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We tested SIFT at a variety of scales, from
1:1 to 1:4. Shown here are the results of
keypoint matching at a scale of 1:4, with more
than 500 keypoints matched.

Far right, comparison of the number of
keypoints matched for each scale we tested.
Highest number of matches, not surprisingly,
was for 1:1 scale, but in general the number
of matches does not change dramatically for
other scales. Number of false matches never
exceeds 2%.

We also tested SIFT’s invariance to rotation.
Shown here are the results of keypoint
matching when the target image was rotated
60 degrees, with approximately 500 key-
points matched; false matches shown in red.

Far right, comparison of the number of
keypoints matched for each rotation we
tested. There was never more than 1% false
matches. In the worst case (60 degrees), 4 out
of 508 matches were false. SIFT otherwise
clearly favors rotations of 90 degrees, those
being rotations in which interpolation plays
no role.

SIFT’s robustness was tested under various
projective transformations; the testing image
was shrunk and one of it’s sides scaled by
factors from 1 to 0.3. Shown here is a project-
ivity with the factor p = 0.6.

The number of matching keypoints falls
steadily with decreasing p, partly because the
area of the warped image falls with p2.
Results included few outliers: in the worst
case 11%, on average 3%.

We also tested SIFT’s robustness given the
presence of noise. An image is matched
against itself, with 5% Gaussian noise added
with each iteration. Shown here are matches
after 4 iterations.

After the first additions of noise the number
of keypoints matched drops drastically, but
matches are still mostly correct. After 15
iterations, the drop in the number of matches
slows, but false matches represent up to one
quarter of all matches.

We begin with a sequence of panoramic images that we would
like to stitch together into one seamless composite. The images
were taken from the same location, so the relationship between
the images is determined by a homography (a projective trans-
formation). At least four corresponding points are needed to
determine the homograply between the images.

SIFT produces a set of initial corresponding points, which are
fed to RANSAC for fitting the homography. One of the images
is then warped according to the homography (we used bilinear
transformation when warping), and images are stitched
together (we used the “hat” weighting function when stitching
to obtain the smoother result).

Applying SIFT in this way results in fully automated image
stitching. The only user input that may be required is to set the
distance threshold for RANSAC. We set that threshold to a
rather low value (t = 0.01, corresponding to a couple of pixels),
which possibly eliminates a few of the inliers, but at least we
could be rather certain not to have any outliers sneaking in.

The number of matches returned by SIFT varies depending on
the size of the overlapping area, but the percentage of inliers is
always large enough for RANSAC to estimate a homography
that results in a satisfying stitching.

Top set of images: Stitching the two images of the ITU
building: Original images, SIFT matches (with outliers
eliminated by  RANSAC  shown in red),  and final  stitch.  Size
of  original  images:  480 × 640 pixels. Size of  the final  image:
480 × 1110 pixels.

Bottom set of images: Another image mosaic, with only 46
keypoint matches and 36 inliers. Size of the final image: 480 ×
1059 pixels.

The fundamental matrix is essential for two-view geometry; it
describes mapping between points in one image and corres-
ponding epipolar lines in another image. At least eight point
correspondences are needed to estimate the fundamental
matrix. As in the previous example, SIFT produces the initial
corresponding points, and RANSAC is then used to fit the
fundamental matrix.

Shown here are two examples of applying SIFT in automatic
fundamental-matrix estimation. In the first example, many
keypoint matches were returned by SIFT. The second example
resulted in fewer, but still accurate, keypoint matches.

Top set of images: SIFT found 891 and 1028 keypoints in the
left and right images, respectively, which resulted in 274
matches. Applying RANSAC then produced a set of 269
inliers. At the right of the figure are original images with the
set of testing  points and corresponding epipolar lines.

Bottom set of images: SIFT found 927 and 1176 keypoints in
the left and right image respectively, which resulted in only 41
matches. RANSAC eliminated only 3 outliers, leaving a set of
38 inliers.

