
A 12-week project in

Speech Coding and Recognition

by Vedrana Andersen

vedrana@itu.dk

(130274-xxxx)

and Fu-Tien Hsiao

hsiao@itu.dk

(031278-xxxx)

Project supervisor:

John Aasted Sørensen

IT University of Copenhagen

September – November 2005.

CONTENTS 2

Contents

1 Introduction 3

2 An Introduction to Speech Signals 5
2.1 Speech Signals in the Time Domain 5
2.2 Speech Signals in the Frequency Domain 11
2.3 Speech Spectrogram . 16
2.4 Homework . 19

3 Linear Prediction Analysis 20
3.1 Short-term Autocorrelation . 20
3.2 Autocorrelation Method for LP Analysis 26
3.3 Levison-Durbin Recursion . 28
3.4 Inverse Filtering Computation 30
3.5 Formant Estimation . 32
3.6 Pitch and Gain Estimation . 35
3.7 Homework . 38

4 Speech Coding and Synthesis 40
4.1 Perceptual Weighting Filter . 40
4.2 Excitation Sequence . 42
4.3 CELP Synthesizer . 42
4.4 Quantization . 45
4.5 Homework . 46

5 Speech Recognition 47
5.1 Feature Extraction . 47
5.2 Vector Quantization . 48
5.3 Training the HMM . 51
5.4 Recognition using the HMM . 52
5.5 Homework . 56

1 INTRODUCTION 3

1 Introduction

The human sense of hearing and the human’s ability to talk are very important
means of communication, which are gaining importance for IT-systems. Therefore,
after completing the ‘Signal Processing’ course in our first semester of studies at
IT University of Copenhagen, we decided to join the ‘Speech Coding and Recog-
nition’ project cluster and to carry out the 12-week project in ‘Speech Coding and
Recognition’. The project aims at introducing basic principles and fundamental
models for production, perception, coding and recognition of the speech signals.
Those models are necessary for the understanding, construction and performance
evaluation of IT-systems, which use speech as one of the input/output media.

We started the work on this project by attending the weekly lessons given by
our supervisor, John Aasted Sørensen. First set of lessons covered the models for
speech production, human vocal tract and linear prediction used for parameter esti-
mation. After that we moved to speech coding using analysis-by-synthesis method.
Lastly we turned to speech recognition using the hidden Markov model.

In parallel with attending the lessons, we worked on the hands-on exercises
using the speech processing algorithms represented inMATLAB . Finally, toward
the end of the project period we compiled the completed exercises into this project
report.

There are in total four exercises in the report. The first two exercises are well-
documented, stating both the detailed explanation of the considered topic, imple-
mentations of neededMATLAB functions, generated plots and our comments. In
the last two exercises we put focus on our own observations and conclusions. The
reader should keep in mind that this report forms a comprehensive text only to-
gether with the exercises. The numbers in the form (x.x.x) are references to the
exercise number in the exercise sheets.

First exercise, ‘An Introduction to Speech Signals’, presents the simplified
model for the speech production process, where the speech is described as a se-
ries of the steady-state sounds. The difference between modeling voiced and un-
voiced sounds is explained. In the time domain, we use short-time power and zeros
crossing measure to determine whether the signal is voiced or unvoiced. In the fre-
quency domain we analyze DFT based magnitude spectrum of the speech signals.
We determine formants and we estimate pitch period from the harmonic product
spectrum. Based on those analyses, we also try to estimate the pitch in a sliding
window. We observe the speech spectrograms and notice the temporal changes in
magnitude spectra.

In the second exercise, ‘Linear Prediction Analysis’, we first introduce the
short-term autocorrelation. We then assume all-pole model of the speech produc-
tion. This model leads us to the autoregressive speech production, where the speech
signal can be predicted using a linear combination of its past values. We use au-
tocorrelation method to find the LP coefficients, first by ‘brute force’ and later by
Levison-Durbin algorithm. This recursive algorithm utilizes the fact that the auto-
correlation matrix is Toeplitz, and that it’s elements are is in a special relationship

1 INTRODUCTION 4

to the elements of the autocorrelation vector. Finally, we perform frame based LP
analysis of the speech signals. We also used different techniques for pitch and gain
estimation and use the results to synthesize the signal.

Third exercise, ‘Speech Coding and Synthesis’, considers the problem of repre-
senting speech signals digitally in the way appropriate for transmission over com-
munication channels. In the coding part (sending end), we apply LP analysis and
perceptual weighting. We focus on Code-Excited Linear Prediction coder (CELP)
analyze-by-synthesis method, in which the excitation sequence is selected from
a Gaussian codebook. We useMATLAB function that performs frame-based es-
timation of LP parameters, gain and excitation parameters. In the decoding part
(receiving end) we synthesize the signal and discuss the quality of it for differ-
ent settings. We also try using quantization of the transmitted parameters, and we
discuss influence of the quantization on the synthesized signal.

In the last exercise, ‘Speech Recognition’, we gradually build a word recog-
nizer able to recognize ten words. The word recognizer is based on the hidden
Markov model (HMM). First we apply the LP analysis to extract feature vectors
containing cepstral coefficients from the training words. We then perform vector
quantization to produce a codebook, so that each speech signal can be represented
as series of symbols. Then we use forward-backward reestimation algorithm to
train each HMM on a given word, by maximizing the probability that the word
was produced by the HMM. Finally, we can use built models to recognize new,
unknown words by finding the HMM with the highest probability of producing the
word. We analyzed each of those steps, and performed the tests on the word recog-
nizer changing the block size and spacing, the LPC and cepstrum order, and the
codebook size.

Through this project we gained the theoretical insight of the covered topics and
of algorithms used in speech processing. We also obtained the practical experience
on implementing and using simple speech processing tools which can serve as
building blocks for more advanced applications.

We would like to thank our supervisor, John Aasted Sørensen, for his guidance
during the lessons, and valuable comments and suggestions for carrying out the
exercises and writing the project report.

2 AN INTRODUCTION TO SPEECH SIGNALS 5

2 An Introduction to Speech Signals

2.1 Speech Signals in the Time Domain

In technical discussions, the entire combination of all speech production cavities
is referred to as the vocal tract and comprises the main acoustic filter. The filter is
excited by organs below it (vocal cords, lungs, etc.) and loaded at its main output
by a radiation impedance due to the lips.

(1.4.1) figure 1 represents an amplitude waveform of the speech signal ‘She had
your dark suit in greasy wash water all year’. From the figure we can see that the
speech is a series of steady-state segments with intermediate transitions. Locally
stationary speech segments (or frames) are denoted short-time descriptions.

0 1 2 3 4 5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time index

am
pl

itu
de

Figure 1: Amplitude waveform of the speech signal ‘She had your dark suit in greasy wash
water all year’ uttered by an adult male (3.5 seconds at 16 kHz).

Depending on the manner of excitation, speech segments can be divided into
voiced and unvoiced speech sounds. A voiced speech sound is generated from
a quasi-periodic vocal-cord sound with a fundamental frequency or pitch usually
found to be below a few hundred Hertz. An unvoiced speech sound is generated
from a random sound produced by turbulent airflow.

(1.4.2) On the figure 2 we have plots of two frames, one representing the voiced
sound /a/ in ‘dark’, and the other representing unvoiced sound /S/ in ‘wash’. Let’s
look closer at the some characteristics of the two types of excitation.

(1.4.3) As expected, we observe clear periodicity in the voiced sound, with the
fundamental period of around 130 samples. There is no obvious periodicity in the
unvoiced sound—it looks random.

The amplitudes of the voiced sounds are approximately 10 times higher than

2 AN INTRODUCTION TO SPEECH SIGNALS 6

1.45 1.455 1.46 1.465 1.47 1.475 1.48 1.485 1.49

x 10
4

−1

−0.5

0

0.5

1

time index

am
pl

itu
de

3.55 3.555 3.56 3.565 3.57 3.575 3.58 3.585 3.59

x 10
4

−0.1

−0.05

0

0.05

0.1

time index

am
pl

itu
de

Figure 2: Plots of the two speech frames of 400 samples (25 ms) from the speech signal
plotted at figure 1. Top: /a/ in ‘dark’ (sample numbers 14501–14900), bottom: /S/ in
‘wash’ (sample numbers 35501–35900).

those of the unvoiced sound. In other words, the average power of voiced sounds
is much higher than the average power of the unvoiced sounds.

The number of zero crossings is much larger for the unvoiced sound than for the
voiced sound. In this particular case of voiced sound we have 12 zero crossings in
one period. In the same time frame, the number of zero crossings for the unvoiced
sound is well above 40.

(1.4.4) For time-variant signalx(n), the short-time powerPx(m) can be mea-
sured for theN-length frame ending at timem, i.e.,

Px(m) =
1
N

m

∑
n=m−N+1

|x(n)|2

Each time the window is shifted one sample, the powerPx could be recalculated,
however, it is easier to update the previous value ofPx as

Px(m) = Px(m−1)+
1
N

(|x(m)|2−|x(m−N)|2)

TheMATLAB functionstpower.m calculates the short-time power of a signal us-
ing a sliding window.

function Px = stpower(x,N)

M = length(x);

Px = zeros(M,1);

Px(1:N) = x(1:N)’*x(1:N)/N;

2 AN INTRODUCTION TO SPEECH SIGNALS 7

for (m=(N+1):M)

Px(m) = Px(m-1) + (x(m)^2 - x(m-N)^2)/N;

end

(1.4.5) A short-time zero crossing measure for theN-length interval ending at time
m is

Zx(m) =
1
N

m

∑
n=m−N+1

|signx(n)−signx(n−1)|
2

The MATLAB function stzerocross.m implementsZx(m) using a sliding win-
dow.

function Zx = stzerocross(x,N)

M = length(x);

Zx = zeros(M,1);

Zx(1:N+1) = sum(abs(sign(x(2:N+1)) - sign(x(1:N))))/(2*N);

for (m=(N+2):M)

Zx(m) = Zx(m-1) + (abs(sign(x(m)) - sign(x(m-1))) ...

- abs(sign(x(m-N)) - sign(x(m-N-1))))/(2*N);

end

(1.4.6) We used short-time power and short-time zero crossing measure to analyze
the utterance ‘four’.

load digits;

N = 300;

x = digits.four1;

Px = stpower_r(x,N);

Zx = stzerocross_r(x,N);

plot([Px*1e-5 Zx x/2000])

On the figure 3 we have the plot of the speech signal ‘four’, together with the short-
time power and zero crossing measure. From the plot of the speech signal we can
easily see that the utterance ‘four’ consists of the unvoiced part /f/ and the voiced
part /o/ . We can see that the short-time power of the unvoiced part is close to zero,
while for the voiced part it reaches 10 000 times larger values. The short-time zero
crossing measure shows opposite behavior, but the differences between voiced and
unvoiced part are not so drastic in this case. The unvoiced part of the utterance has
the short-time zero crossing measure that is approximately five times larger than
the short-time zero crossing measure for the voiced part.

