UNIVERSITY OF CALIFORNIA,

IRVINE

Implementation of a Radix-512

Divider

THESIS

submitted in partial satistaction of the requirements for the degree of

MASTER OF SCIENCE

in Engineering
by

Alberto Nannarelli

Thesis Committee:

Professor Tomas Lang, Chair
Professor Fadi J. Kurdahi
Professor Nikil D. Dutt

1995

©1995 by Alberto Nannarelli
All Rights Reserved

The thesis of Alberto Nannarelli is approved:

Committee Chair

University of California at Irvine

1995

i

To my beloved parents,

who encouraged me in my studies and made me realize that

"Fatti non foste a viver come bruti
ma per sequir virtute e canoscenza”

7You were not born to live as brutes,
but to follow virtue and knowledge”

La Diwvina Commedia - Inferno XXVI, 119-120

11

Contents

List of Figures vi
List of Tables vii
Acknowledgement Lo viii
Abstract of the Thesis oo X
Introduction 1
Project Description 3
1.1 Synopsys Tools 5
1.2 Compass Tools 6
Algorithm Description 8
VHDL Models 16
3.1 Behavioral Model o 16
3.2 Structural Model oo 17
3.2.1 Controller 19
3.22 MultAdd. 20
3.2.3 Gamma Tableo 28
3.2.4 Latches 30
3.2.5 Multiplexerso 30
3.2.6 Recoder 30
3.2.7 Convert 33
3.2.8 Cpa e 38
Physical Design 39
4.1 Implementation in 1.2um Library 39
4.1.1 Area and Critical Path 43
4.1.2 Simulations oo o 45
4.2 Implementation in 0.6pum Library A7
4.2.1 Area and Critical Path A7
4.2.2 Simulations oL 48
Evaluation of the Design 50
5.1 Comparison with Previous Evaluations 50
5.1.1 Delay o 50
5.1.2 Area L 51
5.2 Comparison between 1.2um and 0.6pm Implementations 51
5.2.1 Delay 51
5.22 Area 53

5.3 Comparison between the Radix-512 and the Radix-4 Divider Units . 53

v

6 Conclusions
Bibliography

A VHDL Descriptions
A.1 Behavioral Model o
A1l radixbl2.vhdlo oL
A1.2 packwvhdl L
A2 RTL Model
A2.1 radixBl2
A2.2 dsplit ..o
A2.3 recl ..o e
A24 mpopp2 . . . e
A2.5 csaltOb . . . e
A2.6 quotient
A2.7T cpaclal6
A28 cpagen ...
A2.9 latchl
A210 mux2 e e
A2.11 control L
A2.12 gammatable 0oL oo

B Random Generated Test Vectors

56

58

59
39
39
62
69
69
76
76
78
80
81
83
89
86
87
89
92

96

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

List of Figures

Project flow 4
Block diagram of dividero 11
Block diagram of modified divider 12
Cycles and operations oL 13
Synopsys structural modelo o000 18
Control signals o 20
sum=A—RC 21
MultAdd block diagram L Lo 23
Mult block diagram Lo 26
Add_Tree block diagram L L. 27
Csa_15mx block diagram Lo 28
Recoder block diagram 0o 32
Recoder schematic oo 33
Recoder VHDL stages Lo 34
Convert block diagram oo 36
Cpa block diagram oL o 38
Controller Compass schematic 40
Single stage recoder Compass schematic 41
Radix-512 divider Compass schematic 42
Radix-512 divider layout (1.2gm library) 44
Critical path 0o o 45
Pre-layout simulation with clock cycle40ns 46
Detail of post-layout simulation with clock cycle 40 ns 46
Detail of post-layout simulation with clock cycle 41 ns 46
Critical path 0o o A7
Radix-512 divider layout (0.6gm library) 48
Post-layout simulation with clock cycle 24 ns 49

vi

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
3.3
5.4

List of Tables

Ten special test vectors oL 17
List of signal names and bus width 19
—ypand —yg table ..o 29
Correspondence between digits and signals 31
Area of first layout oo 43
Area of second layout oo 45
Area of the 0.6pum tech layout 49
Comparison of critical paths (nand2 units) 51
Comparison of area (in nand2 units) 52
Radix-4 and radix-512 dividers - 1.2um summary 54
Radix-4 and radix-512 dividers - 0.6pm summary %)

Vil

Acknowledgement

I am indebted to Professor Tomas Lang for his insight and direction during the
development of the project. I am grateful for his confidence in me, and for having
had the opportunity to work with him. Our work was funded by MICRO Project

(grant 93-088) with the industrial support of Sun Microsystems Inc.

I also wish to thank the members of my thesis committee, Professors Nikil Dutt
and Fadi Kurdahi, for their helpful comments and recommendations regarding my

work.

In addition, thanks are due to Professors Milos Ercegovac and Javier Bruguera

for their suggestions in regard to my design.

A special thank-you goes to Alfred Thordarson whose willingness to discuss my

ideas was of great help in writing my thesis.

Vil

Abstract of the Thesis

Implementation of a Radix-512 Divider
by
Alberto Nannarelli
Master of Science in Engineering
University of California, Irvine, 1995
Professor Tomas Lang, Chair

The objective of this work is to develop reasonably accurate methods to evaluate
the speed and area of arithmetic modules, mainly to compare these to different
schemes. Such methods will be of use to the research community to guide its

efforts towards schemes that have the potential for successful implementation.

In order to evaluate these methods, we consider a relatively complex arithmetic
module, a radix-512 division unit. Previous evaluations of this unit have been done,
without an actual implementation, in terms of area and delay using two measures:
full-adder units and nand2 units. In this project we implement a complete design
of the radix-512 divider and compare its area and delay to the results obtained in

the above mentioned evaluations.

Furthermore, we compare the implementation of the radix-512 divider in two
different standard cells libraries, 1.2um and 0.6pum, and we discuss the impact of

sub-micron technologies in the design of these units.

Finally, we compare this radix-512 unit to a simpler one, a radix-4 unit, to see if

the use of higher radixes can be effective in the realization of fast arithmetic units.

When the radix-512 divider was implemented, its performance showed that the
speed-up over the radix-4 divider is more than double, and that it can be very

effective if the priority is to have a fast circuit and the area is of lesser importance.

X

Introduction

The use of radix-512 recurrence algorithms in divisions could reduce dramatically
the number of clock cycles required to calculate the quotient. The drawback is that
the circuits are more complicated, and this increases the area needed on the chip
and lengthens the clock cycle. An effective implementation is achieved by scaling
the operands, as described in [1] and [2], and by rounding the residual to obtain

the quotient-digit at each iteration [3].

The objective of this work is to develop reasonably accurate methods to evaluate
the speed and area of arithmetic modules, mainly to compare these to different
schemes. Such methods will be of use to the research community to guide its

efforts towards schemes that have the potential for successful implementation.

In this project we implement a complete design of the radix-512 divider and
compare it to the results obtained in [3] and [4], where the evaluation of this unit has
been done, without an actual implementation, in terms of area and delay using two
measures: full-adder units and nand2 units. We also compare the implementation
of the radix-512 divider in two different standard cells libraries, 1.2um and 0.6um,
and we discuss the impact of sub-micron technologies in the design of these units.
Finally, we compare this radix-512 divider unit to a radix-4 unit ([3] and [5]), to
see if the use of higher radixes can be effective in the realization of fast arithmetic

units.

The radix-512 divider was implemented, and its performance indicated that the
speed-up over the radix-4 divider is more than double, Moreover, it can be very

effective if the priority is to have a fast circuit and the area is of lesser importance.

In the first chapter, we describe the project flow and the methodology used in

1

2

our design. We also present a list of the CAD tools used. In the second chapter, we
briefly describe the digit-recurrence division algorithm for radix-512 with scaling
and quotient-digit selection by rounding ([3] and [4]). In the third chapter, we
explain the design of the divider and how it is sub-divided into blocks in the VHDL
models. In the fourth chapter, we show the results of the implementation in two
standard cells libraries. We also present the results of the design: delay and area.
In the fifth chapter, we first compare the results of our design with those of the
earlier evaluations, then the results obtained for the two implementations of the
radix-512 divider in the two libraries, and finally, we compare the radix-512 divider

unit to a radix-4 divider unit.

There are two appendixes to the thesis. Appendix A contains the structure of
the VHDL models and the VHDL descriptions of some modules. Appendix B lists

the test vectors used.

Chapter 1
Project Description

The starting point of the project is the algorithm presented in [3] and [4] and the
specifications on the bit length for every variable. The project flow is depicted in

Figure 1.1.

