result
of transforming the image using the transformation functionT has to produce an
image with the uniform histogram.

If we consider the image with the continuous gray level valuesr in the interval
[0,1], and with the probability density function (normalized histogram)p(r), it can
be shown (GW [2], page 91) that the the transformation function for the histogram
equalization is the cumulative distribution function

s= T(r) =
∫ r

0
p(w)dw

In the continuous case the resulting image will always have uniform histogram.
In the case of images with discrete gray level values, the discrete transformation

will generally not produce an image with the uniform histogram, but the histogram
will be redistributed and spread, achieving the desired enhancement effect.

MATLAB function histogram equalization is my implementation of the
histogram equalization and we can compare it with the built-inMATLAB function
histeq.

function HE = histogram_equalization(I)

% takes as an input a gray-scale image (256 gray levels)

% and enhances the contrast by histogram equalization

%--------------------------------------------------------

% finding histogram (shifted by 1, for Matlab’s sake)

for i = 1:256;

h(i) = length(find(I==i-1));

end

% finding cumulative distribution function

CDF(1) = h(1);

for i = 2:256;
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Figure 1: From top to bottom: original image of the retina, image enhanced using my
histogram equalization function and image enhanced using built-inMATLAB func-
tion histeq. Corresponding histograms on the right.
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CDF(i) = CDF(i-1)+h(i);

end

% equalizing and scaling

s = 255/CDF(256);

HE = uint8(CDF(I+1)*s);

On the figure 1 we have the original image and the images obtained using the
two histogram equalization functions, together with the corresponding histograms.
When using the built-inMATLAB function histeq I chose the number of gray
values of the output image to be 256, in order to have comparable results. The
default value is 64, which results with flatter histogram. Let’s first look at the
effect of histogram equalization, and than compare the two functions.

The original image is rather light with just a small dark area. Histogram equal-
ization has darkened the image and the overall contrast has increased. There are
some drawbacks too—the small area that was very dark in the original image is in
the equalized image blended with the background.

Comparing the histograms of the original and the equalized image, we can
see that the histogram equalization in the discrete case acts as a kind histogram
spreading. Gray levels that are highly represented will be more spread than the
levels with just a few pixels, so we have approximately equal number of pixels in
the gray level intervals of the same length.

There is no visible difference between the image equalized with my function
and the one equalized with built-inMATLAB functionhisteq. The histograms of
those two images are very similar, but not the same—look for example the region
around gray value of 250 and the three high spikes between the value 200 and
230. MATLAB does spread the gray levels better. The most significant difference
is in the speed of the two functions. My histogram equalization took 5.9 seconds,
while it took only 0.05 seconds to perform the built-inMATLAB functionhisteq.
MATLAB is 100 times faster!
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3 Averaging Filter

from week 3: Spatial Filtering and Fourier Analysis

Implement an averaging filter inMATLAB . Usecameraman.tif stan-
dard test image for displaying the result of applying the filter. Do
not use the built-inMATLAB filter functions (such asfilter2 and
conv2). Let the size of the filter be a parameter for a function that
does the filtering. Measure the run-time for the function when the
filter size is varied. Plot the run-times (possibly usingtic andtoc).

Averaging filter is an example of spatial filtering. The gray-level value of each
pixel in filtered image is calculated from gray-level values of pixels in the cer-
tain neighborhood of the corresponding pixel in the input image. The size of this
neighborhood is the size of the filter.

In case of linear spatial filtering, the gray-level in the filtered image is the linear
combination of the gray-levels in the neighborhood of the original image. The
coefficients of this linear combination are the filter coefficients. Linear filtering
can be visualized as moving a filter mask containing the filter coefficients across
the image, multiplying the filter coefficients with the pixel values and summing
those products to obtain the new pixel value.

Averaging filter is linear, and all the coefficients of the averaging filter are1
k2 ,

wherek×k is the size of the filter. When using this filter, the value of each pixel is
replaced by the average of the gray values in the neighborhood.

The effect of averaging filtering is smoothing and blurring the image. It can be
used for noise reduction, but the edges will also get blurred.

MATLAB functionaveraging filter is my implementation of the averaging
filter. It uses zero-padding to treat the problem of the image borders, so the filtered
image is of the same size as the original. We can look at the results of applying it
to the standardcameraman.tif image.

function AF = averaging_filter(I,k)

% takes as an input a gray-scale image (256 gray levels)

% and filter size k (must be odd)

%--------------------------------------------------------

% zero padding

[m,n] = size(I);

e = (k-1)/2;

I = [zeros(e,n+2*e); zeros(m,e), I, zeros(m,e); zeros(e,n+2*e)];

% averaging, rounding and cropping to original size

for i = (e+1):(e+m)

for j = (e+1):(e+n)

AF(i-e,j-e) = uint8((1/k^2)*...

sum(sum(I((i-e):(i+e),(j-e):(j+e)))));

end

end
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Figure 2: Left to right, top to bottom: original image, of size256×256pixels, and images
smoothed usingaveraging filter function with the filter sizesk = 3,5,9,1,25pixels.
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Figure 2 shows original image and the images obtained usingaveraging filter
function with the filter sizesk = 3,5,9,1,25 pixels. We can see that the image is
more and more blurred as the filter size increases. The details that are small with
respect to the filter size are lost.

On the figure 3 we can see the run-times of the functionaveraging filter
when the filter sizek is varied. We can see that it is pretty time-consuming proce-
dure, and that the run-time increases dramatically when the filter grows in size.
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Figure 3: The plot of the run-times of theMATLAB functionaveraging filter.m when
the filter sizek is varied.
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4 Fourier Transform

from week 3: Spatial Filtering and Fourier Analysis

Recreate the illustration of the Fourier transformation of the box func-
tion from figure 4.3 in GW [2] (also shown in the lecture slides). Feel
free to use the auxiliary functions you desire.

We need to recreate an image of a20×40 white rectangle on a black background
of size512× 512 pixels, together with it’s centered Fourier spectrum shown af-
ter application of the log transformation. This can be done by using the build-in
MATLAB functionsfft2 andfftshift, as in the following commands.

n = 512;

box = zeros(n,n);

box(n/2-10:n/2+11,n/2-20:n/2+21) = 255;

FTbox = fftshift(fft2(box));

figure(1), imagesc(box), colormap gray, axis image

figure(2), imagesc(log(abs(FTbox)+1)), colormap gray, axis image

The functionfft2 returns the two-dimensional Fourier transform of the input ma-
trix (image). The functionfftshift shifts the zero-frequency component to cen-
ter of spectrum. For matrices (images),fftshift swaps the first and third quad-
rants and the second and fourth quadrants. It is useful for visualizing the Fourier
transform with the zero-frequency component in the middle of the spectrum.

Recreated images are shown in the figure 4. The spectrum vas processed prior
to displaying by using the log transformation to enhance gray-level detail.
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Figure 4: Image of a20× 40 white rectangle on a black background of size512× 512
pixel, together with it’s Fourier spectrum.
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5 Homomorphic Filter

from week 4: Frequency Domain Filtering

Implement a homomorphic filter inMATLAB . Use formula 4.5-13
from GW [2] for the specific definition of the filter. Your filter should
have value 0.25 at the center and then increase linearly to 1 in a
distanceD0 from the origin. Test your homomorphic filter on the
cameraman.tif image from theMATLAB image toolbox collection.
Can you enhance details in the image?

According to the illumination-reflectance modes, an imagef (x,y) can be expressed
as the product of illumination and reflectance components. The goal of the homo-
morphic filtering is to gain control over illumination and reflectance components,
for example to amplify the contribution of reflectance (high frequencies), and to
decrease the contribution of illumination (low frequencies).

The central part of homomorphic filtering is homomorphic filter function that
affects the low- and high-frequency components of the Fourier transform in a dif-
ferent way. To make it possible for homomorphic filter to operate separately on
the components of illumination and reflectance, a logarithm of the original image
is taken prior to filtering, since logarithm breaks products into sums. The final
result is obtained by exponential operation after filtering. The whole sequence of
operations can be illustrated as

f (x,y)⇒ ln ⇒ DFT ⇒ H(u,v) ⇒ (DFT)−1 ⇒ exp ⇒g(x,y)

For the homomorphic filter we can use a modified form of the Gaussian highpass
filter given by

H(u,v) = (γH − γL)[1−e−c(D2(u,v)/D2
0)]+ γL

where parametersγL andγH are gains at low and high frequencies,D0 is the cutoff
frequency andD(u,v) is the distance from the point(u,v) to the center of the Fourier
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Figure 5: Cross section of a homomorphic filter function forγL = 0.2, γH = 1 andc = 10.
D(u,v) is the distance from the origin of the centered Fourier transform.
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transform

D(u,v) =
√

(u−M/2)2 +(v−N/2)2

Cross section of such a filter is shown at the figure 5
MATLAB functionhomomorphic filtering is my implementation of the ho-

momorphic filtering. The results of applying it to the standardcameraman.tif
image can be seen at the figure 6. It has succeeded in enhancing the details in the
image—look for example at cameraman’s coat.

function FI = homomorphic_filtering(I,d,gl,gh,c)

% Filters image I using homomorphic filtering, where:

% d - cutoff distance,

% gl - low-frequency response,

% gh - high-frequency response,

% c - sharpness of the cutoff slope.