Short-time power and zero crossing measure can be used for initial voiced/un-
voiced segmentation. For a given speech signal, short-time power and zero crossing
measure can be calculated using the sliding window of a certain length. The mid-
dle sample in the window can be labeled voiced if the short-time power is above a
certain threshold and the short-time zero crossing measure below certain threshold.
Power thresholds can be expressed relative to maximal values of short-time power.

2 AN INTRODUCTION TO SPEECH SIGNALS 8

0 1000 2000 3000 4000 5000 6000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time index

am
pl

itu
de

 /
20

00
, s

tp
ow

er
 /

10
5 , s

tz
er

oc
ro

ss

Figure 3: Scaled amplitude waveform of the utterance ‘four’ (green), together with the
scaled short-time power (blue) and zero crossing measure (red) obtained using the sliding
window of 300 samples (30 ms at 10 kHz).

0 1000 2000 3000 4000 5000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time index

am
pl

itu
de

 /
50

0,
 s

eg
m

en
ta

tio
n

Figure 4: Amplitude waveform of the speech signal ‘four’ (green), and the initial voiced/u-
vioced segmentation (blue). Segmentation is based on short-time power and zero crossing
measure as on the figure 3. Thresholds used were 0.1 for short-time power, and 0.3 for
short-time zero crossing measure.

2 AN INTRODUCTION TO SPEECH SIGNALS 9

MATLAB functionvoiunvoi.m implements this segmentation.

function voi = voiunvoi(x,N,Pth,Zth)

Px = stpower(x,N);

Zx = stzerocross(x,N);

voi = (Px>Pth*max(Px)) & (Zx<Zth);

voi = [voi(fix(N/2)+1:length(voi));voi(length(voi))*ones(fix(N/2),1)];

The results of using functionvoiunvoi on the speech signal ‘four’ are shown on
figure 4.

Sx=voiunvoi(x,300,0.1,0.3);

plot([Sx, x/800])

The classical discrete-time model for the speech production process assumes that
the sound-generating excitation is linearly separable from the vocal tract filter. The
vocal tract changes shape relatively slowly with time, and thus it can be modeled
as a slowly time-varying filter which imposes its frequency-response properties on
the spectrum of the excitation.

A voiced speech sound can be modeled by a sequence of impulses, which are
spaced by a fundamental period equal to the pitch period. This signal then excites
a linear filter whose impulse response equals the vocal-cord sound pulse.

An unvoiced speech sound is generated from an excitation which consists sim-
ply of a white noise source.

(1.4.7) Looking at the two speech frames we analyzed in the task (1.4.2), fig-
ure 2, it is not difficult to recognize elements from this model. Voiced sound can
be modeled by the filtered impulse train, and the unvoiced sound can be modeled
by filtered white noise.

(1.4.8) On figure 5 we have plots of four vowels in frames of 300 samples (30
ms at 10 kHz) and we’ll try to estimate the pitch period for each utterance. By
looking at the plot of the speech signal we can conclude that for all four plots there
is almost the same distance between two neighboring pitch peaks, so the pitch
period is almost the same for each vowel. Let’s estimate it.

The distance between two neighboring pitch peaks is approximately 90 sam-
ples, so we haveTp = 90. We know the sampling frequencyFs = 10 kHz, so we
have

Tp =
tp

Fs
=

90
10 kHz

= 9 ms

Fp = fp ·Fs =
Fs

tp
=

10 kHz
90

≈ 111 Hz

The pitch period is 9 ms, and the pitch frequency 111 Hz. We can also conclude
that the speaker is a man, since the pitch frequency of 111 Hz falls into the range
typical for men. This is confirmed by listening to the speech signal.

2 AN INTRODUCTION TO SPEECH SIGNALS 10

0 100 200 300
−1500

−1000

−500

0

500

1000

time index

am
pl

itu
de

0 100 200 300
−1000

−500

0

500

1000

time index

am
pl

itu
de

0 100 200 300
−2000

−1500

−1000

−500

0

500

1000

1500

time index

am
pl

itu
de

0 100 200 300
−1500

−1000

−500

0

500

1000

time index

am
pl

itu
de

Figure 5: Plots of the four vowels in frames of 300 samples (30 ms at 10 kHz). Top left:
/a/, top right: /i/, bottom left: /o/, bottom right: /u/.

0 100 200 300
−1500

−1000

−500

0

500

1000

1500

time index

am
pl

itu
de

0 100 200 300
−2000

−1500

−1000

−500

0

500

1000

time index

am
pl

itu
de

0 100 200 300
−1000

−500

0

500

1000

time index

am
pl

itu
de

Figure 6: Plots of the three vowels in frames of 300 samples (30 ms at 10 kHz). Those
plots should be compared with plots on figure 5.

2 AN INTRODUCTION TO SPEECH SIGNALS 11

(1.4.9) On the figure 6 we see the plots of another three vowels. We can try to
determine which vowels those plots likely represent by comparing the plots on the
figure 6 with the plots on the figure 5. We can see that the top left plot is similar to
the plot of vowel /u/, top right plot is similar to the plot of vowel /a/, and the bottom
left plot is similar to the plot of vowel /i/, so we guessed that the plots represent
vowels /u/, /a/ and /i/. By listening to the speech signals we could verify that our
guess was correct.

2.2 Speech Signals in the Frequency Domain

The Fourier transformX(ω) is a continuous function of frequency, so in the digital
domain the sampled spectrum is used to represent an aperiodic signalx(n) of length
L, which leads to the discrete Fourier transform (DFT) pair

x(n) =
1
N

N−1

∑
k=0

X(k)ej2πkn/N ↔ X(k) =
N−1

∑
n=0

x(n)e− j2πkn/N

If L≤ N it is possible to recoverx(n) without time-domain aliasing.
Limiting the duration of a sequencex(n) to L samples can be done by multi-

plying x(n) by a window functionw(n) of lengthL. According to the windowing
theorem (PM [3], page 302) we have

x̂(n) = x(n)w(n) ↔ X̂(ω) =
1

2π

∫ π

−π
X(θ)W(ω−θ)dθ

The effect of windowing is that energy originating at a single frequency leaks out
in the entire frequency range due to the sidelobes ofW(ω), and that the spectral
resolution is reduced due to the main lobe width ofW(ω).

(1.5.1) When choosing the window lengthL to analyze speech signals we have
certain limitations. Speech signals are short-time stationary, so the window should
be short enough to capture just the steady-state sound. On the other hand, if the
window is too short, the unwanted effects of windowing are going to dominate the
frequency representation of the speech signal. So, choosing the window length, we
need to consider the tradeoff between time resolution and frequency resolution.

(1.5.2) At figure 7 we have plotted one frame of the speech signal ‘The prices
have gone up enormously in spite of the technological advances’ corresponding
to the voiced /Y/ sound in ‘prices’, together with the magnitude spectrum of the
same frame. Since typical speech communication is limited to a bandwidth of 7–8
kHz, used speech signal has been low-pass filtered (3.5 kHz) before sampling. It
is evident from the plot of magnitude spectrum that the magnitudes are decreasing
for frequencies towards the end of the frequency range.

(1.5.3) In the simplified model for the speech production process, the vocal
tract filter models the entire combination of all speech production cavities. A
voiced speech sound is then modeled by a sequence of impulses (spaced by a
fundamental period equal to pitch period) which excites a vocal tract filter. The

2 AN INTRODUCTION TO SPEECH SIGNALS 12

frequency response of the vocal tract filterH(z) determines the short-time spectral
envelope of the speech signal. We can verify this by comparing the magnitude
spectrum|H(ω)| for the voiced sound with the DFT based magnitude spectrum of
the voiced sound—one could say that|H(ω)| is obtained by connecting the peak
frequencies of DFT spectrum.

(1.5.4)H(z) can be described by an 8–12 order all-pole filter, i.e., 4–6 resonant
frequencies (formants) usually denotedF1, F2, . . . We can try to determine the for-
mants from the DFT based magnitude spectrum. To do that we need to locate 4–6
highest peeks of the DFT magnitude spectrum, find their coefficientsk, and then
determine which frequencies they represent by calculating

f =
k
N

, F = f ·Fs

We need to use the number of points at which the DFT is evaluatedN = 1024, and
the sampling frequencyFs = 8 kHz. By looking at figure 7 we found

k1 = 78 ⇒ f1 = 78
1024 = 0.7617 ⇒ F1 = 78

10248 kHz= 609 Hz
k2 = 158 ⇒ f2 = 158

1024 = 0.1543 ⇒ F2 = 158
10248 kHz= 1234 Hz

k3 = 278 ⇒ f3 = 278
1024 = 0.2715 ⇒ F3 = 278

10248 kHz= 2172 Hz
k4 = 395 ⇒ f4 = 395

1024 = 0.3857 ⇒ F4 = 395
10248 kHz= 3086 Hz

(1.5.5) The excitation of the vocal tract filter is not a single unit pulse but a pe-
riodic repetition of pulses (pulse train), so the frequency representation of a voiced
speech sound is a Fourier series. Ideally we should be able to represent a voiced
speech sound by magnitudes of fundamental frequency and its harmonics. The
magnitude spectrum of a voiced sound would in that case be a number of equally
spaced spikes, where the spike closest to 0 represents fundamental frequency. Due
to windowing, we don’t have such a ideal spectrum, but we can still see that a mag-
nitude spectrum of a voiced sound is represented by a number of equally spaced
peaks (lobes), where the peak closest to 0 represents pitch.

0 100 200 300
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample number

am
pl

itu
de

0 100 200 300 400 500

−60

−40

−20

0

20

frequency / (8kHz/1024)

m
ag

ni
tu

de
 /

dB

Figure 7: Voiced speech frame (37.5 ms at 8 kHz) corresponding to the /Y/ sound in
‘prices’. Left: Amplitude waveform, right: magnitude spectrum evaluated at 1024 points.

2 AN INTRODUCTION TO SPEECH SIGNALS 13

Let’s try to estimate the pitch frequency from the spectrum. We need to locate
the peak closest to 0, find it’s coefficient and determine which frequency it repre-
sents, using the same method as in the previous task. By looking at the figure 7 we
found

k0 = 20

F0 = f0 ·Fs =
k0

N
Fs =

20
1024

8 kHz= 156 Hz

(1.5.6) Frequency representation of a voiced speech sound is a Fourier series.
However, the DFT based magnitude spectrum of the voiced sound is be influenced
by the spectral characteristics of the window functionw(n). The energy originating
at a single frequency leaks out in the entire frequency range due to the sidelobes of
W(ω), and the spectral resolution is reduced due to the width of the main lobe of
W(ω). So the magnitude spectrum of a voiced sound does not have a number of
equally spaced spikes, but a number of equally spaced lobes, where the width of
the lobes is determined by the width of the main lobe ofW(ω).

We can try to estimate the main lobe width by looking at the figure 7. We
see that the lobes of the DFT based magnitude spectrum of the voiced sound span
across the range of 20 coefficientsk. We can express it in terms of normalized
frequency using the same method as in the previous two tasks

f =
k
N

=
20

1024
= 0.0195

So we can estimate the width of the main lobe of theW(ω) to be 0.02 in terms of
normalized frequency.