We implemented the divider using the VHDL language [6] and hierarchical
design. We used two different tools in the realization of the divider: Synopsys
[7] for the behavioral model and part of the structural design and Compass [8] for
part of the structural and physical design. The project flow is described by the

following main steps:

e A behavioral model of the divider was developed from the algorithm. Using
the Synopsys simulator, some simulations were carried out on this model,
choosing a set of test vectors that tested the functionality and the correctness

of the results within the bounds stated in the algorithm.

e The unit was divided into functional blocks. This was done manually. Each
block represents a different functionality of the system. A block could be
either a combinational or a sequential circuit, and a controller was intro-
duced in order to have the correct sequencing in the operations. Then part of
these functional blocks were expanded into sub-blocks containing logic gates,
adders, latches and multiplexers. To verify these sub-blocks the same set of

vectors and simulator was used.

e Using the VHDL format, the divider rtl-model was imported into the Compass

environment for the physical design and the layout generation.

Test-Vectors
Synopsys

Algorithm
Description

Behavioral
Model

v

|
Synopsys

|

|

Synopsys simulator

Behavioral level

Structural (RTL)
Model

v

Synopsys simulator

|—

{ e—r——-
M | .
ngilé]?\ I/ Synthesis
______________ g== —/ |
v

Test-Vectors
Compass

Gate-level Model
(Compass Schematid

¥

QTV (critical path)

y

Compass
|

Compass simulator

Structural

netlist extraction

y

Compass simulator

end

Figure 1.1: Project flow

Delay

Physical level

5

The original test vectors were converted into new patterns suitable to the

Compass mixed-mode simulator.

e Using the Compass ASIC Synthesizer, the schematics for each block were gen-
erated. The Synthesizer created the gate-level model based on the synthesis
constraints (minimal area or minimal delay) and on the specified standard
cell library. Not all the blocks were synthesised, some of them were manually

designed using the Compass schematic editor (Compass Logic Assistant).

o QTV was run to determine the critical path. Simulations were then carried

out to see if the functionality of the circuit had been maintained.

o The layout was generated in a totally automatic way and then following the
netlist extraction, the extracted circuit was again simulated in order to verify

the functionality and the minimum clock cycle applicable.
1.1 Synopsys Tools

The Synopsys Graphical Environment (SGE) is a collection of tools for entering
design information and for accessing designs graphically during simulation. The
Synopsys VHDL System Simulator provides tools for simulating and debugging

VHDL circuit descriptions. SGE consists of three main tools:

Schematic Fditor - A graphical editor for creating schematic diagrams. Schematics

typically consist of symbols, wires, I/O markers, and text.

Symbol Editor - A graphical editor for creating and editing custom symbols, which
can be added to a schematic. Symbols represent either primitive cells or
functional blocks. SGE allows hierarchical designs; a symbol in one schematic

can represent the entire content of another schematic.

6

Hierarchy Navigator - A graphical tool for navigating through the hierarchical
collection of schematics that represents a design. The navigator interacts
with the simulator, the debugger, and the waveform viewer; it gives graphical

access to the design during the simulation.

1.2 Compass Tools

The Compass design environment provides a number of tools for designing chips.

The following tools were used in our project:

ASIC Synthesizer - A design tool that transforms a high-level description written
in a hardware description language into an optimized gate-level description.
It reads circuit specifications written in VHDL and synthesizes combinational

and sequential logic from behavioral descriptions.

Logic Assistant - An interface for high-level logic entry. The Logic Assistant can
create, edit, view and plot schematic diagrams and icons. It can be used to

place portable library, datapath and synthesized logic into a schematic.

QTV Timing Verifier - A tool that performs a static timing analysis on a complete
circuit or subcircuit. It is used after the design has been entered with the Logic
Assistant to find potential timing problems in the design. It calculates which
paths are the critical paths, the delay along any specified path, and the paths

with the greatest delay.

Muzed-Mode Simulator - An interactive, mixed-mode, event-driven simulator. The
circuits to be simulated may contain a mixture of transistor-level, gate-level,
and behavioral-level components. Circuit descriptions are obtained from the
Logic Assistant, Chip Compiler, Logic Synthesizer, and Netlist Extractor.

Wavetorms can be displayed graphically during the simulation or plotted from

7

history files produced by the simulation. The Mixed-Mode Simulator simu-
lates transistor logic with timing for MOS technologies. It predicts logic levels,
approximate voltages, and approximate timing of changes in the circuit nodes.
Each transistor functions as a resistive switch that is either off or turned on
to some degree, depending on the voltages on its terminals. Circuit nodes

have one of four logic values: HIGH, LOW, Unknown, or Intermediate.

Chip Compiler - An integrated block/standard cell placement and routing system
with a floorplanning stage and an automatic floorplan evaluator. Input to
the system is a schematic netlist that may contain any mixture of standard

cells and functional blocks.

Chapter 2
Algorithm Description

The starting point of the project is the digit-recurrence algorithm radix-512 with
scaling and quotient-digit selection by rounding, presented in [3] and [4]. The
algorithm performs a division between two double precision floating point numbers,

x and d, that produces the quotient

q= d
In this algorithm only the mantissa is calculated since sign and exponent of the
quotient are attainable simply by comparison and shifting. The ranges of the

operands are:
1/2<d<1
1/2<z<1
and for the quotient we have:
1/2<qg<1
The algorithm requires that # < d, and in case * > d, we divide by 2 and
increment its exponent.

The digit-recurrence algorithm uses a radix r = 512 = 2?, which means that
9 bits of the quotient are produced every iteration. To apply the quotient-digit
selection by rounding, the divisor must be within a determined range. To achieve

this, both operands are scaled by a quantity M so that:
z = Md

and

w[0] = M«

and the condition to be satisfied is:

r— 2 r—2
0.9995127 =1 — ———— 14+ ——+— =1.0004873 .
4r(r—1)<2< +4r(r—1)

M, truncated to its 13th fractional bit, is calculated by the following expression:

M = —yidis + 72

where the two coeflicients

1
e de® 4 dg2=6 + 215
2dg + 276
Y2

- d62 + d62_6 + 2-15

are also truncated to their 13th fractional bit and in the range:
l<m<4 2< <4 .

dys and dg are the divisor d truncated to its 15th and 6th bit respectively.

The recurrence to be executed is:
wlj +1] = rwlj] — g1z j=0,1,...5
with the quotient-digit selection:
i1 = 9+ 1/2]

where:

w(j] is the residual after iteration j.

w[0] = M.

¢;+1 1s the quotient digit generated in iteration j. ¢; = {—511,...,0,...,511}

y = {rw[j]}s truncated to its 2nd fractional bit.

10
At the end, ¢ must be rounded according to the sign of the residual of the last
iteration. If the last residual is positive we have to add 1 in the least significant

position before the rounding. We do not add anything if it is negative.

To execute the recurrence two multiplications and one addition are required.
The residual w[j] and the quotient digit ¢;11 are both in carry-save representation
to avoid carry-propagation in the addition. Multiplying a number by r = 512 = 29 is
equivalent to the shifting of its binary representation by 9 positions to the left. The
other multiplication is performed by recoding one of the operands [9]. Recoding the
multiplier into radix-4 representation reduces the number of partial products and
makes the operation faster. The recoded operand is in Signed Digit representation

and each digit can assume the values {—2,—1,0,1,2}.
The algorithm can be represented by the block diagram in Figure 2.1.
Since the two operations:

M = —yidis5 + 72

and

w[j +1] = 5120[j] — g2

can be executed in the same unit, in order to reduce the area we eliminated the
multiplier-accumulator required for the computation of M and performed this oper-
ation with the main multiplier-accumulator. The resulting block diagram is shown

in Figure 2.2.

The algorithm is divided into a preamble and a body. The preamble is executed
once, while the body is executed as many times as required. In case of radix-512,
the body, or recurrence, is executed six times. The preamble operations are: M
calculation and the scaling of the two operands. A total of ten cycles is needed to

perform one division. We can list the operations for each cycle:

11

d d d, x z

it A

| : 53

| amma table
“l 9 | 15
o |
st [T T

'l | MUX

= |

| M_multadd

| |

|
b Latch
Latch M
ﬁ qj+l 2x15
MUX
2x15 &7 o7
Recoder
4x8
2x(10+2)
MULTIPLIER
ACCUMULATOR
(Carry Save Adder)
w
| Latch 2x67
J
¥
Conversion Carry Propagate Adder

\t 53
q
Figure 2.1: Block diagram of divider

1. M is calculated in MultAdd. d is stored in Latchl and M is stored in
Latch2.

2. Md is calculated in MultAdd. =z is stored in Latchl and Md is stored in
Latch3.

3. Mz is calculated in MultAdd, Meanwhile the sum and carry parts of Md
are assimilated in Cpa. Mx = w|0] is stored in Latch3, Md = z is stored in
Latchl.

12

68

rw

2x70

d x z
53 {54
5
15 gamma table mux1
M
Latchl |
Latch2
2x15 15 68
%oy
mux2 mux3
2x16
Recoder
4x8 14 68
MULTIPLIER
ACCUMULATOR
2x15
MultAdd
2x14 Latch3
J
¥
Conversion Carry Propagate Adder

53

Figure 2.2: Block diagram of modified divider

. ¢1 1s extracted and w[1] is calculated in MultAdd.