%-----------------------------------------------

% creating filter

[m,n] = size(I);

H = zeros(m,n);

cm = floor(m/2+1);

cn = floor(n/2+1);

for u=1:m

for v=1:n

H(u,v) = (gh-gl)*(1-exp(-c*(((u-cm)^2+(v-cn)^2)/d^2)))+gl;

end

end

% performing filtering

FI = exp((ifft2(ifftshift(fftshift(fft2(log(double(I)))).*H))));

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 6: An example of homomorphic filtering. Left: original image, right: the result of
applying the homomorphic filter withγL = 0.25, γH = 1, D0 = 150andc = 1.
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6 Fourier Analysis, Phase, and Magnitude

First Mandatory Assignment

As the first lectures and exercises have shown, images can be rep-
resented in the Fourier domain. In this domain, there exist simple
formulations for several image analysis methods—examples include
among others Butterworth filter for noise reduction, or homomorphic
filters for contrast enhancement. Both these filters are zero-phase fil-
ters, i.e. they modify real and imaginary parts of the frequency domain
in exactly the same manner.

This assignment explores the role of the phase further. Instead of rep-
resenting the complex numbers in the frequency domain by a real and
an imaginary part, they can be represented by the phase and magnitude
(GW [2], equations 4.2-11 and 4.2-10, page 152). The task is to pick
up two images of the same size, and do the following inMATLAB :

• Calculate the phase and magnitude description of the
Fourier representation.

• Reconstruct the original images from the phase and mag-
nitude information exclusively.

• Switch the phase and magnitude information between
the two images and reconstruct these mixed images.

Mathematical explanation

The discrete Fourier transform of an imagef (x,x) of sizeM×N is given by

F(u,v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)e− j2π(ux/M−vy/N)

for u = 0,1,2. . .M−1,v = 0,1,2. . .N−1. It is a sum ofM×N elements, each of
which is a complex number because

ejφ = cosφ + j sinφ

So, the result of the summation will also be a complex number, and we can write

F(u,v) = R(u,v)+ jI (u,v)

whereR(u,v) andI(u,v) are real and imaginary parts ofF(u,v), given by

R(u,v) =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)cos(2π(ux/M−vy/N))
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I(u,v) =− 1
MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)sin(2π(ux/M−vy/N))

We can now calculate magnitude|F(u,v)| and phaseφ(u,v) of Fourier transform

|F(u,v)|=
√

R2(u,v)+ I2(u,v)

φ(u,v) = tan−1
[

I(u,v)
R(u,v)

]

which leads us to the Fourier transform written in polar form

F(u,v) = |F(u,v)|ejφ(u,v)

Having magnitude and phase, we can get real and imaginary part of the Fourier
transform

R(u,v) = |F(u,v)|cosφ(u,v)

I(u,v) = |F(u,v)|sinφ(u,v)

GivenF(u,v), we can get back to original image using the inverse discrete Fourier
transform

f (u,v) =
M−1

∑
u=0

N−1

∑
v=0

F(u,v)ej2π(ux/M−vy/N)

for x = 0,1,2. . .M−1,y = 0,1,2. . .N−1.

M ATLAB code

Reconstructing image just from phase or magnitude, and mixing magnitude and
phase description can be done inMATLAB using following commands.

C = imread(’cameraman.tif’);

R = imread(’retina_resized.bmp’);

% calculating Fourier representations

CF = fftshift(fft2(double(C)));

Rf = fftshift(fft2(double(R)));

% reconstructing using just magnitude or just phase

Cmag = real(ifft2(ifftshift(abs(CF))));

Cpha = real(ifft2(ifftshift(exp(i*angle(CF)))));

Rmag = real(ifft2(ifftshift(abs(Rf))));

Rpha = real(ifft2(ifftshift(exp(i*angle(Rf)))));

% reconstructing mixed images

CmagRpha = real(ifft2(ifftshift(abs(CF).*exp(i*angle(Rf)))));

RmagCpha = real(ifft2(ifftshift(abs(Rf).*exp(i*angle(CF)))));

Illustrations of selected original images, their reconstructions form the phase and
magnitude description, and the two images reconstructed from the mixed phase
and magnitude description can be seen at the figure 7
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Figure 7: Top: original images, cameraman (left) and retina (right). Both images have
the size of256×256 pixels. Second row: cameraman, log of image reconstructed from
magnitude (left), the image reconstructed from phase (right). Third row: retina, log of
image reconstructed from magnitude (left), the image reconstructed from phase (right).
Bottom: mixed images, magnitude of cameraman and phase of retina (left) magnitude of
retina and phase of cameraman (right).
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Comments

Images reconstructed using just magnitude of the Fourier transform bear no resem-
blance to the original images. Those images are symmetric – the consequence of
magnitude spectrum being real. As well as the magnitude spectrum, the images re-
constructed using just magnitude spectrum are symmetric and have high dynamic
range with just few very light pixels in the corners, while the rest is dark. To en-
hance the gray detail, the logarithmic transformation was applied when displaying
those images.

Images reconstructed using just phase of the Fourier transform bear clear re-
semblance to the original images, but the quality of the images has degraded – they
appear grayish. As well as the phase angle, which is limited to the range from−π
to π, the dynamic range of images reconstructed using just phase angle is low. Both
the areas that were very dark and those that were very light in the original image
turn equally gray at the images reconstructed form phase angles, but the edges are
well preserved.

The mixed images look surprisingly well, taking in consideration how they
were obtained. It is the phase information that determines the looks (the contours)
of the images. The magnitude spectrum of the other (wrong) image has even some-
how contributed to the quality of the resulting image by filling it in with color, not
always at correct places though.

It is obvious from the exercise that both magnitude and phase of Fourier trans-
form are needed when reconstructing the image. The magnitude description carries
the information about which frequency components are present in the image, and
it gives the amount of the certain frequency component. The phase description
locates where in the images is the certain frequency component present.

Trying to reconstruct the image without the phase information is impossible.
To start with, images reconstructed just from magnitude are always symmetric, the
consequence of magnitude spectrum being real. When reconstructing just from
magnitude, we have all the right frequency components , but they are all starting
from the edges of the image making it unrecognizable—that’s the reason behind
light corners.

Reconstructing the image using just phase information means setting the mag-
nitude of all frequency components to 1. Since it is in general low frequencies
that have larger magnitudes than high frequencies, setting all magnitudes to 1 de-
emphasizes low and emphasizes high frequencies, acting as a kind of high-pass
filter. The features of the image are preserved, especially edges.
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7 Interpolation

from week 6: Restoration

Program aMATLAB function that rotates an image 45◦ (or π
4 ). Start

by re-reading section 5.11.2 in GW [2] and then choose your favorite
interpolation method. Test your function on a natural image (such as
much used camera man) and an artificial image with straight horizon-
tal and vertical lines.

Rotating an image is easiest done if we first transfer the Cartesian coordinates into
polar coordinates, do the rotation, and then transfer coordinates back to Cartesian.
Whit this procedure is each pixel of rotated image mapped to a point in the original
image. The rotation for 45◦ will generally result in noninteger values, i.e. pixels of
rotated image will be mapped to points where original image is not defined, so we
need to do gray-level interpolation.

The simplest gray-level interpolation is zero-order interpolation, where instead
of noninteger values we use the nearest integer neighbor. Implementing this method
is based on rounding non-integer values. This method is simple, but often distorts
straight edges in images.

Bilinear interpolation uses four nearest neighbors to determine the gray-level
of noninteger point. This method assumes that gray-level function is linear inx and
y direction, i.e. that the gray-level values can be described by

v(x,y) = ax+by+cxy+d

The coefficientsa, b, c andd are calculated using the known gray-level value at
four integer neighbors, and than are those coefficients used to calculate gray-level
for noninteger value. Four nearest neighbors are obtained by finding floorsbxc and
byc, and ceilingsdxe anddye of coordinatesx andy, and combining those values in
four coordinate pars.