(1.5.7) If the DFT is computed with sufficient spectral resolution, then the har-
monics of the pitch frequency will be apparent in the spectrum. Thus, the harmonic
product spectrum defined as

HPSx(ω) =
R

∏
r=1

X(rω)

can be used to estimate the pitch for some smallR, typically five. TheMATLAB

functionhpspectrum.m implementsHPSx(ω).

function HPSx = hpspectrum(x,N,R)

K = ceil(N/(2*R));

k = 1:K;

X = fft(x.*hann(length(x)),N);

HPSx = X(k);

for (r=2:R)

HPSx = HPSx.*X(r*k-r+1);

end

2 AN INTRODUCTION TO SPEECH SIGNALS 14

0 10 20 30 40 50 60 70 80 90 100

−150

−100

−50

0

50

frequency / (8kHz/1024)

hp
sp

ec
tr

um
 /

dB

Figure 8: Harmonic product spectrum of the voiced speech frame from the figure 7. We
usedR= 5 andN = 1024to obtain the harmonic product spectrum.

We appliedMATLAB functionhpspectrum.m to the voiced speech frame at fig-
ure 7. The harmonic product spectrum of the speech frame is shown at the figure 8.
We can use the harmonic product spectrum to estimate the pitch by locating the
maximal value of harmonic product spectrum and determining which frequency it
represents. By looking at the figure 8 we found

k0 = 21

F0 = f0 ·Fs =
k0

N
Fs =

21
1024

8 kHz= 164 Hz

This result varies a bit from the result obtained in the exercise (1.5.5).
(1.5.8) On the figure 9 we have magnitude spectra of the vowels /i/ as in ‘tree’

and /u/ as in ‘boot’. For each of those spectra we can do the same analysis as for
the spectrum on the figure 7, i.e. we can try to determine formants, we can try
to estimate pitch period, and we can look at the effects of windowing in the DFT
based spectra.

(1.5.9) For unvoiced frames (stochastic signal), the DFT should be viewed as a
step toward computing a short-time power density spectrum

Γx(ω) = E{X(ω)X(ω)∗}

The phase spectrum is not meaningful in the stochastic case.
On the figure 10 we have plotted one frame of the speech signal ‘The prices

have gone up enormously in spite of the technological advances’ corresponding to
the unvoiced /s/ sound in ‘spite’, together with the magnitude spectrum of the same
frame. One should note very small magnitudes of this spectrum.

2 AN INTRODUCTION TO SPEECH SIGNALS 15

0 100 200 300 400 500
0

20

40

60

80

100

frequency / (10kHz/1024)

m
ag

ni
tu

de
 /

dB

0 100 200 300 400 500
0

20

40

60

80

100

frequency / (10kHz/1024)

m
ag

ni
tu

de
 /

dB

Figure 9: Magnitude spectra of two vowels. Both speech frames had the length of 300
samples, and the magnitude spectra was evaluated at 1024 points. Left: /i/ as in ‘tree’,
right: /u/ as in ‘boot’.

0 50 100 150

−10

−5

0

5

x 10
−3

sample number

am
pl

itu
de

0 100 200 300 400 500

−70

−60

−50

−40

−30

frequency / (8kHz/1024)

m
ag

ni
tu

de
 /

dB

Figure 10: Unvoiced speech frame (20 ms at 8 kHz) corresponding to the /s/ sound in
‘spite’. Left: Amplitude waveform, right: magnitude spectrum evaluated at 1024 points.

2 AN INTRODUCTION TO SPEECH SIGNALS 16

2.3 Speech Spectrogram

(1.6.1) On the figure 11 we have an amplitude waveform of the speech signal ‘She
had your dark suit in greasy wash water all year’, together with the spectrogram of
the same speech signal.

We can see that the formants structure changes relatively slowly in some time
intervals, but those intervals are separated with shorter or longer transitions where
the formant structure is not evident. The intervals where formant structure is evi-
dent and changing slowly correspond to the voiced parts of the sentence, while the
transitions correspond to unvoiced parts.

(1.6.2) On the figure 12 we have an amplitude waveform of the sound /i/ glis-
sandos, together with the spectrogram of the same sound. Glissandos (or pitch
sweeps) is a musical term that refers to sliding from one pitch to another, produced
for example by sliding the finger along a keyboard.

Comparing the spectrogram on the figure 12 with the magnitude spectrum of a
voiced sound /i/ on the figure 9, it is possible to recognize the formant spectrum for
the /i/ sound—very high magnitudes for very low frequencies (up to 0.5 kHz), fol-
lowed by a short range of frequencies with small magnitudes (1–1.5 kHz), followed
again by a longer range of frequencies with high magnitudes (2–3.5 kHz).

Looking at the spectrogram on the figure 12 it is easy to notice the shift in
the pitch frequency. Pitch frequency is represented by the lowest slanted line in
the spectrogram (also the line with highest magnitudes) and the shift in the pitch
corresponds to the slope of the line. The shift in pitch frequency is reflected in all
the harmonics, resulting in spectrogram composed of slanted lines.

(1.6.3)MATLAB functionstpitch.m estimates the short-time pitch in a sliding
window of lengthN, but only for voiced parts of the speech signal. The function
is based on the voiced/unvoiced segmentationvoiunvoi.m (1.4.6) and the har-
monic product spectrumhpspectrum.m (1.5.7). If a frame is voiced, the pitch is
estimated using maximal value of harmonic product spectrum for that frame.

function Fp = stpitch(x,N,Pth,Zth,NFFT,R,Fs)

M = length(x);

Fp = zeros(M,1);

voi = voiunvoi(x,N,Pth,Zth);

for (m=N:fix(N/2):M)

n = m-N+1:m;

if all(voi(n))

HPS = abs(hpspectrum(x(n),NFFT,R));

k = find(HPS==max(HPS));

Fp(n) = k;

end

end

wsave = warning; warning(’off’);

Fp = (Fp*Fs/NFFT).*(Fp./Fp);

warning(wsave);

2 AN INTRODUCTION TO SPEECH SIGNALS 17

0 1 2 3 4 5

x 10
4

−0.5

0

0.5

1

sample number

am
pl

itu
de

Time

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

Figure 11: Speech signal ‘She had your dark suit in greasy wash water all year’. Top:
amplitude waveform, bottom: spectrogram. Magnitude spectrum was calculated in frames
of 256 samples, and DFT was evaluated at 256 points.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1500

−1000

−500

0

500

1000

sample number

am
pl

itu
de

Time

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

Figure 12: Voiced sound /i/ glissandos. Top: amplitude waveform, bottom: spectrogram.
Magnitude spectrum was calculated in frames of 256 samples, and DFT was evaluated at
256 points.

2 AN INTRODUCTION TO SPEECH SIGNALS 18

(1.6.4) We applied functionstpitch.m to two speech signals: the sentence ‘She
had your dark suit in greasy wash water all year’ uttered by an adult male and the
same sentence repeated by an adult female.

load timit1;

load timit2;

N = 300;

Pth = 0.01;

Zth = 0.3;

NFFT = 1024;

R = 5;

Fs = 16000;

pt1=stpitch_r(timit1,N,Pth,Zth,NFFT,R,Fs);

pt2=stpitch_r(timit2,N,Pth,Zth,NFFT,R,Fs);

plot(pt1)

plot(pt2)

Figure 13 contains amplitude waveforms of the speech signals, and the pitch esti-
mations obtained using the functionstpitch.m.

The pitch range for men is usually between 50–250 Hz, while for women the
range falls in the interval 120–150 Hz. The results of our pitch estimation fall
roughly into these ranges. The pitch estimated from sentence uttered by a woman
reached higher values and is generally higher. There is a certain pitch variation in
both sentences, and the pitch variation is larger in the sentence uttered by a woman.

0 1 2 3 4 5

x 10
4

−0.5

0

0.5

1

sample number

am
pl

itu
de

0 1 2 3 4 5

x 10
4

−0.5

0

0.5

1

sample number

am
pl

itu
de

0 1 2 3 4 5

x 10
4

0

200

400

600

800

sample number

pi
tc

h
fr

eq
ue

nc
y

/ H
z

0 1 2 3 4 5

x 10
4

0

200

400

600

800

sample number

pi
tc

h
fr

eq
ue

nc
y

/ H
z

Figure 13: Speech signal ‘She had your dark suit in greasy wash water all year’. Left:
uttered by an adult male, right: uttered by an adult female, top: amplitude waveform,
bottom: pitch estimation using the functionstpitch.

2 AN INTRODUCTION TO SPEECH SIGNALS 19

2.4 Homework

(1.7) In the above exercises, a number of important features has been extracted
from frames of speech as these frames move through time. These features are
either related to the excitation signals or the vocal-tract. The features that could be
used in speech recognition are the features related to the vocal-tract, for example
the formants of the magnitude spectrum. The discrete Fourier transform could be
used to extract/characterize those features.

3 LINEAR PREDICTION ANALYSIS 20

3 Linear Prediction Analysis

3.1 Short-term Autocorrelation

The (long-term) autocorrelation of a power signalx(n) is defined as

rx(η) = lim
M→∞

1
2M +1

M

∑
n=−M

x(n)x(n−η)

where the indexη is the time shift or lag parameter. In practice, we are dealing with
finite-duration sequencesx(m−N+1),x(m−N+2), . . . ,x(m), and the short-term
autocorrelation estimate for the N points ending atmmay be defined as

rx(η ;m) =
1

N−η

m

∑
n=m−N+1+η

x(n)x(n−η), 0≤ η ≤ N−1

where the autocorrelation sequence for negative lags can be obtained from the re-
lation rx(−η) = rx(η). Autocorrelation function estimates as given by the above
mentioned formula can be obtained by using theMATLAB function

[r,eta] = xcorr(x,eta_max,’unbiased’)
wherex is the signal vector,r is the autocorrelation vector, andeta is a vector of
lag indices in the range from-eta_max to eta_max.

(2.1.1) The autocorrelation function for a sinusoidx(n) = Asin(2π f n+ φ) is
given by

rx(η) =
A2

2
cos(2π f η), Px = rx(0) =

A2

2
We usedMATLAB to verify this result for a sinusoidal signal with normalized fre-
quencyf = 0.01, by using the followingMATLAB commands

x = 3*sin(2*pi*0.01*(0:499)’+10);

[r,eta] = xcorr(x,100,’unbiased’);

plot(0:499,x)

plot(eta,r)

On the figure 14 we have a plot of a sinusoidal signalx(n) = 3sin(2π ·0.01+10),
together with the autocorrelation of the signal. We can see that the autocorrelation
is periodic with the periodN = 100, and the same applies to the sinusoidal signal
becauseN = 1

f = 1
0.01 = 100. We can also see thatrx(0) = 4.5 which is the average

power of the sinusoidal signalPx = A2

2 = 32

2 = 4.5.
(2.1.2) The autocorrelation function for white noise (with variance 1) is given

by
rw(η) = δ (η), Pw = rw(0) = 1

We usedMATLAB to verify this result for a noise generated by theMATLAB func-

3 LINEAR PREDICTION ANALYSIS 21

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

sample number

am
pl

itu
de

−100 −80 −60 −40 −20 0 20 40 60 80 100
−5

0

5

time shift

au
to

co
rr

el
at

io
n

Figure 14: The sinusoidal signalx(n) = 3sin(2π ·0.01+10), 0≤ n≤ 499. Top: amplitude
waveform, bottom: short-term autocorrelation over the range[−100,100].

