Scale Invariant Feature Transform (SIFT):
Performance and Application

Vedrana Andersen, Lars Pellarin and BRefAnderson

June 4, 2006

1 Introduction

In 2004, David G. Lowe published his paper “Distinctive Image Features from Scale-
Invariant Keypoints” (Lowe, 2004, [2]), outlining a method he developed for finding
distinctive, scale and rotation invariant features in images that can be used to perform
matching between different views of an object or scene. His metBcale-Invariant
Feature Transform (SIFT¢ombines scale-space theory and feature detection, geared
toward a broad variety of applications in the field of computer vision, such as object
recognition and stereo correspondence.

As a part of the course Advanced Image Analysis at the Technical University of
Denmark (DTU), we conducted a mini-project where we 1) studied Lowe’s work, 2)
tested SIFT, 3) implemented a portion of SIFT ourselves, and 4) applied SIFT (com-
bined with RANSAC algorithm) to automatic image stitching and automatic calcula-
tion of the fundamental matrix.

2 SIFT algorithm

A hallmark function of SIFT is its ability to extract features that are invariant to scale
and rotation; additionally, these features are robust with respect to noise, occlusion,
some forms of affine distortion, shift in 3D perspective, and illumination changes
(Lowe, 2004, [2]). The approach generates large number of features, densely covering
the image over all scales and locations.

The components of the SIFT framework for keypoint detection are as follows:

1. Scale-space extrema detectiddsing a cascade filtering approach a set of oc-
taves are generated, each octave containing the difference-of-Gaussian images
covering the range of scales. Local maxima and minima are then detected over
all scales and image locations. This forms a set of candidate keypoints.

2. Keypoint localizationEach candidate keypoint is fit to a detailed model to deter-
mine location and scale. The points with low contrast and poorly localized edge
points are rejected.

3. Orientation assignmentBased on local image gradient, each keypoint is as-
signed a direction. In case of more strong directions, additional keypoints are
created.

2 2 SIFT ALGORITHM

4. Keypoint descriptor.This is accomplished by sampling image gradient magni-
tudes and orientations around each keypoint and putting those in an array of
orientation histograms covering the region around the keypoint. Gradients are
at the scale of the keypoint (providing scale invariance), and all orientations are
relative to keypoint direction (providing rotation invariance). The entries of all
histograms are then put in a descriptor vector which is also normalized to reduce

the effects of illumination changes.

The results of carrying out these steps are depicted in the top row of Figure 1.

For image matching, descriptor vectors of all keypoints are stored in a database,
and matches between keypoints are found based on Euclidean distance. The suggested
method of matching to large database is the nearest neighbor algorithm combined with
comparing the distance to the second-nearest neighbor (Lowe, 2004). (See Fig. 1,

bottom row.)

Figure 1: First row: SIFT keypoints for two different images of the same scene. Keypoints are
displayed as vectors indicating location, scale, and orientation. Bottom row: Keypoint matches
for the two images. Out of 459 keypoints in the left image and 566 keypoints in the right image,
177 matches were made. Knowing the setting of the scene, we were able to use RANSAC and
find the outliers (wrong matches). Only 5 outliers were found, representing 2.8% of all matches.

In the same paper Lowe describes SIFT application for recognition of small or
highly occluded objects. Many false matches may arise from the background; there-
fore, it is recommend to identify objects by clustering in pose space using the Hough

transform.

Scale

Figure 2: Scale testing. From top left, scales at 1:1, 1:1.6, 1:2.2, 1:2.8, 1:3.4, 1:4. Bottom row,
bar plot depicting the comparison of results.

4 3 PERFORMANCE: TESTING SIFT

3 Performance: Testing SIFT

We tested SIFT's performance in a series of controlled tests. A testing image was
matched against itself, yet modified by various transformations. Knowing the applied
transformation, we were able to sort out possible false matches. A match was labeled
false if the matched keypoints were at the distance of more than 2 pixels. We tested
scale and rotation invariance, robustness to projective transformations and given the
presence of noise. The results of each test are presented in bar plots, with the red tips
of bars indicating the number of false matches. The size of the original (left) image is
always 320x 240 pixels.