Instead of solving the four equations with four unknowns for each interpolated
value, we can use the equivalent alternative implementation of bilinear interpola-
tion. The bilinear interpolation for noninteger point(x,y) is weighted average of
gray-levels in the four nearest neighboring integer points, where weights are ob-
tained from distances inx andy direction

v(x,y) = (dxe−x)(dye−y)v(bxc,byc)+
+(dxe−x)(y−byc)v(bxc,dye)+
+(x−bxc)(dye−y)v(dxc,byc)+
+(x−bxc)(y−byc)v(dxe,byc)

In the MATLAB function rotation I implemented both the zero-order and
bilinear interpolation.
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function R = rotation(I,mode)

% takes as an input a gray-scale image (256 gray levels)

% and rotates it for 45 deg, using either zero-order or

% bilinear interpolation (bilinear interpolation uses

% alternative implementation - not calculating coeficients,

% but using distances)

%--------------------------------------------------------

I = double(I);

% adding white border (padding with 255)

% so that the result is the square image

[n, m] = size(I);

k = ceil((m+n)/2^0.5);

I = [255*ones(floor((k-n)/2),k);

255*ones(n,floor((k-m)/2)), I, 255*ones(n,ceil((k-m)/2));

255*ones(ceil((k-n)/2),k)];

[n, m] = size(I);

R = 255*ones(size(I));

for i=1:n

for j=1:m

% coordinates relative to the center

x = (n+1)/2 - i;

y = (m+1)/2 - j;

r = (x^2 + y^2)^0.5;

theta = atan2(x,y);

% rotating

x0 = (r*(sin(theta - pi/4)));

y0 = (r*(cos(theta - pi/4)));

% back to image coordinates

n0 = (n+1)/2 - x0;

m0 = (m+1)/2 - y0;

if mode==0 % zero-order interpolation mode

n0 = round(n0);

m0 = round(m0);

if n0>=1 & n0<=n & m0>=1 & m0<=m

R(i,j)=I(n0,m0);

end

end

if mode==1 % bilinear interpolation mode

% finding the four neighbours

n1 = floor(n0);

n2 = ceil(n0); if(n1==n2), n2=n2+1; end

m1 = floor(m0);

m2 = ceil(m0); if(m1==m2), m2=m2+1; end

if n1>=1 & n2<=n & m1>=1 & m2<=m

R(i,j)=round(((n2-n0+m2-m0)*I(n1,m1)+(n2-n0+m0-m1)*I(n1,m2)...

+(n0-n1+m2-m0)*I(n2,m1)+(n0-n1+m0-m1)*I(n2,m1))/4);

end

end

end

end
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Figure 8: Top row: the details of original images, cameraman (left) and an artificial image
with straight horizontal and vertical lines (right). Middle row: corresponding details of
images obtained by rotation using zero-order interpolation. Bottom row: corresponding
images obtained by rotation using bilinear interpolation.
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Results of applying functionrotation can be seen at the figures 8 and 9. Figure 9
shows general appearance of the rotated image. At the figure 8, which shows details
of rotated images, we can compare the two interpolation methods.

Both interpolation methods did reasonable well with thecameraman image,
but the bilinear interpolation is a giving better (smoother) result. The difference
between zero-order and bilinear interpolation can best be seen at the rotations of
image with straight horizontal and vertical lines. Zero-order interpolation distorts
the edges, while bilinear interpolation smooths the distortion a bit, introducing gray
levels that are not present at the original image.
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Figure 9: Original image and the image rotated for 45◦, using bilinear interpolation as the
interpolation method.
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8 Multi-Scale Blob Detection

from week 8: Scale Spaces, Blob Detection

Blob Detector: The absolute value of the Laplacian can be used as a
blob detector. Where the absolute value of the Laplacian has a spatial
local maxima, there is a blob in the image. Use theLocalMaxima.m
function (download it from the exercise home page) to find these local
maxima for a number of different scales (say, from 1 to 10) for the
test image circlesquare.tif (again, you can download it from the home
page). Compare the blob feature strength responses from the feature
detector for the square and the circle at different scales. Which is the
most blob-like feature at low scale and at high scale?

Normalized Blob Detector: The highest blob feature response comes
from the square at a low scale. At higher scales, the circle has a
higher response that the square—but much lower than the square at
low scales. Why? Hint: The responses are local maxima. At higher
scales, there is more smoothing/blurring. What happens to the values
of extrema during blurring? The normalized blob detector at scaleσ is
σ2∇2

σ L(x,y) = σ2(Lxx(x,y,σ)+Lyy(x,y,σ)). Implement this function
in MATLAB . Repeat the experiment, now looking at the normalized
blob feature responses at different scales for the square and the circle.
Which has the highest response at low scales? Which has the highest
response at high scales? Which has the highest response overall?

Feature detection at a given scale consists of two steps: blurring an image with a
Gaussian of a given scale (e.i. given standard deviationσ ) and taking appropriate
derivative, depending on features we want to detect. Because of commutativity and
associativity of convolution, those steps can be combined into filtering the image
with the appropriate derivative of the Gaussian. To detect blobs we need to find
local extremes of Laplacian.

When detecting blobs, we can for each scale find the certain number (or certain
percentage) of the highest responses. If we compare the responses at different
scales we will notice that the highest responses come from lowest scales. The
higher the scale—the more blurring, and blurring flattens local extremes.

Therefore, if we want to consider all scales simultaneously as in automatic
scale selection (L [4]), we need to normalize responses to counteract the smooth-
ing. The derivatives at each scale are multiplied by a scale-dependent factor, which
also depends on the features we want to detect. The normalized blob detector at
scaleσ is σ2∇2

σ f (x,y).
MATLAB function blob detector is my implementation of the described

scheme. I modified it a bit for the second part of the task.
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function blob_detector(I,scale,r,R)

% scale - vector containing scales

% r - number of best responses in each scale

% R - number of best responses overall

%-------------------------------------------

k = length(scale);

[m,n] = size(I);

% initializing overall best responses

bestvalues = [];

bestx = [];

besty = [];

for i=1:k

% finding normalized Laplacian, and all local maxima for each scale

lap = scale(i)^2*real(ifft2((scale2(fft2(I),scale(i),2,0)) + ...

scale2(fft2(I),scale(i),0,2)));

figure(i), subplot(131), imagesc(lap), colormap gray, axis image

%[values, x, y] = LocalMaxima(abs(lap)) % to detect also white blobs

[values, x, y] = LocalMaxima(lap);

max = sparse(x,y,values,m,n);

figure(i), subplot(132), imagesc(max), colormap gray, axis image

% finding r best responses for each scale

[svalues,map] = sort(values);

svalues = flipud(svalues);

sx = flipud(x(map));

sy = flipud(y(map));

r = min(r,length(svalues));

figure(i), subplot(133), imagesc(I), colormap gray, axis image,

hold on, plot(sy(1:r),sx(1:r),’o’), hold off

% memorizing to find overall best

bestvalues = [bestvalues; svalues];

bestx = [bestx; sx];

besty = [besty; sy];

end

% finding R best responses ovarall

[bestvalues,map] = sort(bestvalues);

bestvalues = flipud(bestvalues);

bestx = flipud(bestx(map));

besty = flipud(besty(map));

R = min(R,length(bestvalues));

figure(k+1), imagesc(I), colormap gray, axis image

hold on, plot(besty(1:R),bestx(1:R),’o’), hold off

At the figure 10 we can analyze the process of blob detection, and the automatic
blob detection. The image used is artificial imagecirclesquare.tiff with a
larger circle and smaller square. We detected blobs for the scalesσ = 1,3,5,7,9.
The circle is a perfect blob at a larger scale, so it has the strongest response at the
largest scale. The square is (less perfect) blob at smaller scale so it has the highest
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Figure 10: Applyingblob detector to the imagecirclesquare.tiff. Rows 1–5 cor-
respond to scalesσ = 1,3,5,7,9: Laplacian (left), all local maxima of Laplacian (middle)
and 5 highest responses for a given scale (right). Bottom: 10 highest responses over all
scales (1, 3, 5, 7 and 9) without normalization (left) and with normalization (right).
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Figure 11: Applyingblob detector to thedog.jpeg image. Top left: original image,
top right: 200 highest (normalized) responses over scalesσ = 6,8,10,12,14,16. Rows
2–4: 50 highest responses for a given scale.
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response at smaller scale. At very small scale the corners of the square also give
high responses, since they are also blob-like.