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

sample number

am
pl

itu
de

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

time shift

au
to

co
rr

el
at

io
n

Figure 15: The white noise with mean zero and variance one. Top: amplitude waveform,
bottom: short-term autocorrelation over the range[−100,100].

3 LINEAR PREDICTION ANALYSIS 22

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sample number

am
pl

itu
de

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

sample number

am
pl

itu
de

Figure 16: Autocorrelation of two white noise signals with different lengths. Top: signal
length 200 samples, bottom: signal length 1000 samples.

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

sample number

am
pl

itu
de

−100 −80 −60 −40 −20 0 20 40 60 80 100
−0.5

0

0.5

1

1.5

time shift

au
to

co
rr

el
at

io
n

Figure 17: The sinusoidal signalx(n) = 0.8 · sin(2π ·0.01+10) corrupted with the white
noise with mean zero and variance one. Top: amplitude waveform, bottom: short-term
autocorrelation over the range[−100,100].

3 LINEAR PREDICTION ANALYSIS 23

tion randn by using the followingMATLAB commands.

w = randn(500,1);

[r,eta] = xcorr(w,100,’unbiased’);

plot(w)

plot(eta,r)

On the figure 15 we have a plot of a random noise, together with the autocorre-
lation of the noise. We can see the large peak atrw(0) ≈ 1, while the rest of the
autocorrelation is very small.

The accuracy of the estimated autocorrelation function depends on the signal
length—estimation is more accurate for the longer signals (larger average interval).
To verify this, on the figure 16 we plotted the autocorrelation of two signals with
different lengths by using the following commands

w1=randn(200,1);

[r1,eta]=xcorr(w1,100,’unbiased’);

w2=randn(1000,1);

[r2,eta]=xcorr(w2,100,’unbiased’);

plot(eta,r1)

plot(eta,r2)

(2.1.3) Now we added the white noise (with variance one) to the sinusoidal signal
x(n) = 0.8·sin(2π ·0.01+10) with normalized frequencyf = 0.01. The observed
signal isy(n) = x(n)+w(n).

x = 0.8*sin(2*pi*0.01*(0:499)’+10);

w = randn(500,1);

y=x+w;

[r,eta] = xcorr(y,100,’unbiased’);

plot(y)

plot(eta,r)

On the figure 17 we have a plot of the observed signal, together with the autocor-
relation of the noise. We can see the large peak atry(0) which is the contribution
of the random noise, but it is still possible to determine the period of the sinusoidal
signal from the autocorrelation. If we ignore the peak atry(0) and ’smooth’ the
rest, we can still see that the autocorrelation is periodic with the periodN = 100,
which is also the period of the sinusoidal signal.

(2.1.4) We can use the short-term autocorrelation on the speech signal. On the
figure 18 we have a amplitude waveform of the utterance ‘three’. We have cho-
sen two 256 point windows from this speech signal: the first window corresponds
to the voiced phoneme /i/, and the second window contains an unvoiced region
corresponding to sound /T/.

load digits;

x = digits.three1;

m = 2756;

3 LINEAR PREDICTION ANALYSIS 24

N = 256;

n = m-N+1:m;

[r,eta] = xcorr(x(n),250,’unbiased’);

plot(1:256, x(n))

plot(eta,r)

m = 500;

N = 256;

n = m-N+1:m;

[r,eta] = xcorr(x(n),250,’unbiased’);

plot(1:256, x(n))

plot(eta,r)

Figure 19 shows the amplitude waveform of the voiced window, together with the
autocorrelation of the same window. It is obvious that the short-term autocorrela-
tion captures the periodicity of the voiced sound and we can easily determine the
period to beN = 79. There is obviously not a lot of noise in this signal, since the
peak atrx(0) is just a little bit higher than the other peaks.

The discrete periodN = 79 corresponds to continuous time period of79 ·
1

10 kHz = 7.9 ms, since the sampling frequencyFS = 10 kHz. The pitch frequency
FP = 10 kHz

79 = 126 Hz.
Figure 20 shows the amplitude waveform of the unvoiced window, together

with the autocorrelation of the same window. The short-term autocorrelation of the
unvoiced sound looks like the autocorrelation of the white noise—there is a large
peak atrx(0) while the rest is relatively small and without obvious periodicity.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−600

−400

−200

0

200

400

600

Figure 18: Amplitude waveform of the speech signal ‘three’ sampled at 10 kHz.

3 LINEAR PREDICTION ANALYSIS 25

50 100 150 200 250

−400

−200

0

200

400

600

sample number

am
pl

itu
de

−250 −200 −150 −100 −50 0 50 100 150 200 250

−2

−1

0

1

2

3

4

x 10
4

time shift

au
to

co
rr

el
at

io
n

Figure 19: One 256-points frame of the signal from the figure 18 corresponding to the
voiced sound /i/ (sample numbers 2501–2756). Top: amplitude waveform, bottom: short-
term autocorrelation over the range[−250,250].

50 100 150 200 250
−30

−20

−10

0

10

20

sample number

am
pl

itu
de

−250 −200 −150 −100 −50 0 50 100 150 200 250

−20

0

20

40

60

80

time shift

au
to

co
rr

el
at

io
n

Figure 20: One 256-points frame of the signal from the figure 19 corresponding to the
unvoiced sound /T/ (sample numbers 245–500). Top: amplitude waveform, bottom: short-
term autocorrelation over the range[−250,250].

3 LINEAR PREDICTION ANALYSIS 26

3.2 Autocorrelation Method for LP Analysis

In the discrete-time model for speech production, speech can be modeled as the
filter Θ(z), which combines all the processes of producing a sound, driven by an
impulse-train or white noise sequence

S(z) = E(z) ·Θ(z)

In an all-pole model of the system function we have

Θ̂(z) =
1

Â(z)
=

1

1−∑M
i=1 â(i)z−i

and our objective is to estimate the coefficientsâ(i) that constitute (together with
pitch and gain) a parametric representation for the waveform. The coefficientsâ(i)
are referred to as the linear prediction coefficients, and their estimation is termed
linear prediction analysis.

The name linear prediction comes from the fact that from

[1−
M

∑
i=1

â(i)z−i] ·S(z) = E(z)

in the time domain we have

s(n) =
I

∑
i=1

â(i)s(n− i)+e(n)

so the speech samples(n) is approximated as a linear combination of past speech
samples.

We estimate the coefficientŝa(i) by minimizing the expectation of squared
prediction error̂e(n)

ê(n) = s(n)− ŝ(n) = s(n)−
I

∑
i=1

â(i)s(n− i)

and the solution of minimization is the following system of linear equations

M

∑
i=1

â(i)rs(η− i) = rs(η)

In the matrix form the system of linear equations becomes

Rs(m)â(m) = r s(m)

or written out

rs(0;m) rs(1;m) · · · rs(M−1;m)
rs(1;m) rs(0;m) · · · rs(M−2;m)

...
...

. . .
...

rs(M−1;m) rs(M−2;m) · · · rs(0;m)

â(1;m)
â(2;m)

...
â(M;m)

 =

rs(1;m)
rs(2;m)

...
rs(M;m)

3 LINEAR PREDICTION ANALYSIS 27

0 50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

frequency / (10 kHz/1024)

m
ag

ni
tu

de
 /

dB

Figure 21: The magnitude spectrum of the 256 samples frame corresponding to the voiced
phoneme /i/ in the utterance ‘three’ (green), together with the (scaled) response of the
order-14 linear prediction filter (blue).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

14

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 22: Zero-pole plot of the 14-order linear prediction filter from the figure 21.

3 LINEAR PREDICTION ANALYSIS 28

Matrix Rs is called autocorrelation matrix and the vectorr s is called autocorrela-
tion vector.

(2.2.1) To start with, we can find the solution to the equation

Rs(m)â(m) = r s(m)

using the ‘brute force’, i.e. finding the inverse of the autocorrelationM×M matrix.
The cost of this method is generallyO(M3).

We implemented this approach inMATLAB by finding the order-14 predictor
for the voiced phoneme /i/ in the utterance ‘three’ using the following commands

x = digits.three1;

m = 2756;

N = 256;

n = m-N+1:m;

M = 14;

[r,eta] = xcorr(x(n),M,’biased’);

Rx = toeplitz(r(M+1:2*M));

rx = r(M+2:2*M+1);

a = Rx\rx;

NFFT = 1024;

k = 1:NFFT/2;

X = fft(x(n).*hann(N),NFFT);

Theta = 1./fft([1; -a],NFFT);

plot(k,20*log10(abs([353*Theta(k) X(k)])))

On the figure 21 we plotted the response of the filter obtained using the calculated
linear prediction coefficients together with the magnitude spectrum of the 265 sam-
ples frame that we used. It is clear that the filter determines spectral envelope of
the speech signal.

On the figure 22 we included the zero-pole plot of the obtained linear prediction
filter to see how in the all-pole model, poles are used to determine the shape of filter
response.

(2.2.2) The energyξ (m) = 1
N ∑∞

m=−∞ ê2(n;m) of the prediciton residual se-
quencêe(n;m) is given byξ (m) = rs(0;m)− rT

s (m)â(m). For the solution in previ-
ous question, this energy (relative tors(0;m)) is 1 - rx’*a/r(M+1) = 0.0373.

3.3 Levison-Durbin Recursion

Levison-Durbin recursion is an efficient way to solve the normal equation
Rs(m)â(m) = r s(m), exploiting the fact thatRs(m) is Toeplitz, symmetric, and pos-
itive definite, and the right-hand sider s(m) has a special relation to the elements of
Rs(m).

(2.3.1) MATLAB function durbin.m implements Levison-Durbin recursion.
The input arguments are the vectorr containing autocorrelation coefficients and
the prediction orderM. The output arguments are estimated LP parameters in the
vectora, prediction error energies in the vectorxi, and estimated reflection coeffi-
cients in the vectorkappa.

3 LINEAR PREDICTION ANALYSIS 29

function [a,xi,kappa] = durbin(r,M)

kappa = zeros(M,1);

a = zeros(M,1);

xi = [r(1); zeros(M,1)];

for (j=1:M)

kappa(j) = (r(j+1) - a(1:j-1)’*r(j:-1:2))/xi(j);

a(j) = kappa(j);

a(1:j-1) = a(1:j-1) - kappa(j)*a(j-1:-1:1);

xi(j+1) = xi(j)*(1 - kappa(j)^2);

end

(2.3.2) Now we use functiondurbin.m to solve the same problem as in the task
(2.2.1) To compare the output vectora from this function with the one obtained
using the ‘brute force’ we printed the parameters in 15 decimal places, and could
see the difference in the 1–2 last decimal places. In fact, the largest difference of
the two corresponding parameters is2.6·10−13.