. ¢2 1s extracted and w[2] is calculated in MultAdd.

. ¢s is extracted and w|[3] is calculated in MultAdd.

. ¢4 1s extracted and w[4] is calculated in MultAdd.

. ¢5 is extracted and w[5] is calculated in MultAdd.

w(1] is stored in Latch3.

w(2] is stored in Latch3.

w(3] is stored in Latch3.

w(4] is stored in Latch3.

w[5] is stored in Latch3.

13

9. ¢ is extracted and w[6] is calculated in MultAdd. w][6] is stored in Latch3.

10. The carry and sum parts of the last residual w[6] (remainder) are assimilated

in Cpa to determine its sign and the final rounding is done.

cycle 1 2 3 4 5 6 7 8 9 10
Latchl d X z

Latch2 M

Multadd M Md w[0] w[1] w[2] w[3] w[4] w[5] w[6]

Latch3 Md | wll | wl | w2 | w@] | w4 | ws] | we]

Figure 2.3: Cycles and operations

Figure 2.3 shows that in the last cycle MultAdd is idle. This last cycle can then
be used to calculate M from the next divisor, if there is a sequence of divisions.

By overlapping M calculation to the last cycle we can increase the throughput by
10%.

Bit width is important to achieve the required precision after the truncations in

the iteration steps and the final rounding.

The TEEE double-precision standard defines a format of 64 bits for this repre-
sentation [9]. These 64 bits are then divided into three fields: a sign field (1 bit),
an exponent field (11 bits) and a mantissa field (52 bits). Because numbers in this
representation are normalized with the mantissa in the range 1 < = < 2 the most
significant bit is always 1 and can be omitted (hidden bit). Thus the real mantissa
is composed of 52 bits plus a 1 in the most significant position, giving a total of 53
bits for mantissa representation. Since our divider works in the range 0.5 < d < 1,
we must divide the IEEE mantissa by 2 and consequently increment the exponent.

This is equivalent to shifting the mantissa to the right one position obtaining, in

14

this case, 53 fractional bits.

d . 0. d[—l] d[_Q] PN d[_53]
We use the notation ap, to refer to the bit with weight 2" in the binary represen-
tation of a.

Because the algorithm also requires that d > z, when this condition is not
satisfied, we must again divide the mantissa by 2 and increment the exponent. In
this case, the right shift will bring a 0 in the most significant position and to not
loose precision we have to take into account also the shifted out bit increasing the

number of bits of the representation from 53 to 54.
v 0.0x_g ... T_sq

According to [4] the scaling factor M is in the range:
0<M<2

with 13 fractional bits. A total of 15 bits is required to store M. Because the scaled
operands can be greater than 1, for the z and w]j] representation we need a total
of 54+ 134+ 1+ 1 = 69 bits: 1 sign bit, 1 integer bit and 67 fractional bits. To have
the correct recoding of ¢; in carry-save format, as explained below, we add an extra
integer bit. The number of bits needed to store the partial remainder w[j] is 70.

To store z, which is always positive, we need only one integer bit and 67 fractional

bits for a total of 68 bits.

During the design, the following modifications to the algorithm were obtained:

o In the first iteration the value of ¢ could be 512, because it is obtained by

rounding 512 - w[0] = 512 - M that can assume the value

512 -1.0004873 = 512.2495

15

in the upper bound. This requires an additional bit to represent the quotient

digit, as well as the residual.

In the carry-save representation of —M if both the MSBs are 1, to have the
correct sign after the recoding, they must be changed to 0. This is done by
making

MS[l] = MS[l] + Mc[l]

Mc[l] = Mc[l] + MS[l]

The same problem occurs when recoding ¢s and ¢., but in this case, since the
sign is not known, the only solution is to extend by one bit the carry-save
representation of ¢. This also requires the extension of w, and w,., from 2 to

3 integer bits.

The inclusion of one additional fractional bit for the residual because of the

shifting by one bit required to handle the case = > d.

Chapter 3

VHDL Models

In the design we followed a hierarchical modeling approach. First, a behavioral
model of the divider was developed, using the VHDL language and the Synopsys
simulator. Then, after having verified the behavioral model, the unit was decom-

posed into functional blocks.

3.1 Behavioral Model

From the algorithm we developed a behavioral model of the divider. The behav-
ioral level is the highest level of abstraction. At this level the functionality of the
system is described using the simplest VHDL syntax. The division algorithm was

implemented using the arithmetic capability of the VHDL language. More in detail:

The recoder was not implemented and the multiplication was performed using

the VHDL arithmetic operation.

o The residual was represented in carry-save format.

The rounding of the quotient-digit was done by adding 0.5.

The conversion was done by shifting and adding the quotient-digit obtained

at each iteration to the partial quotient.

We simulated the behavior of the model, using a set of input test vectors and a

simulator, in order to test the functionality of this model.

The behavioral model is realized with two segments of VHDL code: the main

body that implements the algorithm and a second segment that implements the

16

17
functions (such as left and right shifts, carry-save additions, 2’s complements) used

in the main body. The VHDL code is shown in Appendix A.

The VHDL model was tested using ten specially selected test vectors and one
hundred vectors generated at random. Some of these ten vectors were selected to
determine errors in the calculation of the quotient, especially for easy debugging
purposes, others were selected to detect errors occurring at the boundary values for
dividend and divisor. These ten vectors are shown in Table 3.1. Refer to Appendix

B for a description of the one hundred random vectors.

H H X ‘ d ‘ q ‘ comments H
1 0.750000 0.875000 0.857143
2 0.656250 0.875000 0.750000
3 0.500000 0.600000 0.833333
4 0.500000 1.0 —275 0.5+ 27 d maximum value
3 0.250000 0.500000 0.500000 x, d minimum values
6 0.250000 1.0 —275 0.250000 X min , d max
71 1.0—-2752-275 | 1.0-27% 1.0 — 2752 x,d ~ d upper bound
8 0.500000 0.5 4275 1.0 — 2752 x,d ~ d lower bound
9 0.5 —27%° 0.5 1.0 —27°2 — 275 | x,d ~ d lower bound
10 0.5 —27%° 0.75 — 27 0.666667 q periodic

Table 3.1: Ten special test vectors

3.2 Structural Model

In this section the structural model and the bit-width of all the signals are described.
The structural model was obtained by manually decomposing the behavioral model
into functional blocks. This model presents both blocks expanded in sub-blocks and
blocks that are still behavioral. Those blocks were synthesized directly by Compass
from behavioral to gates. The structure of the design and some examples of VHDL
code are shown in Appendix A. The Synopsys structural model of the divider is

shown in Figure 3.1. Table 3.2 shows the significant data buses or signals.

MAC(14:0)

Figure 3.1:

Synopsys structural model

jm S
o |3
5 X
D15(14:0) RESET cLock
D_SPLIT CONTROL
o
aggal88ng a3
XXaxxx89
955355355580
LD2
4 cL1
4
3
g]
SELD e
CLEAR — SELZ
LATCH2 CLK
Lono|— MUX1
E
9
gamma_table 5
E
E
_‘ E
ST 5 E
b 4 E CLEAR
MUX2 s3 g 3 LATCHL CLK
< 3 LD1
F E E LOAD
2
Y 9
s 3
q 9 MX251
a9 .. MX252
9 MX253
I =
&
= =
E s LIMU3(67:0)
HG) MUX3
E g 9 RECODER lser
N &
3 4 J
g 9
E 9 9
MU3MA(67:0)
RWS(69:0) g
9
RWC(69:0) N
[
B
R
RO
ST 0
223,
= ® g
<
e}
MULTADD
q 9
o o
9 9
g
E
CLEAR
LATCH3 CcLK
LOAD Los
I RWC(69:0)
R)
ROUND
DIGIT
cL2
DIGIT CLEAR
CONVERT cPA
ROUND cLK SiGN
[SIGN] [

18

19

‘ bus ‘ from ‘ to ‘ bits ‘
D Input Muxl1 & d_Split 53
X Input Mux1 54
MUI1L Mux1 Latchl 68
LUMU3 Latchl Mux3 68
MU3MA Mux3 MultAdd 68
D5 d_Split gamma_Table 5
D15 d_Split Mux?2 15
MGAMMAT1 | gamma_Table | Mux3 15
MGAMMA?2 | gamma_Table | MultAdd 14
MAS MultAdd Latch?2 15
MAC MultAdd Latch?2 15
MS Latch?2 Mux?2 15
MC Latch?2 Mux?2 15
MU2RS Mux?2 Recoder 16
MU2RC Mux?2 Recoder 16
E Mux?2 Recoder 1
F Mux?2 Recoder 1
M2 Recoder MultAdd 8
M1 Recoder MultAdd 8
P1 Recoder MultAdd 8
P2 Recoder MultAdd 8
WS MultAdd Latch3 70
WC MultAdd Latch3 70
RWS Latch3 MultAdd & Cpa | 70
RWC Latch3 MultAdd & Cpa | 70
QS Latch3 Convert & Mux2 | 14
QC Latch3 Convert & Mux2 | 14
/ Cpa Mux1 68
SIGN Cpa Convert 1
Q Convert Out 53

Table 3.2: List of signal names and bus width

3.2.1 Controller

The Control block sends control signals to the other blocks to synchronize all the
operations of the divider. The circuit is driven by a clock signal. At this point of

the description the clock cycle length is still unknown, it will be set later when the

20

critical path on the circuit is calculated. Figure 3.2 shows the timing of the signals.