In 2004, David G. Lowe published his paper “Distinctive Image
Features from Scale-Invariant Keypoints” (Lowe, 2004), out-
lining a method he developed for finding distinctive, scale and
rotation invariant features in images that can be used to perform
matching between different views of an object or scene. His
method, Scale-Invariant Feature Transform (SIFT) combines
scale-space theory and feature detection, geared toward a broad
variety  of  applications  in  the field of computer vision,  such  as

object recognition and stereo correspondence.

As a part of the course Advanced Image Analysis at the
Technical University of Denmark (DTU), we conducted a mini-
project where we 1) studied Lowe’s work, 2) tested SIFT, 3)
implemented a portion of SIFT ourselves, and 4) applied SIFT
(combined with RANSAC algorithm) to automatic image
stitching and automatic calculation of the fundamental matrix.

A hallmark function of SIFT is its ability to extract features that
are invariant to scale and rotation; additionally, these features are
robust with respect to noise, occlusion, some forms of affine
distortion, shift in 3D perspective, and illumination changes
(Lowe, 2004). The approach generates large number of features,
densely covering the image over all scales and locations.

The components of the SIFT framework for keypoint detection
are as follows:

For image matching, descriptor vectors of all keypoints are stored
in a database, and matches between keypoints are found based on
Euclidean distance.

The suggested method of matching to large database is the
nearest neighbor algorithm combined with comparing the
distance to the second-nearest neighbor (Lowe, 2004). In the
same paper Lowe describes SIFT application for recognition of
small or highly occluded objects. Many false matches may arise
from the background; therefore, it is recommend to identify
objects by clustering in pose space using the Hough transform.

1. Scale-space extrema detection. Using a cascade filtering
approach a set of octaves are generated, each octave
containing the difference-of-Gaussian images covering the
range of scales. Local maxima and minima are then
detected over all scales and image locations. This forms a
set of candidate keypoints.

2. Keypoint localization. Each candidate keypoint is fit to a
detailed model to determine location and scale. The points
with low contrast and poorly localized edge points are
rejected.

3. Orientation assignment. Based on local image gradient,
each keypoint is assigned a direction. In case of more strong
directions, additional keypoints are created.

4. Keypoint descriptor.  This is accomplished by sampling
image gradient magnitudes and orientations around each
keypoint and putting those in an array of orientation
histograms covering the region around the keypoint.
Gradients are at the scale of the keypoint (providing scale
invariance), and all orientations are relative to keypoint
direction (providing rotation invariance). The entries of all
histograms are then put in a descriptor vector which is also
normalized to reduce the effects of illumination changes.

We tested SIFT’s performance in a series of controlled tests. A
testing image was matched against itself, yet modified by a
various transformations. Knowing the applied transformation, we
were able to sort out possible false matches. A match was labeled
false if  the  matched  keypoints  were at a distance of more than

2 pixels. We tested scale and rotation invariance, robustness to
projective transformations and given the presence of noise. The
results of each test are presented in bar plots, with the red tips of
bars indicating the number of false matches. The size of the
original (left) image is always 320 × 240 pixels.

We applied SIFT for determining stereo correspondence. We
used SIFT to identify initial corresponding points between two
views of the same scene. Knowing the geometric setting of the
problem,  we were able to use RANSAC (Kovesi,  2000) to deter-

mine the set of inliers and to estimate the transformation between
the images. This framework allowed us to implement automatic
stitching of panoramic images and automatic estimation of
fundamental matrix for stereo view.

First row: SIFT keypoints for two different images of the same
scene. Keypoints are displayed as vectors indicating location,
scale, and orientation. Bottom row: Keypoint matches for the two
images.  Out of 459 keypoints in the left image and 566 keypoints

in the right image, 177 matches were made. Knowing the setting
of the scene, we were able to use RANSAC and find the outliers
(wrong matches). Only 5 outliers were found, representing 2.8%
of all matches.
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