(2.3.3) The energyξ (m) of the prediction residual sequence should be non-
increasing for the increasing model order i.e. the prediction should be improving
with the increasing model order. We verified this by plotting thexi vector on the
figure 23.

The sequenceξ (j)(m) can be used to determine when the sufficient model or-
der has been reached, by for example by stopping the recursion when the slope
ξ (j)(m)−ξ (j−1)(m)

j−(j−1) = ξ (j)(m)−ξ (j−1)(m) is small enough.

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

model order

en
er

gy
 o

f r
es

id
ua

l s
eq

ue
nc

e

Figure 23: The plot of the energyξ (m) of the prediction residual sequence for the increas-
ing model order.

3 LINEAR PREDICTION ANALYSIS 30

(2.3.4-6) Those three tasks are concerned with the conversion between the lin-
ear prediction parametersâ(i;m) and theM reflected coefficientsκ(i;m). We wrote
MATLAB functions that implement the conversion in both directions, and we tested
the conversion.

The maximal difference between corresponding parameters when converting
from linear prediction parametersâ(i;m) to reflected coefficientsκ(i;m) was3.03·
10−15, and the maximal difference when converting formκ(i;m) to â(i;m) was
0. In conclusion, both the ‘brute force’ solution to the normal equations, and
the Levison-Durbin recursion give the same result, the difference is the efficiency.
Levison-Durbin is much more efficient, and it solves normal equation inO(M2)
steps.

3.4 Inverse Filtering Computation

The prediction error sequenceê(n;m) can be obtained by filterings(n;m) through
the estimated inverse system

ê(n;m) = s(n;m)−
M

∑
i=1

â(i;m)s(n− i;m)

or in the Z-transform domain

Ê(z) = Â(z)S(z), Â(z) = 1−
M

∑
i=1

â(i)z−i

0 50 100 150 200 250

−400

−300

−200

−100

0

100

200

300

400

500

600

sample number

am
pl

itu
de

, r
es

id
ua

l s
eq

ue
nc

e

Figure 24: Frame of 256 samples corresponding to the voiced phoneme /i/ in the utterance
‘three’ (blue), together with the residual sequenceê(n;m) of the order-14 linear prediction
filter (green).

3 LINEAR PREDICTION ANALYSIS 31

(2.4.1) We found the residual sequenceê(n;m) for the order-14 predictor from
the task (2.2.1) by inverse filtering and we plotted it on the figure 24 together with
the amplitude waveform of the original frame. Impulse train excitation sequence is
easily recognizable from the residual sequence.

(2.4.2)MATLAB functionlpcauto.m preforms frame based linear prediction
analysis on a speech signa. Input parameters are the signalx, the prediction orderM,
the window functionwin, and the overlap between adjacent framesOlap. Function
returns linear prediction coefficients in the matrixar, prediction error energies in
the matrixxi, residual signal in the vectore, and the index of the last sample in
each frame in the vectorm.

function [ar,xi,e,m] = lpcauto(x,M,win,Olap)

Nx = length(x);

N = length(win);

if (N == 1)

N = win;

win = ones(N,1);

end

F = fix((Nx-Olap)/(N-Olap));

ar = zeros(M+1,F);

xi = zeros(M+1,F);

e = zeros(Nx,1);

m = zeros(F,1);

n = 1:N;

n1 = 1:Olap;

n2 = N-Olap+1:N;

n3 = Olap+1:N;

win1 = win(n1)./(win(n1)+win(n2)+eps);

win2 = win(n2)./(win(n1)+win(n2)+eps);

for (f=1:F)

[r,eta] = xcorr(x(n).*win,M,’biased’);

[a,xi(:,f),kappa] = durbin(r(M+1:2*M+1),M);

ar(:,f) = [1; -a];

ehat = filter(ar(:,f),1,x(n));

e(n) = [e(n(n1)).*win2 + ehat(n1).*win1; ehat(n3)];

m(f) = n(N);

n = n + (N-Olap);

end

(2.4.3) We applied functionlpcauto.m to the speech signal ‘She had your dark
suit in greasy wash water all year’, using half overlapping Hann windows of length
256 samples, and prediction order 14. On the figure 25 we plotted the amplitude
waveform of the speech signal, together with residual sequence.

By listening to residual sequence we concluded that sf one din’t know the orig-
inal signal beforehand, it would be hard to understand residual sequence. Knowing

3 LINEAR PREDICTION ANALYSIS 32

0 1 2 3 4 5

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sample number

am
pl

itu
de

, r
es

id
ua

l s
eq

ue
nc

e

Figure 25: Amplitude waveform of the speech signal ‘She had your dark suit in greasy
wash water all year’ (blue), together with the residual sequence of the order-14 linear
prediction filter (green).

the original speech signal, we could still understand it, which implies that some of
the vocal tract spectrum is passing through the inverse filter. We could hear that the
residual sequence is quite clear for the sounds /S/ as in ‘she’, ‘wash’ and /s/ as in
‘suit’, ‘greasy’. This can also be observed on the plot where we see that for those
sounds, residual sequence has relatively high amplitudes relative to original signal.

3.5 Formant Estimation

Formant frequencies and bandwidths are principal analytical features of the speech
spectrum, and a simple technique for formant estimation could be based on peak
finding in an LP-derived magnitude spectrum. It is easier to find peaks of the LP-
derived magnitude spectrum, than to estimate formants directly from the spectrum
of the sound.

(2.5.1)MATLAB functionlpcplot.m makes a 2D plot of the magnitude spec-
trum, if an input is a vector of LP coefficients, or it makes a 3D mesh plot of
magnitude spectra, if an input is a matrix of LP coefficients.

function lpcplot(A,Nfft,Fs,m)

[M,N] = size(A);

if (N==1)

[Theta,F] = freqz(1,A,Nfft,Fs);

plot(F,20*log10(abs(Theta)));

xlabel(’Frequency, {\it F} [Hz]’);

ylabel(’Magnitude, |\theta(\omega)| [dB]’);

3 LINEAR PREDICTION ANALYSIS 33

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sample number

am
pl

itu
de

Figure 26: A plot of larger frame (38· 256 samples) taken from the utterance plotted at
figure 26 (sample numbers 9216–18944), corresponding to the segment ‘your dark s. . . ’.

Figure 27: A 3D mesh plot containing the LP-derived magnitude spectra of 76 half-
overlapping frames of 256 samples corresponding to the utterance plotted at figure 26.

3 LINEAR PREDICTION ANALYSIS 34

else

Theta = zeros(Nfft,N);

for (n=1:N)

[Theta(:,n),F] = freqz(1,A(:,n),Nfft,Fs);

end

MeshHndl = meshz(m,F,20*log10(abs(Theta)));

axis ij; view(-45,45); set(MeshHndl,’MeshStyle’,’Column’);

axis tight; axis ’auto y’; axis ’auto z’;

xlabel(’Sample Number, {\it n}’);

ylabel(’Frequency, {\it F} [Hz]’);

zlabel(’Magnitude, |\theta(\omega)| [dB]’);

end

(2.5.2) Now we can look at the LPC spectra for a number of frames corresponding
to the segment ‘your dark s. . . ’ (frames 71-147) taken from the the utterance we
analyzed in (2.4.3).

On the figure 26 we have a plot of amplitude waveform of the segment we
will consider. On the figure 27 we have a 3D mesh plot containing the LP-derived
magnitude spectra of 76 half-overlapping frames of 256 samples, which correspond
to our segment. On the figure 28 we have isolated three specific frames, and plotted
the LP-derived magnitude spectrum for each. Those frames correspond to voiced
sound /u/ in ‘your’, voiced sound /a/ in ‘dark’, and unvoiced sound /s/ in ‘suit’.

Both on figure 27 and the first two plots in figure 28 we can observe that the
bandwidth of the formants typically increases with its central frequency—formants
of lower frequencies will have more pointed and narrower peaks, while the for-
mants on higher frequencies typically have flatter and wider peaks.

0 2000 4000 6000 8000
−30

−20

−10

0

10

20

30

40

Frequency, F [Hz]

M
ag

ni
tu

de
, |

θ(
ω

)|
 [

dB
]

0 2000 4000 6000 8000
−30

−20

−10

0

10

20

30

40

Frequency, F [Hz]

M
ag

ni
tu

de
, |

θ(
ω

)|
 [

dB
]

0 2000 4000 6000 8000
−15

−10

−5

0

5

10

15

20

Frequency, F [Hz]

M
ag

ni
tu

de
, |

θ(
ω

)|
 [

dB
]

Figure 28: Plots of LP-derived magnitude spectra of three 256 sample frames from the
utterance ‘your dark s. . . ’. Top left: corresponding to sound /u/ in ‘your’, top right: corre-
sponding to sound /a/ in ‘dark’, bottom: corresponding to sound /s/ in ‘suit’.

3 LINEAR PREDICTION ANALYSIS 35

3.6 Pitch and Gain Estimation

The autocorrelation function of the prediction error sequenceê(n;m) can be used
to estimate the pitch period for voiced frames as

max
η

rê(η ,m), η 6= 0

If this peak value is below some threshold based on the total residual energy,
for example0.25rê(0;m) the frame is unvoiced.

(2.6.1) We used the autocorrelation of the residual sequenceê(n;m)) for the
order-14 predictor of the voiced phoneme /i/ in the utterance ‘three’ to estimate the
pitch.

On the figure 29 we plotted the autocorrelation of the residual sequence. Not
considering the high peak atrê(0), the autocorrelation reaches maximum for the
time shift η = 79. We got exactly the same result by looking at the short-time
autocorrelation of the original signal in the exercise (2.1.4), figure 20. We cal-
culated there that the discrete periodη = 79 corresponds to the pitch frequency
FP = 10 kHz

79 = 126 Hz. That is a valid value for the pitch frequency, so the above
described method of pitch estimation is useful.

However, in this example we have the problem that the peak value is rather
small relative to the total residual energy (300 : 1600) so if the threshold value is
0.25 this frame will be labeled unvoiced.

(2.6.2)MATLAB functionlpcpitch.m implements pitch estimation by finding
the maxima of residual sequence. The thresholdth is used for voiced/unvoiced
decision, and the peak search is preformed in the rangeminlag to maxlag.

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

0

200

400

600

800

1000

1200

1400

1600

time shift

au
to

co
rr

el
at

io
n

Figure 29: Short-term autocorrelation over the range[−250,250] of the residual sequence
ê(n;m)) for the order-14 predictor of the voiced phoneme /i/.