We want the highest response over all scales to be that of a circle, since it is
a perfect blob. Still, without normalization the highest response over all scales is
not the circle—responses in the smallest scale are the strongest and the corners of
the square seem to be best blobs, even though we have a perfect blob in the image
(at a larger scale). Blurring has flattened extremes at the larger scales so we need
to normalize the responses. After normalization we get the desired result—the
highest response for circle, and the second-best response for the square.

At the figure 11 we can see the result of applying slightly modyfied function
blob detector to a more realistic imagedog.jpg 1. The scales over which the
blobs were detected areσ = 6,8,10,12,14,16. For each scale 50 best responses is
displayed. The final result is 200 best responses over all scales. It is evident, that
the blob detector is quite successful in detecting some blobs, but many blobs (big
and small) remained undetected.

1I’ve borrowed this image — it was used for the feature detection exercise of ITU’s Signal and
Image Processing course, fall 2005.
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9 Morphological Skeleton

from week 7: Morphology

The purpose of this exercise is to illustrate the complications in ex-
tracting the skeleton of a given shape. Use the example image
w09man.tif (a true work of art) provided on the homepage for the
exercise. Implement the morphological skeletonisation method illus-
trated in figure 9.24 in GW [2] and extract the skeleton of the man.
Possibly experiment with the choice of structuring element, and com-
pare with the results of onw09man2.tif where the man has grown
another finger and gained a bit of weight.

A skeletonS(A) of a setA is a collection of all pointsz from A, such thatzhas more
than one closest boundary points. We can think about the process of obtaining
skeleton as off setting the borders of the image ‘on fire’ and looking where two (or
more) fire fronts meet.

This process can be expressed in terms of successive erosions (advancing fire)
followed by an opening (to find protrusions—places where fire fronts meet). Ero-
sion continues untilA erodes completely, and skeleton is union of skeleton parts

S(A) =
K⋃

k=0

Sk(A)

where
Sk(A) = (AªkB)− (AªkB)◦B

and(AªkB) indicatesk successive erosions ofA with structuring elementB.
I implemented morphological skeletonisation inMATLAB functionskeleton.

function S = skeleton(I,B)

% morphologic skeleton of a BW image,

% uses B as the structuring element

%------------------------------------

S = zeros(size(I));

im_e = I;

while any(any(im_e))

im_e = imerode(im_e,B);

S = (S|(im_e~=imopen(im_e,B)));

end

Results of applying the functionskeleton on the two imagesw09man.tif and
w09man2.tif can be seen at the figure 12. I used two different structuring ele-
ments:3×3 square and a + formed element contained in3×3 square.

Final skeletons are thicker than needed and not connected. One should notice
how sensitive skeletonisation is to very small changes in original set—it introduced
some new branches after a minor change in original image, when using square
structuring element. It is also obvious that the directions of the branches in the
head were influenced by the structuring element.
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Figure 12: Morphological skeletons of the two images. Top: original images, middle:
skeletons obtained using3×3 square as a structuring element, bottom: skeletons obtained
using + formed structuring element.
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10 Morphology in 3D

Second Mandatory Assignment

In medical CT scans it is quite easy to locate bone structures. The
bone has a high absorbtion rate of the x-rays used for the scanning.
Thereby the CT scan gets a very high intensity at bones. The bone
structures can almost be segmented by simple thresholding. There are
two main sources of errors in the segmentation we will be using:

• Contrast enhancement: In this particular scanning, a
contrast agent have been injected into the blood of the
patient. Thereby some of the blood vessels and part of
the kidney is visible as well.

• Noise: Due to noise and imprecision in the imaging
process, there are small irregularities in the segmenta-
tion. This can be seen as small nodules lying around
and small holes in the bone.

This assignment focuses on getting rid of the small holes in the bone.
Since a 3D data set is a relatively large amount of data, we will only
use part of the original data set. The purpose of this assignment is to
get rid of the small holes in the bones by means of morphological op-
erators. You should program the following morphological operators:
dilate, erode, and closing. The structuring element could for instance
be a3×3×3-cube. Note that the corresponding operators inMATLAB

will not do the job, since they are designed for 2D images only.

Description of the algorithms:

Functionsdilate anderode were implemented directly from the definitions for
dilation and erosion, applying it to 3D. Functions return the result of dilation/ero-
sion, taking the volumeV and structuring elementSas the arguments.

Definition of the dilation of the set (volume)V with the structuring elementSis

V⊕S= {x | (Ŝ)x∩V 6= /0}

The conditionS∩V 6= /0 written in MATLAB language is

any(V&S)=1

so, the 3D version of that condition was checked in three for-loops moving the
volumeV over all coordinatesx, y andz.

Definition of the erosion of the set (volume)V with the structuring elementSis

VªS= {x | (S)x ⊆V}
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The conditionS⊆V is equivalent toV ∩S= Swhich can be written inMATLAB

language as
all(V&S)=S

so, similarly as in dilation, the 3D version of this condition was checked in three
for-loops moving theV over all coordinatesx, y andz.

The problem of boundaries of the data volume vas solved by padding, so the
resulting volume is of the same size as the original. In case of dilation I used
zero-padding, but in case of erosion I padded with ones, to prevent the bones being
eroded from the boundaries of the volume.

Functionsclose and open were implemented directly from the definitions
for closing and opening, using the functionsdilate anderode. Definition of
morphological closing and opening are

V •S= (V⊕S)ªS

V ◦S= (VªS)⊕S

All implemented functions can take structuring elementSof any size, not nec-
essarily symmetric.

M ATLAB code:

Here is theMATLAB code of the four morphological operators, which can be ap-
plied to 3D binary dataV, usingSas the structuring element.

function D = dilate(V,S)

% morphological dilation of volumen V with structuring element S

% --------------------------------------------------------------

% flipping S to be consistant with the definition

S = flipdim(flipdim(flipdim(S,1),2),3);

[Vx, Vy, Vz] = size(V);

[Sx, Sy, Sz] = size(S);

% zero-padding

e = ceil((size(S)-1)./2);

VP = zeros(size(V)+size(S)-1);

VP(e(1)+1:e(1)+Vx,e(2)+1:e(2)+Vy,e(3)+1:e(3)+Vz) = V;

% dilating

for i=1:Vx

for j=1:Vy

for k=1:Vz

D(i,j,k) = any(any(any(...

VP(i:i+Sx-1,j:j+Sy-1,k:k+Sz-1) & S)));

end

end

end
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function E = erode(V,S)

% morphological erosion of volumen V with structuring element S

% -------------------------------------------------------------

[Vx, Vy, Vz] = size(V);

[Sx, Sy, Sz] = size(S);

% padding with ones

e = ceil((size(S)-1)./2);

VP = ones(size(V)+size(S)-1);

VP(e(1)+1:e(1)+Vx,e(2)+1:e(2)+Vy,e(3)+1:e(3)+Vz) = V;

% eroding

for i=1:Vx

for j=1:Vy

for k=1:Vz

E(i,j,k) = all(all(all((...

VP(i:i+Sx-1,j:j+Sy-1,k:k+Sz-1) & S) == S)));

end

end

end

function C = close(V,S)

% morphological closing of volumen V

% with structuring element S

% ----------------------------------

C = erode(dilate(V,S),S);

function O = open(V,S)

% morphological opening of volumen V

% with structuring element S

% ----------------------------------

O = dilate(erode(V,S),S);

The results of using those four morphological operators with3×3×3 cube as the
structuring element can be seen at figure 13.

Comments

The goal of the assignment was to get rid of the small holes in the bones by means
of morphological operators. To achieve this goal, one should use morphological
closing, since is smoothes the contours and closes small holes.

As far as I could see, all the operators used in this assignment did what they
were supposed to do. Applyingclose did fill in small holes at the surface of the
bones, and also small holes in the bones, so I’m satisfied with the result.

I tried using different shapes as a structuring element, but even the simple3×
3×3 cube gave satisfying results.
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Figure 13: Visualization of the original bone structure together with the results of applying
different morphological operators, all using3×3×3 cube as the structuring element. Top:
original data, middle left: after single dilation, middle right: after single erosion, bottom
left: after closing, bottom right: after opening.
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Single erosion

What happens when you apply a single erosion to the ribs in the data
set, and why?

Applying a single erosion thins the ribs from all sides. Since the ribs are sometimes
hollow (according to the data set), they get eroded both from inside and outside—
this can be nicely seen at the result of morphological opening.