The states of the controller are ten, as many as the division cycles.

ReseT| |
cLock
Controller State 5 I 3 I 1 I 2 I 3 I 4 I 5 I 3 I 7 I 8 I 5 I o
Mux1 MX1L
Mux1 MX1H [
Latchl Load LD1
Lateh1 Output
Latch2 Load LD2
Latch2 Output
Mux2 MX2S1 ‘
Mux2 MX252
Mux2 MX2S3
Latch3 Load LD3
Latch3 Output
Convert DIGIT
Convert ROUND
Quotient @

0

Figure 3.2: Control signals

3.2.2 MultAdd

Mult Add executes both the multiplication and the addition in the recurrence. The
adder is also used to reduce the number of the partial products of the multiplication
to the final carry-save representation. Because it is used for calculating M, scaling
the operands and calculating the next residual, some modifications are required to

have the divider working properly. The operation done by MultAdd is:

sum = A+ BC

the four different operations to be accommodated in it are:

1. =M = ’71d15 — 72

2. 2= Md

3. w[0] = Mz

21

4 wlj + 1] = 5120(j] — gz

B is the output of the recoder and to calculate the difference in case 1 and 4, we

must incorporate the — sign in the recoder, recoding the negative of the input

(—R). Thus the combination of the Recoder and MultAdd is
sum = A — RC

(Figure 3.3). Comparing Figure 3.3 to the MultAdd block in Figure 3.1, we can
R l ci Al

sum=A-RC

sumi

Figure 3.3: sum = A— RC

see that following correspondences:

A | either GAMMAZ2 or the pair RWS RWC
R | M1 M2 P1 P2
C | INZ

In the four cases listed above we have:
1. A= -y, R=dy5,C = =y, sum=—-M

—M = =y — dis(—m)

‘bit#‘... 29 28 15 14 0 ‘
A ... 0 —Yo0] ... —72[-13] 0 ... 0
C ... 1 1 ... 1 —Mp -e- —Yi[-19]
R 8 digits of dy5
—RC | ... —RC[l] —RC[O] ce ce e e —RC[_Qg]
sum - —Mpyy =My ... —M_ - - -

22

In this case only the thirty least significant bits of MultAdd are used.

2. A=0,R=-M,(C =d, sum==z

z=0—(=M)d
[bit # ... 67 66 52 1 0 |
A : 0 0 0 0 0
C 0 0 . e d[—l] . e d[_53] 0
R 8 digits of —M
—RC Md[o] Md[_l] Md[_14] Md[—66] Md[_67]
sum | - o) Ay 214 I
3. A=0, R=—-M, C =z, sum = w[0]
wl0]=0—(—M)zx
| bit # | 69 68 53 52 1 0 |
A 0 0 0 0 0 0
¢ 0 0 0 T[-1) T[o53] T[osd]
R 8 digits of —M
—RC MCL’[Q] M[L'[l] M(E[_lg)] M(E[_14] Mx[—66] M(E[_67]
sum | wp wpy Wets) W) Wess] W67
4. A =512w[j], R = ¢j41, C = z, sum = w[j + 1]
wlj + 1] = 5120[j] - gy412
| bit # | 69 68 67 9 8 0 |
A | wer Wy Wy Weeg 0 0
C - - 2[0] Z[-58] Z[-59] ~[-67]
R 6 digits of g;41
—RC | qzpn1 q2po) 929 q2[-13] 4Z[-14] q2[-58]
sum | wp wp .. W) Wi Wioss] W]-e7]

T7(60:0
B0V Tieo
I 7;0 P1(7:.0) MULT 15(69:0)
55070 P2(70 T4(67:0)
. (7:0) T3(67:0) ADD_TREE
INZ(67:0 INZ(67:0) Egggfgz S65.0
RWS(69:0 RWS(69:0) T0(69:0) WC(69:0
RWC(69:0 RWC(69:0)
NEG
[SCALE
[GAMMA2(13:0) »

Figure 3.4: MultAdd block diagram

As shown in Figure 3.4, MultAdd can be split in two sub-blocks: the first one
calculates the partial products and the second one adds them. The multiplier
generates the partial products tg,1,...,#; from the recoded multiplier and a 2’s

complement multiplicand.

e In M calculation, the recoded multiplieris dq5 (15 bits) that produces 8 partial

products (fo,t1,...,t7). Also —y3 should be added.
s=to+th+ta+its+tatits+ts+ir+(—2)
e In the scaling, the recoded multiplier is —M (15 bits).
s=1lg+l1+1lo+ts+is+1s+ts+ 17

o In the recurrence, the recoded multiplier is ¢; that is 12 bits. In this case only
6 partial products are generated (buses to-15) and the two buses tg and ¢7 are

used to add the carry-save represented shifted residual (rw[j]).
s=tog+t1 +ta+1t3+ts+ 15+ rws + rwc

In the latter two cases we need a 8:2 adder, in the first a 9:2.

Signals SEL and SCALE select the different operations.

24

Multiplication

In Mult one recoded (radix-4) multiplier is multiplied by a 2’s complement mul-
tiplicand. This is a standard radix-4 multiplication [9]. Every partial product is
2 position left-shifted with respect to the preceding one, because of the radix-4

representation of the digits. Sign extension is required to obtain the correct result

SSSSSSSXXXXXXXXXXXXXXXXXX
SSSSSXXXXXXXXXXXXXXxXxxxx00
SSSXXXXXXXXXXXXxxXxxxx0000
SXXXXXXXXXXXXXxxxxxx000000

When a negative digit is encountered, we bit complement the corresponding partial
product (before the shift) and we put a 1 in the next product in correspondence of

the least significant bit of the actual partial product. If the digit is —1 we have:

SSSSSSSXXXXXXXXXXXXXXXXXX
sssscccccceccccccccccccec00
SSSXXXXXXXXXXXXxxXxxxxx0100
SXXXXXXXXXXXXXxxxxxx000000

being ¢ = 7. And if the digit is —2 we have:

SSSSSSSXXXXXXXXXXXXXXXXXX
ssscccccccccccccccecccec000
SSSXXXXXXXXXXXXxXXxxxx1000
SXXXXXXXXXXXXXxxxxxx000000

Putting 1 in place of 0 in the shift extension doesn’t change the complexity of the
circuit. These bits in the first and second shift extension are simply M2 and M1

of the preceding partial product respectively.

From the examples above we can see that this method of complementing is not
applicable if the last partial product is negative. This will never happen when we
are doing the scaling: the last partial product is generated by the most significant

digit of M which is always positive.

25
In the recurrence the last partial product is t5 that is generated by the MSD
of ¢;. This digit could be negative, and the solution above cannot be adopted.

Because

=512 < ¢; <512

its MSD can be either 0 or 1 or —1. If it is —1 the second digit must be positive,

because it is impossible to be in the range when
(—1)-4° + (=1)-4* = —1280

Knowing that, we can modify the procedure to calculate the bit complement. In
this case we bit complement the shifted partial product and later in Add_Tree add

a 1, in the least significant position.

SSSSSSSXXXXXXXXXXXXXXXXXX
SSSSSXXXXXXXXXXXXxXXxxxXx00
SSSXXXXXXXXXXXXxXXxxxxx0000
SXXXXXXXXXXXXXxxXxxxx111111
0000000000000000000000001

This bit, a sort of carry, is the signal NEG.

The block diagram is shown in Figure 3.5. It is composed of 8 sub-blocks
(mp_pp|[0-T7]) that generate the partial products and a multiplexer mp_mux that
selects either the 8 partial products, needed in the scaling, or 6 partial products

and the carry-save representation of the residual in the recurrence.