3 LINEAR PREDICTION ANALYSIS 36

function P = lpcpitch(e,m,N,th,minlag,maxlag)

F = length(m);

P = zeros(F,1);

for (f=1:F)

n = m(f)-N+1:m(f);

[re,eta] = xcorr(e(n),maxlag,’biased’);

[remax,idx] = max(re(maxlag+minlag+1:2*maxlag+1));

if (remax > th*re(maxlag+1))

P(f) = eta(maxlag+minlag+idx);

end

end

(2.6.3) We applied functionlpcpitch.m to the residual signal obtained from LP
analysis of the speech signal ‘She had your dark suit in greasy wash water all year’,
and we plotted the results on the figure 30.

This pitch estimation method is rather simple to use, comparing to the pitch
estimation from the task (1.6.3). Limiting the peak search to the rangeminlag to
maxlag, limits the search in a certain frequency range, automatically disregarding
pitch values that are outside the expected range. But, as we have seen in the task
(2.6.2), this method can also give wrong result.

The LP modeling problem focuses on the minimum-phase component in the
speech production system. However, the gainΘ0(m) accros frames are also impor-
tant, and can be estimated from the prediction error energyξ (m) and pitch period
Np as

Θ̂0(m)≈
√

ξ (m), unvoiced case

Θ̂0(m)≈
√

Npξ (m), voiced case

(2.6.4) MATLAB function lpcgain.m implements gain estimation. Function
takes as inputs the prediction error energy in vectorxi and the pitch period in
vectorP, and it returns the gain in the vectorG.

function G = lpcgain(xi,P)

F = length(xi);

G = zeros(F,1);

for (f=1:F)

if (P(f))

G(f) = sqrt(P(f)*xi(f));

else

G(f) = sqrt(xi(f));

end

end

(2.6.5) We applied functionlpcgain to the signal ‘She had your dark suit in greasy
wash water all year’, and we plotted the results on the figure 31.

(2.6.6)MATLAB functionlpcsyn performs speech synthesis from LP parame-
ters. Function takes as inputs the LP coefficients in the matrixA, pitch period in the

3 LINEAR PREDICTION ANALYSIS 37

0 1 2 3 4 5

x 10
4

−0.5

0

0.5

1

0 1 2 3 4 5

x 10
4

90

100

110

120

130

140

Figure 30: Speech signal ‘She had your dark suit in greasy wash water all year’. Top:
amplitude waveform, bottom: result of applying pitch estimation functionlpcpitch.m
to the signal. Threshold value used for voiced/unvoiced segmentation was 0.18, and peak
search was done in lag range 100 to 200, which corresponds to frequencies 80 Hz to 160
Hz.

0 1 2 3 4 5

x 10
4

−0.5

0

0.5

1

0 1 2 3 4 5

x 10
4

0.05

0.1

0.15

0.2

0.25

Figure 31: Speech signal ‘She had your dark suit in greasy wash water all year’. Top:
amplitude waveform, bottom: result of applying gain estimation functionlpcgain.m to
the signal.

3 LINEAR PREDICTION ANALYSIS 38

vectorP, gain in the vectorG, and the vectorm with the indices of the last sample
in each frame. Function returns synthesized speech signalehat.

function xhat = lpcsyn(A,P,G,m)

F = length(m);

N = m(2) - m(1);

xhat = [];

for (f=1:F)

if (P(f))

e = zeros(N,1); e(1:P(f):N) = 1;

else

e = randn(N,1);

end

xhat = [xhat; filter(G(f),A(:,f),e)];

end

(2.6.7) By listening to the synthesized speech we concluded that it is easily un-
derstandable, but also very different from the original signal, somehow monotone.
Synthesized speech lacks quick variations that make the real speech lively.

3.7 Homework

We consider a toy example where the vocal tract system has orderM = 2, i.e., the
speech signals(n) is modeled by an AR(2) process with coefficientsa1 anda2.

(2.7.1)To sketch the IIR filter for the considered vocal tract model, we first
looked at the filter

Θ(z) =
S(z)
E(z)

=
1

1−a1z−1−a2z−2

and than we looked at what do we have in the time domain

s(n) = a1s(n−1)+a2s(n−2)+e(n)

so the block diagram looks like following illustration

- -

¾¾

¾

?

?6

6
µ´
¶³

µ´
¶³ z−1

z−1

+

+
a1

a2

e(n) s(n)

3 LINEAR PREDICTION ANALYSIS 39

(2.7.2) When the autocorrelation sequence is given byrs(0) = 1, rs(1) = 1/2,
andrs(2) = 1/8, the normal equations for this particular order are

(
rs(0) rs(1)
rs(1) rs(0)

)(
a1

a2

)
=

(
rs(1)
rs(2)

)

(
1 1/2

1/2 1

)(
a1

a2

)
=

(
1/2
1/8

)

or written out

a1 +
1
2

a2 =
1
2

1
2

a1 +a2 =
1
8

Solution for the two unknowns is

a1 =
7
12

a2 = −1
6

(2.7.3) In general, as we increase the model orderM, the prediction error se-
quence will be more and more similar to the excitation sequence.

4 SPEECH CODING AND SYNTHESIS 40

4 Speech Coding and Synthesis

4.1 Perceptual Weighting Filter

Linear prediction analysis estimates the all-pole (vocal-tract) filter for each frame
of the signal. The synthesized speech is then generated by exciting vocal tract fil-
ter. The difference between the synthesized speech and original speech constitutes
an error signal that will be minimized by optimizing the excitation signal. Prior to
minimization, error signal is spectrally weighted to emphasize perceptually impor-
tant frequencies.

Functionlpcana performs LP analysis on the speech frame using Levison-
Durbin recursion, and functionlpcweight returns the coefficients of the percep-
tual weighting filter.

(3.2.2) We performed LP analysis on the voiced phoneme /i/ in the utterance
‘three’ using order-14 prediction, and we found the corresponding perceptual error
weighting filter forc = 0.8.

load digits;

x = digits.three1;

m = 2756;

N = 200;

n = m-N+1:m;

M = 14;

[ar,xi,kappa,ehat] = lpcana(x(n),M);

c = 0.8;

ac = lpcweight(ar,c);

Nfft = 1024;

k = 1:Nfft/2;

Theta = 1./fft(ar,Nfft);

W = fft(ar,Nfft)./fft(ac,Nfft);

plot(k,20*log10(abs([Theta(k) W(k)])))

zplane(ar’,ac’)

On the figure 32 we plotted LP-derived magnitude spectrum of a frame, together
with the frequency response of perceptual error weighting filter for the same frame.
We can see that the perceptual error weighting filter de-emphasizes formant fre-
quencies.

On the figure 33 we have zero-pole plot of a perceptual error weighting filter.
By comparing it to the zero-pole plot of the linear prediction filter on figure 22,
we can see how the perceptual weighting filter is obtained by placing zeros at the
positions where LP filter has poles, and adding corresponding poles at the distance
determined by parameterc.

On the figure 34 we have plotted the frequency response of perceptual weight-
ing filter for three different values of parameterc. If the valuec is close to 1, fre-
quency response of the filter is rather flat—it is not doing a lot of filtering. When
the value ofc decreases, filtering becomes more pronounced. The optimal value of
c (around 0.8) depends on the human perception.

4 SPEECH CODING AND SYNTHESIS 41

0 50 100 150 200 250 300 350 400 450 500

−10

−5

0

5

10

15

20

25

frequency / (10kHz/1024)

m
ag

ni
tu

de
 /

dB

Figure 32: LP-derived magnitude spectrum of a frame corresponding to the voiced
phoneme /i/, together with the frequency response of perceptual error weighting filter for
the same frame.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Figure 33: Zero-pole plot of a perceptual error weighting filter from the figure 32. Should
be compared to the zero-pole plot on the figure 22.

0 50 100 150 200 250 300 350 400 450 500

−15

−10

−5

0

5

10

15

20

25

frequency / (10kHz/1024)

m
ag

ni
tu

de
 /

dB

c = 0.6
c = 0.8
c = 0.95

Figure 34: Frequency response of perceptual weighting filter for three different values of
parameterc.

4 SPEECH CODING AND SYNTHESIS 42

4.2 Excitation Sequence

The signal used to excite the LP synthesis filter is determined dynamically few
times in each frame. An excitation sequence is first selected from the codebook
and a long-delay correlation filter is used to generate the pitch periodicity. Pitch
and gain are found by performing an exhaustive search on the certain range, and
the codebook vector is found by performing an exhaustive search of the codebook
to minimize the energy of perceptually weighted error.

(3.3.1) We generated a Gaussian codebook containing 1024 sequences of length
40 by using following commands.

randn(’state’,0);

cb = randn(40,1024);

4.3 CELP Synthesizer

CELP coder estimates model parameters from frames of speech, encodes and trans-
mits the parameters to the receiver on a frame-to frame basis. The speech signal
is than reconstructed at the receiver. Parameters being transmitted between CELP
coder and decoder are: estimated reflection coefficients, gain, index of the code-
book vector, scale factor (excitation parameter used for long-delay correlation fil-
ter) and pitch.

CELP synthesizer consists of the cascade of the pitch synthesis filter and the
LP synthesis filter. The excitation signal is taken from the codebook of stored
sequences.

MATLAB function celpsyn.m implements the CELP synthesizer, while the
MATLAB functioncelpana implements the CELP coder.

(3.4.2) We applied the functionscelpana.m and celpsyn.m to the single
speech frame, i.e. we first coded and than synthesized the speech frame.

load digits;

x = digits.three1;

m = 2756;

N = 200;

n = m-N+1:m;

L = 40;

M = 12;

c = 0.8;

Pidx = [16 160];

bbuf = 0;

ebuf = zeros(N,1);

Zf = [];

Zw = [];

[kappa,k,theta0,P,b,ebuf,Zf,Zw] = ...

celpana(x(n),L,M,c,cb,Pidx,bbuf,ebuf,Zf,Zw);

[xhat,ebuf,Zi] = celpsyn(cb,kappa,k,theta0,P,b,ebuf,[]);

plot([xhat x(n)])

4 SPEECH CODING AND SYNTHESIS 43

0 20 40 60 80 100 120 140 160 180 200
−600

−400

−200

0

200

400

600

Figure 35: A 256 samples frame corresponding to the voiced phoneme /i/ in the utter-
ance ‘three’ (blue) together with the frame obtained by CELP coding/decoding the signal
(green).

On the figure 35 we plotted the original speech frame, and the synthesized frame.
The similarities between the synthesized and original speech frame are obvious,
but we can also notice that the synthesized signal has a stronger ‘attack’ than the
original signal.

(3.4.4)MATLAB functioncelp.m preforms frame base CELP coding and syn-
thesis on speech signals. We applied this function to the speech signal ‘The prices
have gone up enormously in spite of the technological advances’.

randn(’state’,0);

cb = randn(40,1024);

load ma1_1;

x = ma1_1;

N = 160;

L = 40;

M = 10;

c = 0.8;

Pidx = [16 160];

[xhat,e,k,theta0,P,b] = celp(x,N,L,M,c,cb,Pidx);

plot([x xhat])

On the figure 36 we can see the original speech signal and the synthesized speech
signal. By listening to the synthesized speech, we concluded that the quality of the
synthesized speech is good—it sounds quite natural. We have plotted the excitation
signal, and we can see that its shape resembles the shape of the speech signal.