An unexpected effect of eroding the ribs is an introduction of vertical slices.
This can be explained by the shape of the ribs—a rib is long, thin and curved in the
(x,y) plane, so the erosion with the3×3×3 cube often leaves just distinct squares
in (x,y) plane. Since the rib is not curved inz direction, erosion reduces the rib to
distinct rods inzdirection. Figure 14 illustrates this effect in 2D.
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Figure 14: A slice trough the data in the plane parallel with(x,y) plane at z=49. Left:
original bone structure, right: after single erosion with3×3× 3 cube as the structuring
element.
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11 Hough Transform

from week 10: Segmentation

Describe an algorithm for finding circles using a Hough transform ap-
proach. Do not implement this in Matlab.

Hough transform is a global segmentation method for detecting lines, circles or
any other shape with simple parametrical representation. For example, a line in
an image can be represented with two parameters, so a line will correspond to a
point in 2D parametric space. Since many lines pass trough each point, each point
in the image will correspond to a line (or curve, depending on parametrization)
in the parametric space. Detecting lines in the image is than equivalent to finding
intersections of lines (or curves) in parametric space.

To use Hough transform for finding circles, we first need to choose parame-
trization. A point(x,y) lying on circle with the center in the point(cx,cy) and with
radiusr satisfies the equation

(x−cx)2 +(y−cy)2 = r2

We need 3 parameterscx, cy andr to describe a circle in the image, therefore we
also need 3D parametric space with coordinates(cx,cy, r). Each circle in the image
corresponds to a point in the parametric space.

Each point(x,y) in the image lies on many circles. Actually, whichever center
point (cx,cy) we choose, we can find radiusr in such a way that point(x,y) lies
on the circle. So, a point(x,y) in the image corresponds to a 2D conical surface in
parametric space described with

r =
√

(x−cx)2 +(y−cy)2

Intersection of two such surfaces yields a line, and intersection of three surfaces
yields a point, which than corresponds to a circle in original image.

Algorithm for detecting circles using Hough transformation is then described
by following steps.

1. Use an edge detector to find the set of edge points(xi ,yi).

2. Initiate (discrete) 3D parameter spaceP. The size ofP in (cx,cy) plane de-
pends on the size of the image, while the size inr dimension depends on the
choice of the maximal radius to be detected.

3. Scan the image, and for each edge point(xi ,yi) do:

- Scan the(cx,cy) plane in parameter space, and for each par(cx,cy) do:

- Calculater =
√

(x−cx)2 +(y−cy)2 and round it to[r].
- Increment the value ofP(cx,cy, [r]).

4. Find maxima in the parameter space. A maximum at positionP(cx,cy, r)
corresponds to a circle(x−cx)2 +(y−cy)2 = r2 in the original image.
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12 Statistical Shape Models

from week 10: Representations & Descriptions / Shape & Texture

In this exercise you will make a simple shape model of human spine
data. Implement this inMATLAB . You may find the commandseig
andcov useful. Download the spine shape dataset. It contains a200×
25 matrix shapes. Each column is one 2D shape with 100 landmark
points. Elements 1–100 of each column are thex-coordinates and 101–
200 they-coordinates. Do the following:

• Divide the shapes into a separate training and test set,
for instance 24 train shapes and 1 test shape.

• Model construction, use the training set for this!

- Plot all shapes on top of each other.

- Compute the mean shape and plot it with the other
shapes.

- Compute the covariance matrix and visualize it, e.g.
usingimagesc. Explain what you see.

- Compute the modes of variation (the principal com-
ponents) as the eigenvectors of the covariance ma-
trix. Visualize the first few modes, for instance by
drawing the mean shape plus and minus 3 standard
deviations of the deformation.

• Select a small number of modes in your model and
project the test shape(s) on the model subspace using
x = x̄ + Pb and thusb = PT(x− x̄). Plot the original
shape together with the projected shape. Try this for
models of different dimensionality (different number of
modes).

Statistical shape modeling (C [1]) is a ‘top-down’ approach, where we make use of
a prior model of what is expected in an image. To build a model, one must decide
on suitable landmark points{(xi ,yi)}, and one must have a training set of annotated
typical images, so each image contributes with2n element vector

x = (x1, . . . ,xn,y1, . . . ,yn)T

The set of vectorsxk forms a distribution in the2n dimensional space which will
have2n× 2n covariance matrix. By modeling this distribution, we can generate
new vectors, similar to those from the original training set.

We can reduce dimensionality of the data cloud by finding eigenvectors and
eigenvalues of covariance matrix, and deciding to use justt < 2n main axes of the
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data cloud—those axes for which the variance is greatest. We can than approximate
vectorx using

x≈ x̄+Pb

whereP is a2n×t submatrix of the covariance matrix containing it’st eigenvectors
andb is at dimensional vector given by

b = PT(x− x̄)

I made a simple shape model of human spine data using followingMATLAB

code.

load shapes

training = [shapes(:,1:12),shapes(:,14:25)];

test = shapes(:,13);

figure(1) % plotting all training shapes

shapeplot(training,’g’), fixaxis(0), hold on

m = mean(training,2);

shapeplot(m,’b’), shapeplot(m,’b.’), hold off

CM = cov(training’); % covariance matrix

[P,D] = eig(CM);

figure(2), imagesc(CM), axis image

figure(3) % plotting first 3 modes

for mode=200:-1:198

shape_min = m - 3*(D(mode,mode))^0.5*P(:,mode);

shape_max = m + 3*(D(mode,mode))^0.5*P(:,mode);

subplot(3,3,(200-mode)*3+1), shapeplot(shape_min,’r’), fixaxis(1)

ylabel(sprintf(’mode %d’,200-mode+1))

subplot(3,3,(200-mode)*3+2), shapeplot(m,’b’), fixaxis(1)

subplot(3,3,(200-mode)*3+3), shapeplot(shape_max,’r’), fixaxis(1)

end

figure(4) % projectng test shape, using 2,3 or 7 modes

NOM = [2 3 7];

for i=1:length(NOM)

Psub = P(:,200-NOM(i)+1:200);

b = Psub’*(test-m);

model = m+Psub*b;

subplot(1,length(NOM),i)

plot(test(1:100),test(101:200),’b’),

title(sprintf(’%d modes’,NOM(i))), fixaxis(0), hold on

plot(model(1:100),model(101:200),’r’), hold off

end

function fixaxis(wide)

axis image, axis([-61-20*wide,72+20*wide,-113,122])

function shapeplot(shape,color)

plot(shape(1:100,:),shape(101:200,:),color)
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On the figure 15 we can see the 24 spine shapes that were used as training shapes,
together with the mean shape with 100 landmark points. We can also see visual-
ization of the covariance matrix for the distribution of the training shapes.

From the covariance matrix we can see that the covariances have largest ab-
solute values in the upper left quadrant, corresponding tox-coordinates. From the
two red areas of large covariances, we can conclude that if a landmark in an high-
est (or lowest) part of a spine moves to left or right, neighboring landmarks will
generally move in the same direction. From the two dark blue areas of negative co-
variances, we can conclude that if the highest part of a spine moves to left or right,
lowest part will generally move in an opposite direction. In all, we can conclude
that some kind of rotation is the principal variation of the shapes.

Covariances betweeny-coordinates are relatively small. Covariances between
x- andy-coordinates display a pattern, reflecting the the fact that spine consists of 4
vertebrae. Knowing that the rotation is the principal variation, we can interpret that
pattern: when the spine rotates a bit in a clockwise direction, left part of it (with
half of the landmarks) will move down, and right part of it (with another half of the
landmarks) will move up.

On the figure 16 we can see three principal modes of variation. This confirms
that rotation is an important factor in the principal mode of variation. Second mode
involves scaling iny-direction. Variations of the third mode cause less significant
and more local changes.

In this particular shape model the first mode is rather dominant—it describes
73% of the variance in the training set. Already with the first 3–4 modes we can
describe approximately 90% of the variance, and with the first 7 modes we cover
95% variance of the training set.

On the figure 17 shape modeling is used for generating new shapes, and for
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Figure 15: Left: 24 training shapes of human spine data (green) and the mean shape
with 100 landmark points (blue). Right: Covariance matrix for the distribution of train-
ing shapes.
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Figure 16: Effect of varying first three modes. Top line: first mode, middle line: second
mode, bottom line: third mode. Modes are varied between−3 and+3 standard deviation
from the mean shape, with the middle column being mean shape.
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Figure 17: Top line: Three new spine shapes generated by varying the parameters of the
shape model. Bottom line: Test shape (blue) and the shapes obtained by projecting test
shape on the model subspace for different number of modes (red).

37



fitting the model to test shape. Of the new generated shapes, two were obtained
using shape parameters not bigger than 3 times standard deviation for the each
mode. Those two shapes look plausible. The third shape was obtained by varying
the third mode for 15 times standard deviation for the third mode. This shape
looks very distorted—we moved too far away from our data cloud. By keeping
the parameters close to standard deviation, we ensure that the generated shapes are
similar to those in the original set.