Addition

Add_Tree is a tree of full-adders that reduces nine/eight inputs to two outputs
(see Figure 3.6). When the adder is used to calculate M, 9 inputs are required
instead of 8. Block Csa_15mx (Figure 3.7) provides the necessary multiplexing. It

is only a 15 bit adder, as many bits as required to add —~, to the partial products

26

{RWS(69.0
{RWC(69.0
(SEL

T0(69:0) T1(69:0) T2(67:0) T3(67:0) Ta(67:0) T5(69:0) T6(60:0) T7(60:0)

(TGS Mfream]]
5855 o 5555 o 55855 o 5855 o 5555 o 55855 o 55558 o 5555 &
6888 8 6866 & 66868 3 6888 8 6666 & 6668 3 6888 & 6666 &
S5 & Sy & §ggy & S5 & Sy & §ggy & S5 & Sy &
Ssaf W £s3f W £s3d8 W Ssaf W £s@f Nl yssdd w Ssaf W £s3f W
g
MP_PPO MP_PP1 MP_PP2 MP_PP3 MP_PP4 MP_PP5S MP_PPG MP_PP7
NML (— PML NML (— PML NML — PML NML PML NML (— PML NML — PML
NM2 PM2 NM2 — PM2 NM2 (— PM2 NM2 — PM2 NM2 PM2 NM2 (— PM2 NM2 — PM2

PI(60:0)
1
o

T10(69:0}
T1(69:0}
T2(67:0)
T3(67:0)
T4(67:0)
NEG
T15(69:0)
z
3
4
g
&
o
m

<TEEToH
)
<{TExaH

Figure 3.5: Mult block diagram

~v1d15. Block M_out adjusts the bits of M for a correct recoding. In the carry-save
representation of —M if both the MSB are 1, they must be changed to 0. This is

done by making

MS[l] = MS[l] + Mc[l]

Mc[l] = Mc[l] + MS[l]

The carry-save adders are of different sizes to minimize the number of bits (i.e.

area) necessary in the assimilation of the addends.

T0(69:0

P0S1(69.0) o

P1S1(69:0)

P2S(69:0) T1(69:0

d0L VSO

POC1(69:0) ~ C10(69;0)
& T5(60:0

S
d0. VSO
0D

P1C1(69:0)

< WSiGQ:Oi:
< WCiGQ:OE:

0D

P2C(69:0)

S
90, VSO

0D

S
d0. VSO

00

CIN

0-69)¢S0d

T2(67:0

0.69)¢51d

(0-69)¢0Td

T13(67:0

1NOoO N
S
489 VSO

P0C2(69:0)

0D

T4(67:0

S
d19 VSO

00

T6(60:0

P0S3(60:0)

S

POC3(60;0) L0G0

XWWST VSO

0:¥T)ON
0-7T)SW
00

GAMMAZ2(13:0

Ul?.lﬁ?rp }O0[q 2911 PPV 9°¢ SJHBEC‘[

SCALE

¢

28

(=) olle
9 & | 1S o
[a] <] |x! %]
CSA_20B

S Co

Y1(20:0)
Y2(20:0)

]

MUX_61B
S Co

S(60:0.
C(60:0

Figure 3.7: Csa_15mx block diagram

3.2.3 Gamma Table

Gamma_Table is the block that generates —v; and —~; to calculate —M by:

—M = (—n)(—di5) — 72
1
ds? + 420 + 2719
2dg + 276
2= 5 — —
de” + dg275 4 2715
where di5 and dg are d truncated to its 15th and 6th bit respectively. Also +; and

M=

v, are truncated to their 13th fractional bit and in the range:
l<m<4 2 <y, <4

Being d greater than 0.5 the MSB of ds is always 1. So we have 2° = 32 different

values of —y; and —v (Table 3.3).

| (0.5 —dg)2° | —n 2
0 000001111100101 | 00000111110101
1 000101100110010 | 00010110111000
2 001000111011110 | 00100101000100
3 001011111111101 | 00110010011100
4 001110110011100 | 00111111000110
5 010001011001001 | 01001011000100
6 010011110010001 | 01010110011010
7 010101111111101 | 01100001001100
8 011000000010110 | 01101011011100
9 011001111100100 | 01110101001100
10 011011101101110 | 01111110011110
11 011101010111011 | 10000111010110
12 011110111001111 | 10001111110100
13 100000010110000 | 10010111111001
14 100001101100001 | 10011111101001
15 100010111101000 | 10100111000100
16 100100001000111 | 10101110001011
17 100101010000010 | 10110101000000
18 100110010011011 | 10111011100100
19 100111010010101 | 11000001110111
20 101000001110010 | 11000111111011
21 101001000110101 | 11001101110000
22 101001111011111 | 11010011011000
23 101010101110011 | 11011000110010
24 101011011110001 | 11011110000001
25 101100001011011 | 11100011000100
26 101100110110011 | 11100111111011
27 101101011111010 | 11101100101001
28 101110000110001 | 11110001001100
29 101110101011001 | 11110101100110
30 101111001110010 | 11111001110111
31 101111101111111 | 11111101111111

Table 3.3: —; and —~, table

29

30

Being —4 < —7; < =2, we have 10z.zzza and to minimize the circuit we

implement only 1 integer bit.
—v1 = 2 integer + 13 fractional bits = 15 bits

—72 = 1 integer + 13 fractional bits = 14 bits

3.2.4 Latches

Latchl stores the multiplicand selected by Mux1. Latch2 stores —M in carry-
save format. Latch3 stores the residual after each step w[j] in carry-save format.

Also the quotient digits ¢; are extracted from there.
3.2.5 Multiplexers

Mux1 selects either d, = or z and aligns them for the multiplication. Mux2 selects
either dy5 or the carry-save representation of either —M or ¢;. When d;5 is selected,
its value is assimilated in the sum part and the carry part is set to zero. Also are
calculated e (signal E) and f (signal F) bits necessary for the correct rounding of

the quotient digit.

S XXXXXXXXXXXXXX.ab
C : XXXXXXXXXXXXXX.cd

e=a-+c

f=bdla®c)

Mux3 selects either —v; or LIMUS3. In case of —vy, it is aligned to the LSB and

the empty positions are filled with zeros.
3.2.6 Recoder

This block is used to recode the multiplier to have a faster multiplication. Recoding

this multiplier into radix-4 representation with digits in the range (—2,...,2) makes

31

the operation faster and the circuits simpler. The recoded operand is in Signed Digit
representation and every digit can assume the values {—2,—1,0,1,2}. To represent
these five different values four signals are used: M2, M1, P1, P2. Only one of

them can be set to 1, if all of four are 0 the signed digit is 0 (Table 3.4).

| Digit | M2 | M1 | P1 | P2 |

-2 1 0 0 0
-1 0 1 0 0
0 0 0 0 0
1 0 0 1 0
2 0 0 0 1

Table 3.4: Correspondence between digits and signals

An implementation of this recoding is described in [3], here we utilize a variation
that is described in [10]. Since the value dj of each radix-4 digit in the carry-save

representation is in the range 0 to 6, the recoding consists of three steps, as follows:

1. Obtain #;_; and wj such that
dpy = 4tp—1 + wy
where t;_; 1s a transfer bit and 0 < w; < 4.

2. The transfer bit ¢ generated with digit dzy;q is added to wy, resulting in
wg + tx € {0,...,5}. Moreover, to achieve 7, € {—2,—1,0,1,2}, a second

transfer bit hx_y is generated such that
Wi + tp = 4hp—1 + vp
with vy € {=2,...,1}.

3. Finally,
Zi = v+ hy

32
As seen in Figure 3.8, three digits dj, dry1 and dgis, in an overlapped fashion,
are used to obtain one digit 7} since transfer bit ¢;_;, obtained from dj 5, is needed

to compute hy. The actual implementation is shown in Figure 3.9.

=

k+1 k+2

J Uir2
J hk+2

k+

k+1!

TH
A\H‘
N=- Nt <= S = o
iy
x
N= NfF{< =S o
N=— N <= S < o

x
x~
T
=

k+2

Figure 3.8: Recoder block diagram

e For step 1, we make t4,_1 = [(a + 0)/2] and wy = 2(a + b) mod 2 + (¢ + d).
Being a and b the MSBs of the carry-save representation of the radix-4 digit.
Moreover, we represent the digits of wy, = 2wy 4 we by the vectors (wi1,w1g)

and (we2,wo1,we0) so that wy, =1 if w, = y.
e For step 2, we obtain hy_y = 1 if wy + £, > 2. Moreover,
vp = wg +t —4hpy (=2 < v, < 1)
is represented in a 1-out-of-4 code.

e Step 3 produces 7 in a l-out-of-5 code, which is directly used to select the
multiples of the multiplicand (signals: M2, M1, P1, P2). The value 0 is not

required.

Also the rounding of the quotient digit ¢; can be incorporated in the recoding by
the inputs tg = ¢ and hg = f.

33
The Recoder consists of 8 stages (16 bits), as shown in Figure 3.10. Each stage
recodes one radix-4 digit of the carry-save representation.

a b

90, O :

1 10 (& 00

| QUL %j . |

;TG

P2 P1 M1 M2

x~o

Figure 3.9: Recoder schematic

3.2.7 Convert

This block converts the quotient digits to the conventional representation in 2’s
complement. It also rounds the quotient. The algorithm used is the on-the-fly
conversion that performs this conversion as the digits of the quotient are produced

and does not require a carry-propagate adder [3].