We have also extracted one frame corresponding to the /Y/ sound in ‘prices’
and plotted the original signal together with the synthesized. Now it is easier to
notice how good the synthesized signal approximates the original. We can also
better see the excitation signal for a voiced segment. We concluded that the exci-
tation signal isn’t just a pulse train—it looks more like as if the part of the speech

4 SPEECH CODING AND SYNTHESIS 44

0.5 1 1.5 2 2.5 3

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample number

am
pl

itu
de

0.5 1 1.5 2 2.5 3

x 10
4

−0.2

−0.1

0

0.1

0.2

sample number

am
pl

itu
de

50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

sample number

am
pl

itu
de

50 100 150 200 250 300

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

sample number

am
pl

itu
de

Figure 36: Top left: Speech signal ‘The prices have gone up enormously in spite of the
technological advances’, original signal (blue) together with CELP coded/decoded signal
(green). Top right: Corresponding excitation signal used in CELP synthesis of the signal.
Bottom left: One frame corresponding to the /Y/ sound in ‘prices’ (sample numbers 4161–
4460), original signal (blue) together with the CELP coded/decoded signal (green). Bottom
right: Corresponding excitation signal used in CELP synthesis.

200 400 600 800

200

400

600

800

1000

frame number

co
de

bo
ok

 in
de

x

200 400 600 800

−0.02

0

0.02

0.04

frame number

ga
in

 e
st

im
at

io
n

200 400 600 800
20

40

60

80

100

120

140

160

frame number

pi
tc

h
es

tim
at

io
n

200 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

frame number

sc
al

e
fa

ct
or

Figure 37: Excitation parameters used in CELP synthesis of the signal from the figure 36.
Top left: codebook index. Top right: gain estimation. Bottom left: pitch estimation.
Bottom right: scale factor.

4 SPEECH CODING AND SYNTHESIS 45

signal is present in the excitation signal. We verified this conclusion by listening
to excitation signal.

On the figure 37 we have plotted excitation parameters: codebook index, gain
estimation, pitch estimation and scale factor that controls amounts of the contri-
bution from the codebook sequence and from an interval of past excitation. As
expected, codebook indexes are chosen random-like. Gain reflects the shape of the
signal, since gain is connected to the amplitude/energy. Pitch estimation is not re-
sulting in a nice pitch curve, and it seems hard to determine pitch from the sequence
of pitch estimations. Scale factor is also not providing any obvious information.

(3.4.5) We repeated the experiment using LPC model orderM = 14. By listen-
ing to this synthesized speech signal, we couldn’t hear any improvement. However,
listening to the difference of the two signals (i.e. one signal subtracted from the
other) verified our expectation that higher model order has to improve signal ap-
proximation.

We also repeated experiment using model orderM = 2, and we were surprised
to hear quite muffed, but still understandable speech signal.

(3.4.6) We repeated the experiment modifying the perceptual weighting coeffi-
cientc. We used a few different values between 0 and 1, but could not hear a big
improvement/degradation of the synthesized speech. Even usingc = 1 (no percep-
tual weighting at all) didn’t decrease the quality of the signal significantly, or at
least not so much that we could hear it. On the other hand, using the same method
as in the previous task, and listening to differences between signals, confirms that
the difference exists.

(3.4.7) We also tried modifying codebook size and the length of the random
signals in the codebook. We noticed that the size of the codebook greatly influences
the speed of the computation. For example, reducing the number of vectors from
1024 to 256 reduced the computational time from 13 to 6 seconds. This is easy to
understand—initial excitation sequence is found by preforming exhaustive search
of the codebook, so it must take longer time to search longer codebook. The length
of the vectors is not influencing computational time so strongly—having shorter
frames means having more frames.

As for the quality, again we didn’t hear any significant improvement/degrada-
tion of the speech signal when modifying the number or the length of the vectors.

4.4 Quantization

Because of limited bandwidth between coder and decoder, the parameters obtained
by CELP coder are first quantized according to the bit allocation table and than
transmitted.

(3.5.2) Functioncelp16k.m implements 16000 bps CELP coder and we ap-
plied it to the speech signal ‘The prices have gone up enormously in spite of the
technological advances’. On the figure 38 we plotted the original signal together
with coded/encoded signal. By listening to synthesized speech signal, we could
yet again not hear any significant degradation.

4 SPEECH CODING AND SYNTHESIS 46

0.5 1 1.5 2 2.5 3

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample number

am
pl

itu
de

0.5 1 1.5 2 2.5 3

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample number

am
pl

itu
de

Figure 38: Speech signal ‘The prices have gone up enormously in spite of the technological
advances’, original signal (blue) together with the synthesized signal (green). Left: using
16000 bps CELP coder/decoder. Right: using 9600 bps CELP coder/decoder.

(3.5.4) Functioncelp9600k.m implements 9600 bps CELP coder. We re-
peated the experiment by applying functioncelp9600k.m to the speech signal.
We plotted the original and coded/decoded signal on the figure 38. By listening
to the synthesized signal we did observe degradation—signal was muffed, but still
very understandable.

4.5 Homework

(3.6) We should discuss the improvements of the LPC based vodocoders that can
be obtained by using linear interpolation of adjacent frame parameters.

Using linear interpolation of adjacent frame parameters is surely not influenc-
ing the transmission bandwidth of the LP parameters, since interpolation is done
only on the decoding side. So there is a good chance that interpolation could be
efficient (and bandwidth ‘cheap’) way to improve the quality of the synthesized
signal. The question is still whether using interpolation actually improves the syn-
thesized signal quality.

We know that LP coefficients in adjacent frames can change rapidly. Linear in-
terpolation of LP coefficients would result in smoother variation of LP coefficients.
It is possible that the rapid change of LP coefficients introduces some unwanted ef-
fects and interpolation could help in that case. On the other hand, it is also possible
that smoothing of LP parameters would result with unwanted flatness. Experiment
is a way to solve this dilemma.

5 SPEECH RECOGNITION 47

5 Speech Recognition

5.1 Feature Extraction

Feature vector sequence for each frame are usually obtained from the LP parame-
ters. In our exercise, the feature vector is composed of 12 cepstral coefficients and
12 difference cepstral coefficients.

Functionhmmfeatures.m performs feature extraction procedure on a speech
signal.

(4.1.2) We verified functionhmmfeatures.m on the speech signal ‘one’ using
the following commands.

load digits;

s = digits.one1;

N = 320;

deltaN = 80;

M = 12;

Q = 12;

y = hmmfeatures(s,N,deltaN,M,Q);

plot(y)

On the figure 39 we can see the obtained feature vectors. Each feature vector is
composed of 12 cepstral coefficients and 12 differenced cepstral coefficients, and
we can see that cepstral coefficients are rather dependant on each other—a lot of
vectors has the same value for the first 3 features. Differenced cepstral coefficients
are not so dependant on each other.

We assumed that cepstral coefficients change slowly from frame to frame, and
to verify that on the figure 40 we plotted the change of feature values from frame

2 4 6 8 10 12 14 16 18 20 22 24

−4

−2

0

2

4

6

8

feature number

fe
at

ur
e

va
lu

e

Figure 39: Feature vectors extracted form speech signal ‘one’. There are in total 54 feature
vectors corresponding to 54 overlapping frames. Feature numbers 1–12: cepstrum, feature
numbers 13–24 differenced cepstrum.

5 SPEECH RECOGNITION 48

10 20 30 40 50

−4

−2

0

2

4

6

8

frame number

fe
at

ur
e

va
lu

e

10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

frame number

fe
at

ur
e

va
lu

e

Figure 40: Change of feature values from frame to frame. Left: 12 cepstral coefficients,
right: 12 differenced cepstral coefficients.

to frame. We can see that our assumption was true, and we can also see that the
differenced cepstral coefficients change rapidly in time.

5.2 Vector Quantization

We want to use HMM with a discrete observation symbol instead of continuous
vectors shown on the figure 39. Therefor we use functionkmeans.m that imple-
ments vector quantization algorithm. For each word, the feature extraction consti-
tutes an observation sequence of 24 dimensional vectors, which are than quantized
into one of the permissible set resulting in the scalar, discrete observation sequence.

Functionkmeans implements k-means vector quantization algorithm.
(4.2.2) We verified thekmeans function on 2 dimensional random vectors be-

cause it is easier to visualize the process of quantization in 2 dimensions.

Y = randn(1000,2);

K = 10;

maxiter = 500;

[Yc,c,errlog] = kmeans(Y,K,maxiter);

Yc

figure, hold on,

plot(Y(c==1,1),Y(c==1,2),’.’,Y(c==2,1),Y(c==2,2),’.’,...

Y(c==3,1),Y(c==3,2),’.’,Y(c==4,1),Y(c==4,2),’.’,...

Y(c==5,1),Y(c==5,2),’.’,Y(c==6,1),Y(c==6,2),’.’,...

Y(c==7,1),Y(c==7,2),’.’,Y(c==8,1),Y(c==8,2),’.’,...

Y(c==9,1),Y(c==9,2),’.’,Y(c==10,1),Y(c==10,2),’.’,’MarkerSize’,10)

for i=1:10, text(Yc(i,1),Yc(i,2),num2str(i),’FontWeight’,’bold’), end,

axis([-2.5,2.5,-2.5,2.5])

We plotted the result of quantization on the figure 41.
Functionhmmcodebook.m makes a codebookcb containing feature vector pro-

totypes based on training sequences defined by the cell-array containing words that
will be used for training. For each word, a frame based analysis is performed using
hmmfeatures.m to give observation vectors. The feature vectors for all words are

5 SPEECH RECOGNITION 49

−2.5 0 2.5
−2.5

0

2.5

1

2

3

4

5
6

7

8

9

10

Figure 41: Result of performing vector quantization of 1000 random points. Centroids
are marked with the cluster number, and vector points assigned to a certain cluster are
represented with dots of the same color.

2 4 6 8 10 12 14 16 18 20 22 24

−3

−2

−1

0

1

2

3

4

5

6

feature number

fe
at

ur
e

va
lu

e

Figure 42: Feature vector prototypes (codebook vectors) obtained by vector quantization
of the feature vectors extracted from the training set consisting of 15 occurrences of each
spoken word ‘zero’ to ‘nine’. Feature vectors were quantized into 16 clusters. Feature
numbers 1–12: cepstrum, feature numbers 13–24 differenced cepstrum.

5 SPEECH RECOGNITION 50

than concatenated and vector quantized intoK feature vector prototypes, whereK
< Kmax.

(4.2.5) We generated a codebook from a training set of 15 occurrences of each
of spoken words ‘zero’ to ‘nine’ using following commands.

load ti46;

data = ti46.case(27:36);

N = 320;

deltaN = 80;

M = 12;

Q = 12;

Kmax = 16;

[cb,K,T,dist] = hmmcodebook(data,N,deltaN,M,Q,Kmax);

plot(cb)

On the figure 42 we can see the resulting 16 vector prototypes. We can see that
the vector prototypes are not as dependent as the feature vectors from a single word.
To cover the whole training set, the feature vectors need to show more variation and
need to be on a certain distance one from another.