Fitting the model to test shape by projecting test shape on the model subspace
can also be seen at the figure 17. Projecting was done for 2, 3 and 7 modes, corre-
sponding to 85%, 90% and 96% of the total variance. Already 2 modes give good
approximation, and it slightly improves with increasing number of modes.
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13 Co-occurrence Matrix

from week 10: Representations & Descriptions / Shape & Texture

For this exercise you need the imagestexture1.bmp–texture5.bmp
and the functioncooc.m from the exercises homepage. Compute a co-
occurrence matrix for each of the five texture images with the function
cooc and visualize the matrices, e.g. usingimagesc. Explain the dif-
ferences. Experiment with another distance for the co-occurrence and
possibly also with different directions. Compute some of the standard
measures on co-occurrence matrices, e.g. maximum probability, ele-
ment difference moment, and entropy. Can you discriminate between
the different textures on basis of these measures?

We can look at the co-occurrence matrix as of a 2D histogram that carries the
information regarding the relative position of pixels with respect to each other.
Relative position of pixels can be described with, for example ‘two pixels down
and on pixel to the right’. Co-occurrence matrix for a given relative position is
than obtained by counting how many times did the pixel with the relative valuezi

occur relative to the pixel with the relative valuezj . Each elementci j of the co-
occurrence matrixC gives us probability of finding intensityzi relative tozj . For
an image with 256 gray levels, co-occurrence matrix for a given relative position
will have size256×256.

Some of the descriptors that can be extracted from co-occurrence matrix and
which can be used to characterize the content of it are:

1. Maximum probability
max

i, j
(ci j )

2. Element difference moment of orderk

∑
i

∑
j

(i− j)kci j

3. Uniformity

∑
i

∑
j

c2
i j

4. Entropy
−∑

i
∑

j

ci j log2ci j

We can use those descriptors in pattern recognition, when trying to distinguish
between textures on the basis of descriptor values.
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Functioncooc can be used to obtain co-occurrence matrix. I modified this
function a bit, to allow negative directions needed to check ‘1 down, 1 left’ di-
rection. I also made the function direction-dependent2 to be consistent with the
definition from GW [2]. The other functiondescriptors is used to extract the
descriptors from the co-occurrence matrix.

function CM = cooccurrence_matrix(I,x,y);

% Co-occurrence matrix of a gray-scale image I (265 gray levels)

% where x and y are distance parameters:

% x - up(x<0) and down(x>0)

% y - left(y<0) and right(y>0)

%--------------------------------------------------------------

[n,m] = size(I);

CM = zeros(256,256);

for i=1-min(0,x):n-max(0,x)

for j=1-min(0,y):m-max(0,y)

CM(I(i+x,j+y)+1,I(i,j)+1) = CM(I(i+x,j+y)+1,I(i,j)+1)+1;

end

end

CM = CM/sum(sum(CM));

function [MP,EDM,uniformity,entropy] = descriptors(CM)

% descriptors from co-occurrence matrix CM:

% maximum probability, element differnce moment of order 2,

% uniformity and entropy

%----------------------------------------------------------

MP = max(max(CM));

EDM = sum(sum(toeplitz(0:size(CM,1)-1).^2.*CM));

uniformity = sum(sum(CM.^2));

entropy = -sum(sum(CM.*log2(CM+eps)));

On the figure 18 we have 5 test textures and the co-occurrence matrices for some
selected directions. Co-occurrence matrices of the texture 1 have high probabili-
ties shattered around the whole matrix, the result of compared pixels often having
very different and uncorrelated values. On the contrary, co-occurrence matrices for
texture 2 have high probabilities on the main diagonal because neighboring pixels
often have similar intensities. Both for texture 1 and 2 we can see that the similarity
between pixels generally decreases with the distance.

Texture 3 is an example where co-occurrence matrix doesn’t change much for
different relative positions on the same distances. On the other hand, co-occurrence
matrices of textures 4 and 5 are different even though the relative positions are on
the same distance. Following the direction of stripes results in higher probabilities
closer to main diagonal. From the co-occurrence matrices for the texture 5 we
can also conclude that the histogram of the texture has highest peak around the
intensity level 100, and another high peak around 225.

2Functioncooc is bi-directional, not making distinction between ‘1 down, 1 left’ and ’1 up, 1
right’. Some authors ignore the direction when defining co-occurrence matrix.
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Figure 18: Five test textures and two co-occurrence matrices for each texture. Relative
positions are written above each matrix.
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I have used the functiondescriptors to extract the four descriptors from
co-occurrence matrices for all the textures. It turned out that it was possible to
partially sort the textures by those descriptors. On the figure 19 we can see the
textures sorted by

1. decreasing maximum probability,

2. increasing element difference moment,

3. decreasing uniformity and

4. increasing entropy.

It was only the ordering of textures 1 and 3 that could not be resolved by this
scheme.

We can see that we have more uniform and smoother textures on one side, and
more coarse textures on other. In terms of co-occurrence matrices we have those
with the high values near main diagonal on the one side, and those with the high
values scattered across the matrix on the other side.

Descriptors would make it possible to discriminate between some of the tex-
tures. For example texture 5 has relatively high element difference moment, so
this value could be used to recognize that texture. Texture 1 could also be easily
recognized due to its high uniformity. On the other hand, it would be hard to dis-
criminate between textures 1 and 3 on the basis of those 4 descriptors—for those
textures are the high probabilities similarly distributed in co-occurrence matrix.

texture 2 texture 5 texture 1 texture 3 texture 4

1 right 1 right 1 right 1 right 1 right

texture 2 texture 5 texture 1 texture 3 texture 4

Max. probability/10−3 7.8 2.5 1.0 0.9 0.5
El. diff. moment (or. 2) 4 48 464 612 2804
Uniformity/10−4 26 6.0 2.2 2.4 1.4
Entropy 9.2 11.2 12.4 12.3 13

Figure 19: Five test textures, their corresponding co-occurrence matrices and the four de-
scriptors for each matrix. Textures are partially sorted depending on the descriptor values.
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14 Pattern Classification

Third Mandatory Assignment

For this assignment, you will have to implement the minimum distance
classifier (GW [2], 12.2.1).

Download the datapr.mat. Start with dataset A. The dataset has two
classes,setA class1 andsetA class2. There are 1000 samples of
each class and the pattern vectors are 2-dimensional (each sample is
described by 2 feature values). Plot the data (like is done for the iris
data in GW [2], figure 12.1).

Take a small subset of the dataset (e.g. 10 samples for each class) and
plot the decision boundary of the minimum distance classifier trained
on the subset. Repeat this several times for different subsets of the
same size. Explain your findings.

Use 500 samples of each class to test your classifier and train the clas-
sifier on subsets of the other2×500samples. Evaluate how the perfor-
mance (the error rate = the percentage of misclassified pixels) depends
on the size of the training set; draw the curve of the error rate as a func-
tion of the number of training samples. Draw in the same plot also the
curve of the error rate on the training sets that you used. Explain your
findings. How would the curves have looked for a 1-NN classifier?
Why?

How do you think this data is generated? Why? From the classifiers
that you learned about in the lecture, what would be the best classifier
for this kind of data? Why?

Plot the distribution of the 2 classes of dataset B. From the classifiers
that you learned about in the lecture, what would be the best classifier
for this kind of data? Why?

Explanation of implementation

A pattern is an arrangement of certain descriptors, and a pattern class is a family of
patterns that share some common properties. Pattern classification is a technique
of assigning patterns to their respective classes. An often used scenario for pattern
classification involves designing a classification algorithm based on a set of pre-
classified (training) patterns, and than applying the algorithm on unknown (testing)
patterns.

The patterns used in this assignment have two descriptors so we can represent
each pattern as the point in a plane. The classifier we need to use is minimum

43



distance classifier. This classifier first calculates a mean pattern for each class of
training patterns. An unknown pattern is than assigned to that class whose mean
pattern it is closest to. The boundary between two classes (decision boundaries)
is in that case a line (plane or hyperplane for more dimensions). More precisely,
decision boundary is perpendicular bisector of a line segment joining the means of
the classes.