The partial result is stored in two registers () and QM. These two registers are

updated every iteration by the following rules:

34

|
= A’
z
!
— 2
4zg
—

Figure 3.10: Recoder VHDL stages
Qlk+1] <= (QK] grs1) qr+1 > 0

QM[k+1] < (QK], gy —1)

QIt+1] < (QK, grp1) Gip1 =0
QMk+1] < (QMIK], Trir)

QIk+1] <= (QMIK], qry1) i1 <0
QM[k +1] < (QMIE] , Gy1)

where Q[k + 1] <= (Q[k] , qr+1) means that the register Q at iteration (k+ 1) is
loaded with the concatenation of the previous value Q and the 9 bits of ¢ri1. Grr1

is the bit-complement of ¢x11.

The on-the-fly conversion can be summarized in the following steps:

1. the carry-save representation of ¢; is assimilated and rounded.

Grt1 = g5+ qc+0.5]

35

gs : XXXXXXXXXXXX.XX
gqc @ XXXXXXXXXXXX.XX
.5 : 000000000000.10
gk : ---XXXXXXXXX---—

2. The new value of ¢;41 to be loaded into the registers is calculated.

3. The two registers Q and QM are loaded and shifted according with the value

qk+1-

The rounding is done using the same method, and another register QP is needed.

This register is updated every iteration, but its value is used only at the end (round-

ing step).
QPk+1] < (QP[k],0) Qi1 +1 =512
QPk+1] = (QK , gre1+1) 0 < grq1+1 <512
QP+ 1] < (QMIH . gor +1) G120

In the last iteration, if the last residual is positive, the quotient ¢ must be

incremented by 1.

p=qr+ SIGN

SIGN is the signal SIGN coming from block Cpa, the MSB of the reminder. The

final quotient ¢ is then:

¢ <= (QP[L-1],p) p =512
¢ =(QIL—-1],p) 0<p<512
q =(QM[L-1],p) p<0

The block diagram of this converting and rounding circuit is shown in Fig-

ure 3.11.

o o
&) &)
- -
| i3Vl
< |«
CR_CSA_128
Co
CO(11:0)
S(11:0)
CR_CPA_QK CR_CPA_M1 CR_CPA_P1
Qsie QK(8:0) QN(8:0) QOLSIG QO(8:0) Q0L9
[
S 10 S 9 ~
s Q S Q g
X o 3
o3 & =
e
DET512 DETO
CR_MUX
QM(8:0)
= N [G] —
d ¢ B = g P 2
q 3 o8 g g 8
g) g of e
ool
3l
QK(8:0) QO(8:0)
QM(8:0) QUOTIENT
DETO CLEAR CLEAR]
QsIG
DET512 D(I:(il}l' — DIGIT]
QOLSIG QIE:0) 01(8:0)
QN(53:0)
QQ(53:0) QP(53:0)
9 g 9 P_CALC
) o)) SIGN
3 > & P(8:0)
e e g
ROUNDING
. p(8:.0)
QOLSIG P(:0)
QOL9 ROUND ROUND |
Q(52:0) CLK CLK

Figure 3.11: Convert block diagram

36

37

cr_csa_12b calculates the carry-save representation of the quotient digit. It

reduces the addends from 3 to 2.
cr_cpa_qgk calculates ¢z11 and its sign QSIG.
cr_cpa_ml decrements ¢;41 by 1. It is needed to update QM when gzy1 > 0
Q1 = qrp1 — 1
cr_cpa_pl increments ¢gz11 by 1. It is needed to update QP.

Qi1 = qr+1 + 1

It also generates the two signals QOLSIG and QOL9. QOLSIG is the sign
of 41 + 1, and QOL9 is the second MSB of ¢z11 + 1. It is used along with
QOLSIG in the rounding step to determine if gry1 + 1 is equal or greater
than 512.

cr_det calculates the values of the bits used to select the registers to load and
shift Q, QM, QP. The two outputs indicate whether or not gzy; = 0 and

Gip1 + 1 = 512.

cr_mux selects the digit to be loaded in QM according with the sign of g1

Gr+1 > 0 Gr+1 <= Qryr — 1 from cr_cpa_ml

grr1 <0 Gk+1 = Gkl bit-complement

quotient loads and shift the three registers Q, QN and QP, doing the update of

the quotient, every iteration.
p_calc increments p by 1 if the reminder is positive (SIGN = 0).
p=p+1

It is a conditional sum incrementer.

38

rounding loads p in the least significant digit of ¢. This step is the final rounding.

3.2.8 Cpa

Cpa is a 70 bits carry-propagate adder that is used to assimilate the sum and carry
parts of the result. In particular, it is used to calculate z and to determine the sign
of the last residual w[6] necessary for the final rounding. Cpa is implementented
with a 3-level carry look-ahead scheme [9]. The carries are grouped by 4 and the
hierarchy is 4-16-64. The six most significant bits of the result are again generated

with a 6 bits carry look-ahead adder (see Figure 3.12).

(=] (=]
o &)
©| ©|
| Ol
N N
A4(5: i i BO(15:
94 9 g9 9 g 9 4
M M M = B4(5:0))))
< < < = = S o
— ! —
4 4 4 4 4
CPA_CLA6 S n CPA_CLA16 o CPA_CLA16 S n CPA_CLA16 S n CPA_CLA16 o
SIGN G P SuM G P SuM G P SuM G P SuM
SUM(3:0)| 5

S4(3.0)
S3(15.0)
SP(15:0)
S1(15:0
S0(15:0)
I F

{ SIGN
-
C4
G3
P3
C3
G2
P2
c2
Gl
P1
C1l
GO
PO

Cco

Z(67:0

Figure 3.12: Cpa block diagram

Chapter 4
Physical Design

In this chapter we describe the physical design of the divider. From the VHDL
description of the blocks we synthesize or design the different parts of the circuit

and then we generate the layout.

4.1 Implementation in 1.2um Library

This section describes the VLSI implementation using Compass and the standard

cells library VTT emnl12 process 1.2um [11].

The gate-level descriptions of some blocks, or schematics, were obtained using
Compass ASIC Synthesizer [8]. This synthesizer, reading a VHDL file, is able to
generate a netlist by choosing cells from the library supported. It can perform
synthesis starting from a behavioral description as well as from a more specific
description, such as a switching expression. In the design of modules the optimiza-
tion can take into account several parameters, such as maximum capacitance and
cell fan-out, frequency, maximum delay and set-up time, temperature, and VDD
level. The default synthesis constraint is to obtain minimum area. An example of a
circuit synthesized directly from the behavioral VHDL description is the controller

block, and its schematic is shown in Figure 4.1.

Other blocks were manually designed. These blocks, such as buffers, were intro-
duced in the schematic after the first simulations when we noticed that long delays
were produced due to the high loading of some cells. An example of a manually

entered schematic is the single stage of the recoder shown in Figure 4.2.

39

SR>

AL i e x
N !
S, e -
ST Do
— . .
] P P |
] [l DICIT.
rktme(y, st v)2 03
Lo - il 02
.
Do d
;
™ o e sTATELS o1}
= =P =
STATE B =
Do — w sz
P = .
x 25|
wil
* X 25

Figure 4.1: Controller Compass schematic

40

41

Figure 4.2: Single stage recoder Compass schematic

42

149AUCD
17970 (&
annox ¢
HvID [y
(OS] = T—
12p003U
(2817 —
pdsTp
0:61Z0
[0:e1zY <
[0°6L1LD e
o 04110 041161
A
¢4o3D| xnu 100172V
[0°€1120
b (051100
WO 10107 NT e (07107 NT
vdo
[0:£91ZNT 1
ppvinw coLIZY YO
(069152 [0:6910My [06915MY
1 (917 6912v [0:6910M = (0411 VYO
10:6910Z 9ISMY ovon e
[0691Y [0:6915M [0:690MY —
i 5 - 91gP)~ pLLIDDB
KK Y H 1903
0HIv v
102012 .
g HAE [0:¢<1a
04930 [0:£912 .
| Xnwi
oxnw
10:291 10:£912
= [0'e51 g [0:€GIX
—-
o)
=
% - [0:£910
ovoTgvITog TEsgeTs g
a o -
o 5 3B © 2 3B
o lo | o < % |x < |x
SlE e B S E4wn
a2~ o= XN
1a1
201 1353 (¢ « 1353
1SZXN
TSTXN
£STXN
a1 0010 [<« 00710
110
11910
annoy
34
|OJIU0D

Radix-512 divider Compass schematic

Figure 4.3

43
All these blocks were then manually assembled into a gate-level block diagram
(Figure 4.3) that was given as the input to the Compass Chip Compiler for the

layout generation.
4.1.1 Area and Critical Path

To achieve a design with suitable speed and area we first designed each module
using the default constraint (minimum area) and then optimized those modules
in the critical path. We did this iteratively until the minimum achievable delay
was obtained. The cells were obtained from the standard cells library VT1 cmn12
1.2pum. The results of the first layout are given in Table 4.1. The dimensions are
6.6 mm x 5.4 mm and the critical path is 86 ns. From the entry Total cells in
Table 4.1 we can see that the sum of the areas of the blocks is 80 % of the area of

the whole divider; the other 20 % corresponds to inter-block routing.