(4.2.6) One measure of the quality of a codebook is the average distance of an
observation vector in the training data from its corresponding symbol. We checked
how does the distortion depend on the codebook sizeK using following commands.

load ti46;

data = ti46.case(27:36);

N = 320;

deltaN = 80;

M = 12;

Q = 12;

Kmax = [2 4 8 16 32];

dist = zeros(1,length(Kmax));

for i=1:length(Kmax)

[cb,K,T,dist(i)] = hmmcodebook(data,N,deltaN,M,Q,Kmax(i));

end

plot(Kmax, dist)

0 10 20 30
0.02

0.025

0.03

0.035

0.04

0.045

0.05

codebook size

qu
an

tiz
at

io
n

di
st

or
tio

n

Figure 43: Quantization distortion versus codebook size for the feature vectors extracted
from the training set consisting of 15 occurrences of each spoken word ‘zero’ to ‘nine’.

5 SPEECH RECOGNITION 51

On the figure 43 we can see that, as expected, distortion decreases with increas-
ing codebook size. Since a larger codebook implies more computation (increased
size ofK×S observation probability matrixB), there is an incentive to keep the
codebook as small as possible without jeopardizing recognition ability. Based on
these two conditions, the reasonable codebook size is guided by the experiment
evidence. When implementing the quantization, it can be decided that the desired
codebook size is reached when the curve of distortion versus codebook size is flat
enough.

5.3 Training the HMM

Training the HMM for its dedicated word means using the training words to es-
timate state transition matrixA, observation probability matrixB and state proba-
bility vector π(1). The aim is to maximize probability of a HMM to produce it’s
dedicated word. This is done iteratively using the forward-backward reestimation
algorithm until the desired tolerance is reached. We also need to train for the same
word multiple times.

Functionhmmfb.m implements F-B algorithm and functionhmmtrain.m im-
plements iterative training of multiple HMM’s based on the feature extraction, vec-
tor quantization, and F-B algorithm.

(4.3.5) We generated a codebook from a training set of 10 occurrences of each
of the spoken words ‘zero’ to ‘nine’. The codebook was then used to train a set of
ten HMM’s each having 5 hidden states.

load ti46;

data = ti46.case(27:36);

for(i=1:10)

train{i} = data{i}(1:10);

end

N = 320;

deltaN = 80;

M = 12;

Q = 12;

Kmax = 16;

[cb,K,T,dist] = hmmcodebook(train,N,deltaN,M,Q,Kmax);

S = 5;

maxiter = 5000;

tol = 1e-3;

[A_m,B_m,pi_m,loglike_m] = hmmtrain(train,N,deltaN,M,Q,cb,S,maxiter,tol);

plot(loglike_m{1})

plot(loglike_m{6})

We can observe the log-likelihood as function of the iteration number in the F-
B reestimation algorithm on the figures 44 where we plotted log-likelihoods com-
puted when building HMM’s for recognizing words ‘one’ and ‘six’. We can see
that it took 16 iterations to build satisfactory model for the word ‘one’ and 17 iter-
ations to build the model for word ‘six’. We can conclude that the typical training

5 SPEECH RECOGNITION 52

0 5 10 15
−500

−450

−400

−350

−300

−250

−200

iteration number

lo
g−

lik
el

ih
oo

d

0 5 10 15
−450

−400

−350

−300

−250

−200

−150

iteration number

lo
g−

lik
el

ih
oo

d

Figure 44: Log-likelihood versus iteration number computed when building HMM’s for
recognizing the word ‘one’ (left), and the word ‘six’ (right).

length is around 20 iterations. Log-likelihoods reached the final, maximal value of
approximately -250, which corresponds to probability of10−250.

We can also observe the structure of the matricesA andB.

mesh(A_m{1})

mesh(B_m{1})

We can see the mesh plot of matricesA andB on the figures 45 and 46. Matrix
A has largest probabilities on the main diagonal. This means that if the process is
in a certain state at the timet, the probability is highest that it will stay in that state
in the timet +1. This implies that the states don’t change rapidly in time.

Looking at the visualization of matrixB on figure 46 we can see that for each
state, there is just a couple of observations that have a high probability. Usually it
is just one high probability per state. For example, for state 4 there is very high
probability of observing symbol 9, and for state 2 there a high probabilities of
observing symbols 6 and 15. We can conclude that the hidden Markov model is
not totaly hidden.

The structure of matricesA andB is in accordance with our conclusion for the
task (4.1.2)—if the chance is big to stay in the present state, and if the chance
of observing a single symbol for each state is also big, then feature vectors will
change slowly in time.

5.4 Recognition using the HMM

For a given (but unknown) observation sequence and a given HMM trained on
certain word, we can calculate the log-likelihood that HMM produced a sequence.
To recognize a given signal, we first have to utilizehmmfeatures.m to extract the
feature vectors. Than we use functionhmmlogp.m to calculate the log-likelihood
for a given sequence and a given HMM. Finally, we have to find the HMM that
gives the highest probability of producing the sequence.

5 SPEECH RECOGNITION 53

1
2

3
4

5

1

2

3

4

5

0.2

0.4

0.6

0.8

statestate

pr
ob

ab
ili

ty

Figure 45: Visualization of the5× 5 state transition matrixA of a HMM trained on 10
sequences of the word ‘one’.

1
2

3
4

5

5

10

15

0

0.2

0.4

0.6

0.8

stateobservation

pr
ob

ab
ili

ty

Figure 46: Visualization of the16×5 observation probability matrixB trained on 10 se-
quences of the word ‘one’.

5 SPEECH RECOGNITION 54

Functionhmmrecog.m implements HMM based recognition, and returns the
classification of the HMM most probably producing the sequence.

(4.4.3) We try to recognize the word ’one’ not taken from the training set by
the following command:

[logp,guess]=hmmrecog(data{1}(12),A_m,B_m,pi_m,cb,N,deltaN,M,Q)

Functionhmmrecog.m correctly returned ‘1’ as a guess. The returned log-likelihoods
are (from up to down, for HMM’s dedicated to ‘one’, ‘two’,...):

logp =

1.0e+003 *

-0.0231

-0.5045

-1.0025

-0.7222

-1.0036

-1.0167

-1.0058

-1.0025

-1.0030

-0.5042

That corresponds to probabilities (multiplied by101000):

Ps =

0.9482

0.3130

0.0994

0.1896

0.0992

0.0962

0.0987

0.0994

0.0993

0.3132

So, the calculated probabilities are very small, which is the reason behind using
log-likelihoods. However, it is evident that the HHM dedicated to word ‘one’ had
much larger probability of producing the sequence, than any other HMM.

(4.4.4) We should try to repeat the experiment using different words and we
decided to test the recognizer on all the words that are not in the training set.

for i=1:10

for j=1:5

[logp,guess] = hmmrecog(data{i}(10+j),A_m,B_m,pi_m,cb,N,deltaN,M,Q);

guesses(i,j) = guess;

end

end

guesses(find(guesses==10)) = 0;

5 SPEECH RECOGNITION 55

The returned matrix of guesses is

one two three four five six seven eight nine zero

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

So we can see that the recognizer had success rate of 100% on this set.
(4.4.5) We repeated the experiments using various block size and spacing—

original size wasN = 320 anddeltaN = 80. We expected more wrong guesses
asN anddeltaN increase, but the recognizer proved to be rather robust, and we
needed to increaseN up to 2000 anddeltaN up to 500 to get a few wrong results.
We include results forN = 3200 anddeltaN = 800 where we can see the de-
terioration in the quality of recognizing—word ‘nine’ was wrongly recognized as
‘one’ in 4 out of 5 cases.

one two three four five six seven eight nine zero

1 2 3 4 5 6 7 8 1 0

1 2 3 4 5 6 7 8 1 0

1 2 3 4 5 6 7 8 9 2

1 2 8 4 5 6 7 8 1 0

9 2 3 4 5 6 7 8 1 0

We assume that the success rate will depend more on the block size and spacing
for recognizers that have to capture subtle difference between words, for example
for medium size vocabularies recognizers. Longer frames do increaseimprove the
computation speed, so again, one has to evaluate the computation speed and cor-
rectness by experiment to solve this dilemma.

(4.4.6) We repeated the experiments using LPC/cepstrum coding of smaller
and larger order—originally wasM = 12 andQ = 12. Success rate was generally
smaller for smaller order and the recognition was becoming more unstable, chang-
ing the output from experiment to experiment. Still, we found the recognizer rather
robust to the changes of LPC/cepstrum order. We include the results forM = 4 and
Q = 4.

one two three four five six seven eight nine zero

1 5 5 4 5 6 7 6 9 0

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

1 5 5 4 5 6 7 6 9 0

(4.4.7) We repeated the experiments again, this time using codebooks of dif-
ferent sizes—originally wasK = 16. Quantizing the feature vectors into smaller
number of clusters worsened the success rate. We include the results forK = 6.

5 SPEECH RECOGNITION 56

one two three four five six seven eight nine zero

1 2 8 2 5 6 0 8 9 0

1 2 3 4 5 6 0 8 1 0

1 2 3 4 5 6 7 8 9 0

1 2 8 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

In conclusion, the choice of parameters has to be determined by experiment, con-
sidering the requirements for the specific speech recognizer.

5.5 Homework

(4.5) We should discuss improvements on the word classifier, based on what we
have learned during the course.

When changing the parameters of the word classifier we noticed that classifier
often makes two wrong guesses for a single word while guessing everything else
correctly. We assumed that the model for the word in question wasn’t optimized
correctly during training.

As we learned in the lesson, reestimation algorithm finds the model that gives
the local maximum of the probability, and finding global maximum is not ensured.
So, the model found by reestimation algorithm depends on initial (random) point
of search.

The speech recognizer we implemented in the exercise is not taking this prob-
lem into consideration. To improve the chances of finding the optimal model, rees-
timation algorithm could be performed a number of times from different starting
points used by F-B algorithm, and the best of the found models could be chosen.

REFERENCES 57

References

[1] Sadaoki Furui. Speech recognition technology in the ubiquitous/wearable
computing environment.Proceedings of the 2000 IEEE International Con-
ference on Acousitcs, Speech, and Signal Processing.

[2] John H. L. Hansen John R. Deller and John G. Proakis.Discrete-Time Process-
ing of Speech Signals. IEEE Press, 2000.

[3] John G. Proakis and Dimitris G. Manolakis.Digital Signal Processing.
Prentice-Hall, third edition, 1996.

[4] Thomas F. Quatieri.Discrete-Time Speech Signal Processing. Prentice-Hall,
third edition, 1996.

[5] Andreas Spanias Ted Painter. Perceptual coding of digital audio.Proceedings
of IEEE, 88(4), April 2000.