3.1 Scaling

We tested SIFT at a variety of scales, from 1:1 to 1:4. Shown in Figure 2 are the results
of keypoint matching at a variety of scales, depicting the number of correct and false
keypoint matches.

In the lowest row of the figure, we present the comparison of the number of key-
points matched for each scale we tested. The highest number of matches, not sur-
prisingly, was for 1:1 scale, but in general the number of matches does not change
dramatically at other scales. The number of false matches never exceeds 2%.

We can conclude that SIFT is indeed scale-invariant.

3.2 Rotation

We also tested SIFT’s invariance to rotation. Figure 3 presents the results of keypoint
matching when the target image was rotated 15, 30, 45, 60, 75, and 90 degrees, and
gives the true and false keypoint matches.

The bar graph illustrates the comparison of the number of keypoints matched for
each rotation we tested. There was never more than 1% false matches. In the worst case
(60 degrees), 4 out of 508 matches were false. SIFT otherwise clearly favors rotations
of 90 degrees, those being a rotations in which interpolation plays no role. We can
therefore conclude that SIFT is also rotation-invariant.

3.3 Projectivity

SIFT’s robustness was tested under various projective transformations; the testing im-
age was shrunk and one of it's sides scaled by factors of from 1 to 0.3, as illustrated in
Figure 4.

The number of matching keypoints falls steadily with decreagirartly because
the area of the warped image falls wiph. Results included few outliers: in the worst
case 11%, on average 3%.

We concluded that, even though the number of matches drops steadily, we can still
rely on SIFT to match keypoints correctly; this confirms SIFT’s robustness to projective
transformations.

We conducted another experiment (Fig. projectivity scaled), in which we wished
to eliminate the size discrepancy between the two images, to learn whether this dis-
crepancy was what was affecting the results. In this second experiment, we sized the
target figure so that its area was the same as the original. We noted that although the
number of matched keypoints still dropped dramatically, the drop was not as drastic as

3.3 Projectivity 5

700

BOO | B

S00F —_— — — i

400 F A

Matches

2000 A

100 F A

Angle

Figure 3: Rotation testingangles= 15,30,...,90deg Percentage of outliers never over 1.
Worst case: 4 false matches per 508 true matches. Original imagex 380 pixels. Distance
threshold: 2 pixels.

6 3 PERFORMANCE: TESTING SIFT

700

GO0

5001

400+

Matches

300+

...

Projectivity factor

Figure 4: Projectivity testingp = 1,0.9, /Idots0.8. There was never a high percentage of
outliers—in the worst case 11%, on average 3%. The number of matching features falls, but
the area of the warped image falls witR. Original image: 326« 240 pixels, the area of the
smallest warped image approx/5lof the original size.

3.3 Projectivity 7

Mis...

1 [R=) [iR=) o7 0.6 0.5 0.4 0.3
Projectivity factor

Figure 5: Projectivity testing, continued. Similar experiment to the previous, but the target image
is scaled so that its area is the same as that of the original. We provide only two examples here,
with p= 0.7 andp = 0.5, but results for all tests are provided in the bar graph.

8 4 APPLICATION: USING SIFT

in the first experiment. We can therefore conclude that the projectivity will influence
the number of keypoints matched, but not the correctness of the matches.

3.4 Noise

We also tested SIFT’s robustness given the presence of noise. An image is matched
against itself, with 5% Gaussian noise added with each iteration, for 30 total iterations.
In Figure 6, we show the keypoint matches for selected iterations.

After the first additions of noise, the number of keypoints matched drops signifi-
cantly, but matches are still mostly correct. After 15 iterations, the drop in the number
of matches slows, but false matches represent up to one quarter of all matches.

We can thereby conclude that SIFT is reasonably robust given the presence of noise.

4 Application: Using SIFT

David Lowe, the developer of SIFT, describes its application for object recognition,
and having to deal with a great many outliers. He proposes using the Hough transform
for clustering.