Block area no. transistors

mm? % %1000 %
control 0.3 1.0 % 0.7 1.2 %
convert 4.6 165 % 1.1 197 %
cpa 1.6 6.0 % 3.7 6.5 %
gammaTable 0.6 2.1 % 1.0 1.8 %
latchl 0.7 2.5 % 2.2 3.9 %
latch?2 0.3 1.0 % 1.0 1.7 %
latch3 1.7 6.0 % 4.5 8.0 %
multadd 16.7 59.0 % 29.0 50.9 %
muxl 0.6 2.0 % 1.0 1.7 %
mux?2 0.2 1.0 % 0.4 0.7 %
mux3 0.2 1.0 % 0.5 0.9 %
recoder 0.7 2.5 % 1.6 2.9 %
Total cells 28.4 100.0 % 56.6 100.0 %
Total divider | 35.6

Table 4.1: Area of first layout

As a second step, we redesigned some blocks to reduce the critical path. Since

the typical delay of a nand2 gate of the library used is 1 ns, we calculated from the

44

structure of the circuit a total delay of 36 ns. The difference between this value

and the 86 ns of the first design is due to high delays of gates driving high loads.

The second design was made by optimizing the blocks which were found along
the critical path. After a block was modified, the critical path changed and some-
times it went through a different block that had been optimized as well. This
optimization was done again using the ASIC Synthesizer tool giving a minimum
delay constraint. After this redesign the critical path was reduced to 39 ns and the

area changed to 7.3 mm x 5.8 mm.

The layout is shown in Figure 4.4 and its characteristics are given in Table 4.2.

With respect to the first design the area increased by 20% and the number of

Figure 4.4: Radix-512 divider layout (1.2um library)

transistors by 23%.

Figure 4.5 gives the delay of each of the blocks in the critical path.

45

Block area no. transistors

mm? % %1000 %
control 0.3 1.0 % 0.9 1.3 %
convert 6.5 183 % 14.0 20.0 %
cpa 2.8 8.0 % 6.9 9.8 %
gammaTable 0.6 1.7 % 1.0 1.5 %
latchl 1.1 3.1 % 2.8 3.9 %
latch?2 0.5 1.3 % 1.2 1.7 %
latch3 3.0 8.3 % 6.8 9.7 %
multadd 18.8 53.0 % 32.5 46.3 %
muxl 0.6 1.7 % 1.0 1.4 %
mux2 0.4 1.1 % 0.9 1.3 %
mux3 0.2 0.4 % 0.3 0.4 %
recoder 0.8 2.2 % 1.9 2.7 %
TOTAL 35.5 100.0 % 70.1 100.0 %
divider 42.8

Table 4.2: Area of second layout

Caantro)——mCwr2)

5.3 2.6 5.0 20.2 5.6
[_] critical path 38.7 ns
29.9 5.3

Figure 4.5: Critical path
4.1.2 Simulations

The pre-layout simulations were made choosing a clock cycle of 40 ns that is almost

as long as the critical path. These simulations gave correct results (Figure 4.6).

After the layout generation, we extracted the chip netlist and simulated it again
to see if the interconnections and the wire capacitance affected the performance of
the circuit. While simulating again with a clock cycle of 40 ns we noticed a set-up

violation. The result of this violation is an Unknown state on some of the outputs

Sroph

§
}

H
A
4

>
pd

Figure 4.6: Pre-layout simulation with clock cycle 40 ns

of the circuit (Figure 4.7). By lengthening the clock cycle of 1 ns (from 40 ns to 41

ns), we obtained satisfactory results (Figure 4.8).

[LOCK
521
1 1 1 1 1 1
o 1H0 1220 1330 1240 1250 1350 1230 1280
Figure 4.7: Detail of post-layout simulation with clock cycle 40 ns
FLOCK
sz
1 " 1 1 L 1 L | L |

50 i 2% 25 45 550] I3]

Figure 4.8: Detail of post-layout simulation with clock cycle 41 ns

47

4.2 Implementation in 0.6um Library

This section describes the VLSI implementation using Compass and the standard

cells library VTT cmpsc6ul2 process 0.6um.

4.2.1 Area and Critical Path

We repeated all the steps as in the implementation of the 1.2um library. Based on
the evaluation of earlier smaller designs, we expected a reduction of the delay of

almost 50% and a linear shrinking factor of 0.5 in area.

The critical path of the divider designed with the minimum area constraint is

25 ns. By optimizing the design we reduced it to 19 ns.

Figure 4.9 shows that the critical path is not through the main recurrence loop,
as in the case of the 1.2um design, but that it passes through the carry-propagate

adder (Cpa) and the convert and round block. Since the delay of the two paths

Caontra)t - recocer)—-Crutiadd)—achs)
1.6 2.7 9.0 2.9

2.3
. 16.2 .
[] critical path 18.9 120 16.6 6

Figure 4.9: Critical path

differs only by 0.4 ns, it is not worth to optimize the Cpa block.

The dimensions of the layout are 3.8 mm x 3.4 mm. It is shown in Figure 4.10

and its characteristics are given in Table 4.3.

48

Figure 4.10: Radix-512 divider layout (0.6um library)
4.2.2 Simulations

To simulate the 1.2um circuit we used the same methodology as in the 1.2um
design. In this case the pre-layout simulations were carried out successfully with
a clock cycle of 20 ns. But the post-layout simulations produced set-up violations
until we lengthened the clock cycle to 24 ns (Figure 4.11). This increase of 20% is
explained by the RC effects due to the interconnections. While gate delay decreases
linearly with technology, wiring delay does not. In a sub-micron technology the
interconnection delay results in a significant contribution to the overall delay that

can no longer be overlooked.

Block area no. transistors

mm? % %1000 %
control 0.09 1.0 % 0.9 1.1 %
convert 1.86 20.0 % 159 197 %
cpa 0.56 6.1 % 4.9 6.1 %
gammaTable | 0.20 2.2 % 1.6 2.0 %
latchl 0.26 2.8 % 2.7 3.3 %
latch?2 0.10 1.1 % 1.2 1.5 %
latch3 1.10 11.8 % 9.9 122 %
multadd 4.60 49.4 % 39.2 48.6 %
muxl 0.17 1.8 % 1.3 1.6 %
mux2 0.07 0.8 % 0.6 0.7 %
mux3 0.04 0.4 % 0.3 0.3 %
recoder 0.25 2.7 % 2.3 2.8 %
TOTAL 9.32 100.0 % 80.6 100.0 %
divider 12.99

Table 4.3: Area of the 0.6um tech layout

Figure 4.11: Post-layout simulation with clock cycle 24 ns

Chapter 5
Evaluation of the Design

5.1 Comparison with Previous Evaluations

In this section we perform comparisons with the evaluations of delay and area
presented in [3] and [4]. As indicated before, the evaluations in [3] are given in
terms of the delay and area of a 2-input NAND gate (nand2 units), whereas those
of [4] are given in terms of full-adder units. We want to establish the accuracy of

these measures, by considering an actual implementation.

We consider the implementation in the 1.2um library, whose characteristics are
closer to those of the library used in [3], but these evaluations can be extended to

any library.
5.1.1 Delay

Table 5.1 reports the delays in terms of nand2 units for the estimations done in
[3] and those obtained for the 1.2um library implementation. We can observe that
the main difference between the two total delays corresponds to the fact that the
estimation in [3] did not include the delay of the control block. In addition, there
was a slight increase in the delay because of the incorporation of the calculation
of M in the main MultAdd unit (this corresponds to the increase in delay in the
adder block). On the other hand, there are significant variations in the delay of the

latch and of the mux2 due to different characteristics of the cell libraries used.

In [4], full-adder units are used instead of nand2 units. Reference [3] established
that by making the delay of a full-adder equal to four nand2 units, the results are

quite accurate.

30

51

Block eval. [3] actual
control N/A 5.3
latch3 8.0 4.1
(set-up) 1.5
mux2 1.4 2.6
recoder 6.0 5.0
mult. gen. 3.6 6.6
adder 12.0 13.6
Total 31.0 38.7

Table 5.1: Comparison of critical paths (nand2 units)
5.1.2 Area

In the library we used, the area of a nand2 gate is 3025um?. Dividing the area
of each block by that number we obtain the equivalent nand2 representation of
area. Table 5.2 shows the area estimated in [3] and that obtained in the actual

implementation. The entry divider(*) includes the Cpa block and the routing.