Since the patterns from our assignment live in a plane, it was possible to find
the decision boundary using plane analytic geometry. The boundary between the
two classes can be found using the equation of a straight line trough a given point
and perpendicular to a given straight line

y−yp =− 1
al

(x−xp)

whereal is the slope of a line connecting the two mean points, i.e.al = y1−y2
x1−x2

, and

(xp,yp) are coordinates of a midpoint between two means(xp,yp) = (x1+x2
2 , y1+y2

2 ).
Solving this equation fory results in slope-intercept form of the decision bound-
ary 3

y =−x1−x2

y1−y2
x+

x1 +x2

2
· x1−x2

y1−y2
+

y1 +y2

2

We have a slope of the decision boundary given by

a =−x1−x2

y1−y2

and the intercept of a decision boundary given by

b =
x1 +x2

2
· x1−x2

y1−y2
+

y1 +y2

2

where(x1,y1) and(x2,y2) are coordinates of the mean patterns for the two classes.
Alternatively, one could write the decision boundary in a vector form, as in equa-
tion (12.2-6) GW [2]. I wrote a functionboundary.m that for a pair of mean points
returns the slope and the intercept of a decision boundary.

Assigning the unknown pattern with coordinates(xu,yu) to one or another class
is now equivalent to checking if the point(xu,yu) lies under or above the decision
boundary, i.e. ifyu < axu + b than(xu,yu) belong to one class, otherwise to the
other. In case of equality we have a point on the decision boundary. I wrote a
functiontest.m that counts how many of the testing patterns ended on the wrong
side of the boundary. When implementing this function, I used the fact that we
actually know to which class a certain testing pattern belongs, and that we know
that class 1 lies under, and class 2 above the decision boundary.

3This form of the line equation can not be used for vertical lines, but in our particular case I knew
that the decision boundary is not a vertical line, so I saw no problem in using slope-intercept form.
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M ATLAB code:

Assignment task can than be solved using the followingMATLAB code.

load pr;

% plotting all data (set A)

figure(1), classplot(setA_class1,setA_class2)

% finding the decision boundary for 5 subsets of dataset

for k=1:5

training_class1 = setA_class1(10*(k-1)+1:10*k,:);

training_class2 = setA_class2(10*(k-1)+1:10*k,:);

figure(k+1)

classplot(training_class1,training_class2), hold on

m1 = mean(training_class1); m2 = mean(training_class2);

plot(m1(1),m1(2),’bo’,m2(1),m2(2),’ro’)

[a,b] = boundary(m1,m2);

x = -3:5; y=a*x+b;

plot(x,y,’g’)

end

% finding error rate for training sets of different size

testing_class1 = setA_class1(501:1000,:);

testing_class2 = setA_class2(501:1000,:);

k = 10:10:500;

for i=1:length(k)

training_class1 = setA_class1(500-k(i)+1:500,:);

training_class2 = setA_class2(500-k(i)+1:500,:);

m1 = mean(training_class1); m2 = mean(training_class2);

[a,b] = boundary(m1,m2);

err_rate(i) = test(a,b,testing_class1,testing_class2);

err_tr(i) = test(a,b,training_class1,training_class2);

end

figure(7), plot(k,err_rate,’b’,k,err_tr,’g’), axis([0 502 0 20])

% plotting dataset B

figure(8), classplot(setB_class1,setB_class2), axis auto,

function classplot(class1, class2)

% function for plotting datasets

plot(class1(:,1),class1(:,2),’b.’,class2(:,1),class2(:,2),’r.’)

axis([-3 5 -3.5 5])

function [a,b] = boundary(m1,m2)

% slope and intercept of the decision boundary between two means

a = -(m1(1)-m2(1))/(m1(2)-m2(2));

b = 0.5*(m1-m2)*(m1+m2)’/(m1(2)-m2(2));

function err = test(a,b,class1,class2)

% finding error rate for given decision boundary

t1 = a*class1(:,1)+b;

t2 = a*class2(:,1)+b;

err_rate = 100*(length(find(class1(:,2)>t1))+...

length(find(class2(:,2)<t2)))/length([class1;class2]);
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Explanation of experiments

The experiments in this assignment are based on training the minimum distance
classifier on a certain subset of dataset, and than testing the performance of the
classifier on an other subset of dataset. Training and testing subsets have to be
disjunct.

On the figure 20 we have a plot of the two classes, each consisting of 1000
patterns. Each class will later be divided into training and testing part.

On the figure 21 we have four different training sets, the mean pattern for each
class and the decision boundaries of minimum distance classifiers trained on these
sets. All training set have 10 patterns from each class.

We can see that the positions of the mean patterns vary from plot to plot, and
consequently the decision boundary also varies. This shows the importance of
having enough of training patterns. The more training patterns one has available,
the better statistical description of the class can be obtained. Just few training
patterns will not capture statistical behavior of the class. To illustrate this with an
extreme case we can consider having just two training patterns. Depending on the
position of those two patterns, decision boundary could take any possible direction
since classes are partially intermixed.

We can also notice that already for the training sets on the figure 21 we have
some occurrences of the patterns ending on the wrong side of the decision bound-
ary. This is a consequence of classes being partially intermixed—it is not possible
to find a single line (or even single curve) that perfectly separates class 1 and class
2.

In the next experiment, I gradually increased the size of the training set from 10
to 500 of each class, by successively adding 10 patterns of each class to the training
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Figure 20: A plot of the two classes: class 1 (blue) and class 2 (red). Each class consists
of 1000 patterns.

46



−2 0 2 4

−3

−2

−1

0

1

2

3

4

5

−2 0 2 4

−3

−2

−1

0

1

2

3

4

5

−2 0 2 4

−3

−2

−1

0

1

2

3

4

5

−2 0 2 4

−3

−2

−1

0

1

2

3

4

5

Figure 21: Four different training sets of two classes, the mean pattern for each class and
the decision boundaries of minimum distance classifiers trained on these sets.
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Figure 22: Left: Error rate (in percent) for different sizes of training set. Right: Training
set containing 500 patterns from each class (small circles), decision boundary, and the
testing set containing 500 patterns from each class (small triangles). Hit vs. miss rate for
each class is also displayed, together with error rate.
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set. For each training set the decision boundary was calculated and tested on the
(unchanged) testing set of500+500patterns. The plot on the figure 22 shows how
does the error rate depend on the training set size. The error rate on the training set
is also included in the plot.

We can see that the error rate is relatively high for very small training sets (un-
der 100 patterns from each class), but for the bigger training sets the error rate is
rather stabile around 13%. We can conclude that when the training set has reached
a certain size it describes statistical properties of the classes well enough and the
decision border is more or less fixed. The error rate can not decrease further be-
cause the classes are partially intermixed.

The training set shows small error rate for the small sets, since the decision
border is defined by the means of the training set and it was possible to divide
the small sets nicely. For bigger training sets, the error rate for training set meets
the error rate for the testing set—both those error rates are caused by the fact that
classes are partially intermixed.

On the figure 22 we can also see a detailed plot of the last test from the previous
experiment. It is the case where training set includes 500 of patterns from each
class.

Instead of using minimum distance classifier, we could have used 1-NN (near-
est neighbor) classifier. In that scenario an unknown pattern is put in the same class
as its nearest neighbor from training patterns. Error rate dependency on training set
size would be different in that case. The error rate for training set would be 0% for
all training set sizes, since the 1-NN classifier always does perfectly on the training
set. It is hard to imagine how would the error rate for test set look like, I assume
it would be a bit worse than minimum difference classifier because of intermixed
classes.
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Figure 23: Another plot of the two classes: class 1 (blue) and class 2 (red). Each class
again consists of 1000 patterns.
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I think that the classes we used in this assignment look like two round4 clouds,
therefor I would assume that each of the classes is a Gaussians having the same
standard deviation in all directions.I would even say that the two Gaussians have
same standard derivation, and differ only in the mean value. If this is the case, it is
a perfect setting for minimum distance classifier—no other classifier would yield a
smaller error rate. That is because Bayes classifier for Gaussian pattern classes re-
duces to minimum distance classifier when classes have covariance matrices equal
to the identity matrix and all classes are equally likely to occur. The error rate is
in this case caused by the fact that the distance between means is not very large
compared to standard deviation.

On the figure 23 we have a plot of the another two classes, again consisting
of 1000 patterns each. Those two classes are not significantly intermixed—it is
not hard to imagine the curve that separates the two classes, but it would be hard
to define that curve analytically. Alternatively, we can say that those classes can
not be approximated with a Gaussian, so using Bayers classifier even in its most
general form would not yield a success.

I believe that 1-NN classification could do well on the case like this. The
classes are not very intermixed and there should not be a lot of outliners in the
training set that could cause wrong classification later. Using for example 5-NN
classification would further improve the result.