We applied SIFT for determining stereo correspondence. We used SIFT to iden-
tify initial corresponding points between two views of the same scene. Knowing the
geometric setting of the problem, and because we did not expect the presence of many
outliers, we were able to use RANSAC (Kovesi, 2000, [1]) to determine the set of in-
liers and to estimate the transformation between the images. This framework allowed
us to implement automatic stitching of panoramic images and automatic estimation of
fundamental matrix for stereo view.

4.1 Automatic Image Stitching

We begin with a sequence of panoramic images that we would like to stitch together
into one seamless composite. The images were taken from the same location, so the
relationship between the images is determined by a homography (a projective transfor-
mation). At least four corresponding points are needed to determine the homography
between the images.

SIFT produces a set of initial corresponding points, which are fed to RANSAC for
fitting the homography. One of the images is then warped according to the homography
(we used bilinear transformation when warping), and images are stitched together (we
used the “hat” weighting function, ranging from 0 at the borders to 1 in the center,
when stitching to obtain a smoother result).

Applying SIFT in this way results in fully automated image stitching. The only
user input that may be required is to set the distance threshold for RANSAC. We set
that threshold to a rather low value=£ 0.01, corresponding to a couple of pixels),
which possibly eliminates a few of the inliers, but at least we could be rather certain
not to have any outliers sneaking in.

The number of matches returned by SIFT varies depending on the size of the over-
lapping area, but the percentage of inliers is always large enough for RANSAC to
estimate a homography that results in a satisfying stitching. In Figures 7 and 8 we
display both an example of many matches and one of relatively few matches.

4.1 Automatic Image Stitching 9

o 5 10 15 20 25 30
Iteration

Figure 6: Noise testing. An image is matched against itself, with 5% Gaussian noise added to
one of them for every iteration. From top left, iterations 2, 4, 6, 10, 15, 25. The original image
appears to gradually lose contrast, but that is caused by the displaying function scaling both the
original and target images together for each iteration.

10 4 APPLICATION: USING SIFT

Figure 7: Stitching two images of the ITU building: Original images, SIFT matches (with out-
liers eliminated by RANSAC shown in red), and final stitch. Size of original imagesx4B8M
pixels. Size of the final image: 4801110 pixels. There were 279 matches, with 270 inliers.

4.1 Automatic Image Stitching 11

Figure 8: A mosaic composed of four individual images. The middle row shows the keypoint
matches found for images three and four: only 46 keypoint matches, with 36 inliers, were found,
but the mosaic could still be completed successfully. Size of the final imagex 2896 pixels.

12 4 APPLICATION: USING SIFT

Figure 9: SIFT found 891 and 1028 keypoints in the left and right images, respectively, which
resulted in 274 matches. Applying RANSAC then produced a set of 269 inliers. At the right of
the figure are original images, with the set of testing points and corresponding epipolar lines.

4.1 Automatic Image Stitching 13

Figure 10: SIFT found 927 and 1176 keypoints in the left and right image respectively, which
resulted in only 41 matches. RANSAC eliminated only 3 outliers, leaving a set of 38 inliers.

14 REFERENCES

4.2 Automatic Fundamental Matrix Estimation

The fundamental matrix is essential for two-view geometry; it describes mapping be-
tween points in one image and corresponding epipolar lines in another image. At least
eight point correspondences are needed to estimate the fundamental matrix. As in the
previous example, SIFT produces the initial corresponding points, and RANSAC is
then used fit the fundamental matrix.

Shown here in Figures 9 and 10 are two examples of applying SIFT in automatic
fundamental-matrix estimation. In the first example, many keypoint matches were re-
turned by SIFT. The second example resulted in fewer, but still accurate, keypoint
matches.

References

[1] P. D. Kovesi. Matlab and octave functions for computer vision and
image processing. School of Computer Science & Software En-
gineering, The University of Western Australia. Available from
<http://www.csse.uwa.edu.aupk/research/matlabfris/

[2] David G. Lowe. Distinctive image features from scale - invariant keypointer-
national Journal of Computer Visigi2004.