4Plots were not made usingaxis equal, so circles look like ellipses.
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15 Face Detection

from week 5: Color

Use thechildren.tif test image for this exercise. Extract a region
in the image (the larger the better) exclusively filled with facial skin.
Make a histogram for each of the three color channels (red, green, and
blue). For those channels with a distinctive peak in the histogram,
establish a suitable range of values that correspond to skin. Combine
these ranges in an expression like ‘A pixel with color values(r,g,b) is
skin if 0.6 < r < 0.8 and0.1 < g < 0.2’. Try to use this expression to
segment the faces from the test image. Is it possible?

We need to segment the faces from the image by separately thresholding red, green
and blue channel of the RGB image. The initial idea for thresholds should be found
by looking at the three histograms of the image part containing facial skin. I used
following MATLAB code to try to solve this problem.

C = imread(’children.tiff’);

% regions filled with facial skin

F = vertcat(horzcat(vertcat(C(61:80,101:160,:),C(131:170,221:280,:),...

C(191:210,226:285,:)),C(131:210,221:250,:)),C(111:130,71:160,:));

figure(1), subplot(121), imagesc(C), axis image

figure(1), subplot(122), imagesc(F), axis image

% histograms for three chanels

figure(2), for i=1:3, subplot(3,1,i), imhist(F(:,:,i)), end

Sr = zeros(size(C,1),size(C,2));

Sg = zeros(size(C,1),size(C,2));

Sb = zeros(size(C,1),size(C,2));

% thresholding

Sr(find(150<C(:,:,1) & C(:,:,1)<250))=1;

Sg(find(90<C(:,:,2) & C(:,:,2)<210))=1;

Sb(find(40<C(:,:,3) & C(:,:,3)<190))=1;

figure(3), subplot(221), imagesc(Sr), colormap gray, axis image

figure(3), subplot(222), imagesc(Sg), colormap gray, axis image

figure(3), subplot(223), imagesc(Sb), colormap gray, axis image

figure(3), subplot(224), imagesc(Sr&Sg&Sb), colormap gray, axis image

On the figure 24 we can see the test image, and its three channels: red, green and
blue. An image made by extracting the regions exclusively filled with facial skin
and patching those together is on the figure 25, together with the corresponding
histograms. By looking at the histograms, I chose initial values for thresholds

150< r < 250, 75< g < 190, 30< b < 150
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After trying different values, I adjusted the upper thresholds for green and blue
channel, allowing more green and blue, otherwise were bright spots on the fore-
heads segmented out. I also made the lower threshold values for green and blue
channel higher, hoping to eliminate as much of background as possible.

The results of thresholding and the final threshold values can be seen at the
figure 26. We can see that it is the red channel contributing the most to the final
segmentation. Trying to narrow allowed range for green and blue didn’t yield
desired result—blue and green channel are not contributing a lot to segmentation.

Looking at the final result, we can see that the faces were mostly segmented
correctly, but there is still quite a lot of surroundings that sneaked in, especially the
yellow clothes of a smaller child. The arms were of course also recognized as the
facial skin.

When segmenting by thresholding the tree color channels separately, we ignore
the relationship between the color intensities. If we, for example want to segment
both dark and bright shades of the same color, we need to allow wide intensity
range for all channels. Instead, we could say ‘Allow a lot of blue, only if all three
colors have high intensity values’. This could be done easier for HSI images, or
maybe by thresholding both RGB and HSI components of an image.
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Figure 24: Red, green and blue channel of an color image, and the corresponding RGB
image.
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Figure 25: An RGB image made by patching the regions filled with facial skin, together
with the histograms of red, green and blue channel.
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Figure 26: Results of segmentation by thresholding the three color channels separately,
and the final result which is the product of the three segmented images.
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16 Horn-Schunck Algorithm

from week 12: Motion

The very last batch of exercises:

• Read Horn’s chapter 12.

• Download the zip-file of a rotating sphere.

• Unzip the files to an appropriate place.

• Implement the Horn and Schunck’s method to optic
flow estimation.

Horn-Schunck algorithm is an algorithm for estimating optical flow velocities.
The algorithm is based on minimizing a combination of two errors, departure of
smoothnesses and the error in optical flow constrainec, i.e we minimize the sum

es+λec

whereλ is the weighting parameter.
If we looked just at optical flow constrain, we couldn’t determine optical flow

in, for example, uniformly bright regions or in the direction of the edges. Including
the departure of smoothness in the minimization ensures that for the regions where
the optic flow can not be found locally, it will be interpolated from the optical flow
velocities in surrounding areas.

As shown in H [3], chapter 12, the minimization problem can be solved itera-
tively, using the following steps.

1. Estimate the spatial and time derivatives of brightnessEx, Ey andEz, by using
first differences in a2×2×2 cube of brightness.

2. Initialize optical flow componentsu andv (corresponding tox andy direc-
tion) by zeros.

3. Iterate a certain number of times over:

- Calculate local averages̄u andv̄ of u andv by looking at the first four
neighbors.

- Update the optical flow components as

u = ū− λ (Exū+Eyv̄+Et)
1+λ (E2

x +E2
y )

Ex

v = v̄− λ (Exū+Eyv̄+Et)
1+λ (E2

x +E2
y )

Ey
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The following MATLAB function is an implementation of the Horn-Schunck
algorithm.

function [u,v] = Horn_Schunck(M,lambda,it)

% Horn-Schunck algorithm for motion estimation

% lambda - weighting parmeter, it - number of iterations

% [u v] - optical flow velocities in x and y direction

M=double(M);

[X,Y,T] = size(M);

% estimating partial derivates

x1=1:X-1; x2=2:X; y1=1:Y-1; y2=2:Y; t1=1:T-1; t2=2:T;

Ix = (M(x2,y1,t1)+M(x2,y1,t2)+M(x2,y2,t1)+M(x2,y2,t2)...

-M(x1,y1,t1)-M(x1,y1,t2)-M(x1,y2,t1)-M(x1,y2,t2))/4;

Iy = (M(x1,y2,t1)+M(x1,y2,t2)+M(x2,y2,t1)+M(x2,y2,t2)...

-M(x1,y1,t1)-M(x1,y1,t2)-M(x2,y1,t1)-M(x2,y1,t2))/4;

It = (M(x1,y1,t2)+M(x1,y2,t2)+M(x2,y1,t2)+M(x2,y2,t2)...

-M(x1,y1,t1)-M(x1,y2,t1)-M(x2,y1,t1)-M(x2,y2,t1))/4;

u = zeros(X,Y,T);

v = zeros(X,Y,T);

% iteratively finding flow velocities

for m=1:it

for t=1:T-1

for x=2:X-1

for y=2:Y-1

ubar(x,y,t) = (u(x-1,y-1,t)+u(x-1,y+1,t)...

+u(x+1,y-1,t)+u(x+1,y+1,t))/4;

vbar(x,y,t) = (v(x-1,y-1,t)+v(x-1,y+1,t)...

+v(x+1,y-1,t)+v(x+1,y+1,t))/4;

alpha(x,y,t) = lambda*(Ix(x,y,t)*ubar(x,y,t)...

+Iy(x,y,t)*vbar(x,y,t)+It(x,y,t))...

/(1+lambda*(Ix(x,y,t)^2+Iy(x,y,t)^2));

u(x,y,t) = ubar(x,y,t)-alpha(x,y,t)*Ix(x,y,t);

v(x,y,t) = vbar(x,y,t)-alpha(x,y,t)*Iy(x,y,t);

end

end

end

end

On the figure 27 we can see the results of applying Horn-Schunck algorithm to an
image sequence showing a rotating sphere. Figure shows thex and they component
of the estimated optical flow after 5 and 50 iterations.

We can immediately see that the algorithm correctly estimated background to
be still5 and the sphere to be moving. One could actually easily segment the sphere
by thresholding the absolute value of the optical flow.

5The difference in the color of the background is introduced by scaling the intensity range of the
image, so zero was moved from the center of the range.
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Figure 27: The first and the fifth image of a sequence showing a rotating sphere (first
line), together with estimates of the optical flow between the second and the third image of
the sequence, obtained using Horn-Schunck algorithm: after 5 iterations (middle line) and
after 50 iterations (bottom line). On the left are the optical flow velocities inx direction
(up–down), and on the right are the flow velocities in they direction (left–right).
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We can also see that the directions of the movement are generally estimated
correctly: left part of the sphere is moving down (red) and left is moving up (blue),
the front is moving right (red), and the bottom left (blue).

However, the uniformly bright parts of the sphere are after 5 iterations esti-
mated to be still. As we can see, after 50 iterations the algorithm has smoothed the
optical flow of the sphere’s surface, but it also smoothed the optical flow out of its
silhouette introducing unwanted effects. The solution to that problem would be to
incorporate the segmentation into the iterative solution for the optical flow.
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