The latches are faster in our implementation, but their area has doubled. Fur-
thermore, in the evaluation made in [3] neither the controller nor the multiplexers
were considered. On the other hand, in our implementation we eliminated the

scaling multiplier block, which contributes more than 10% to the overall area.

5.2 Comparison between 1.2;m and 0.6pm Imple-
mentations

In this section we compare the two implementations of the radix-512 divider unit.

5.2.1 Delay

From the two pictures showing the critical path (Figure 4.5 and Figure 4.9), we can

determine that the speed-up attainable by moving from the 1.2um to the 0.6um

52

Block eval. [3] actual
control N/A 110
convert 1900 2150
gammaTable 560 200
scaling multiplier 1280 N/A
registers(3) 650 -
latchl - 360
latch?2 - 150
latch3 - 930
mult. gen. 3000 -
adder 3100 -
multadd - 6210
mux1 - 200
mux?2 - 130
muxs3 N/A 50
recoder 70 260
Total blocks 10500 10800
cpa N/A 940
divider(*) 14000

Table 5.2: Comparison of area (in nand2 units)

library is about 2.

38.1 = 2.04
18.9

This result was somewhat expected considering that, according to the CMOS-
transistor scaling theory [12], if the devices are scaled by a constant « then the
gate delay will decrease by a factor 1/«. But if we consider the clock cycle length
obtained after the post-layout simulations, we can see that this speed-up is reduced.

41
— =1.7
24
This is also in accordance with the scaling theory: while the gate delay tends
to reduce, the wiring delay remains almost constant. As the level of integration

increases, the average wire length on a chip tends to increase also, thereby increasing

the capacitance.

53
5.2.2 Area

Comparing Table 4.2 to Table 4.3, we can conclude that the reduction of area when

moving from 1.2um to 0.6um is

42.80

— ~ 3.3 .
12.99

But if we look at the entry TOTAL on both tables we can see that the reduction is

35.5
—— ~ 3.8 .
9.32

As noted earlier, the difference between the entry TOTAL and the entry divider is
due to the inter-block routing. We can conclude that as the device size decreases

the contribution of the routing to the overall area becomes significant.

The number of transistors depends on the characteristics of the cells in the two
libraries. For example, for the recoder, which was entered manually by placing the
same set of gates, we have 1872 transistors in the 1.2pm implementation and 2256

in the sub-micron one.

5.3 Comparison between the Radix-512 and the
Radix-4 Divider Units

In this section we evaluate the radix-512 divider comparing its performance and

area to those of a radix-4 divider.

A detailed description of the radix-4 algorithm can be found in [3] and its
implementation in [5].

Table 5.3 summarizes the results obtained in [5] for the radix-4 divider and

those for the radix-512 divider presented here. Both units are implemented with

the same library: standard cells library VTT emnl12 [11] process 1.2um.

The difference in the number of clock cycles depends on the radix. In the radix-4

54

unit radix-4 | radix-512
no. transistors 26500 70100
area 11.40 mm? | 42.75 mm?*
no. of clock cycles 29 10
clock cycle 30 ns 41 ns
total elapsed time 870 ns 410 ns

Table 5.3: Radix-4 and radix-512 dividers - 1.2um summary

algorithm we obtain 2 bits of the result every iteration, while in the radix-512 one

we obtain 9 bits.

According to Table 5.3, the speed-up of the radix-512 over the radix-4 unit is

@ =212 .
410
The increase in the area is
42.75
m —_— 3-75 .

By comparing these results with those presented in [3]

speed-up = 2.26

area increase = 3.1

we notice an error of 7% in speed-up and an error of 17% in area increase. However
comparing the number of transistors, we see that this ratio is less than 3. Again,
the routing between cells plays an important role as the number of the transistors

(cells) increases.

Furthermore, if we consider a version of the radix-512 divider, where the scaling
factor M of the next division is calculated during the rounding, as mentioned in

Chapter 2, the speed-up over the radix-4 divider is

ﬂ:z% .
41 -9

unit radix-4 | radix-512
no. transistors 27332 80610
area 3.5 mm?* | 13.0 mm?
no. of clock cycles 29 10
clock cycle 18 ns 24 ns
total elapsed time 522 ns 240 ns

Table 5.4: Radix-4 and radix-512 dividers - 0.6pum summary

55

Table 5.4 summarizes the results obtained for the implementation in the stan-

dard cells library VTT cmpsc6ul2 process 0.6pm.

In this case the speed-up of the radix-512 over the radix-4 unit is

522

— =2.18 .

240

The increase in the area is

13.0

3.5

=3.71 .

By comparing these results with those presented in [3] we obtain an error of 4%

in speed-up and an error of 16% in area increase.

Chapter 6
Conclusions

The goal of this work is to implement the design of a complex arithmetic module, a
radix-512 divider, to see if such a scheme can be effective in the realization of fast

arithmetic units.

We have implemented the radix-512 divider and evaluated its delay and area.
We then compared these values with those obtained in [3] and [4], which were done
without an actual implementations. We also evaluated the impact on delay and
area moving from the 1.2um to the 0.6pum standard cells library. And finally, we

compared the radix-512 divider with a radix-4 divider.

We presented the design of the radix-512 divider unit in two different libraries.

The results can be summarized as follows:

1.2um lib. area = 7.3 mm X 5.8 mm total division time = 410 ns

0.6pm lib. area = 3.8 mm X 3.4 mm total division time = 240 ns

The radix-512 divider is very fast when compared to units which have tradition-
ally been used. We have shown that the speed-up over the radix-4 divider is more
than 2. It can be very effective if the priority is to have a fast circuit and the area

is of lesser importance.

We conclude that the evaluation methods presented in [3] and [4] are reasonable
when used to compare between different schemes of dividers to determine speed-up
and area increase. But those methods are not very accurate in estimating the area
and the delay of the real circuit especially when the implementation of the design

moves toward sub-micron technologies.

56

57

Finally, the design flow proposed in this work can be very efficient in the devel-

opment of arithmetic modules, essentially to achieve a more accurate evaluation of
new schemes and algorithms.

In conclusion, the VHDL language and the synthesis tools make possible a

very fast implementation when the RTL-model of the unit has been verified and

validated. This methodology is very rapid when transferring a design from one

library to another.

1]

2]

[10]

[11]

[12]

Bibliography

A. Svoboda. An algorithm for division. [Information Processing Machines,

1963.

J. Klir. A note on svoboda’s algorithm for division. Information Processing

Machines, 1963.

M.D. Ergegovac and T. Lang. Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publisher, 1st edition,

1994.

M.D. Ergegovac, T. Lang, and P. Montuschi. Very-high radix division with
prescaling and selection by rounding. IEEFE Transactions on Computers, pages

909-918, August 1994.

A. Nannarelli. Implementation of a radix-4 divider. Technical Report, May
1995.

Douglas L. Perry. VHDL. McGraw-Hill, Inc., 2nd edition, 1994.

Synopsys. Synopsys User’s Manual. Synopsys Inc., 1992.

Compass Design Automation. User Manuals for COMPASS VLSI. Compass
Design Automation, Inc., 1992.

Israel Koren. Computer Arithmetic Algorithms. Prentice-Hall, Inc. | 1st edi-
tion, 1993.

J. D. Bruguera and T. Lang. Implementation of the fft butterfly with redun-
dant arithmetic. Technical Report, August 1994.

VLSI Technology. 1.2-Micron CMOS Portable Library. VLSI Technology Inc.,
1990.

N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 2nd edition, 1993.

38

Appendix A

VHDL Descriptions

In this appendix we describe the VHDL implementation of the behavioral and RTL-
model. For further details, we suggest the reader look at the following World Wide
Web (WWW) URL:

http://www.eng.uci.edu/~alberto/MSthesis/
A.1 Behavioral Model

The VHDL behavioral model is split in two files:

e radix512.vhdl is the main block. It contains the recurrence loop and the

scaling operations.

e pack.vhdl contains all the functions and procedures used in radix512.vhdl

A.1.1 radix512.vhdl

use work.DIVIDER.all;

entity radixb12 is
generic(simulation_delay : time := 10 ns);
port(x: in bit_vector (53 downto 0);
d: in bit_vector (52 downto 0);
q: out bit_vector (52 downto 0));
end radixb12;

architecture radixb12 of radix512 is

begin

39

: bit_vector (69 downto 0);

-- residual (carry-save format)

residual (carry-save format)

0); --
0); --
0); --
0); --
0); --
0); --
0); --
0); --
0); --

15 MSBs of d

M

z = Md

quotient (extended)
quotient-digit (extended)
q*z

temporary

temporary

final residual

process
variable one, zero, onehalf
-- constants 0,1, 0.5
variable WS, WC : bit_vector (69 downto 0);
variable rws, rwc : bit_vector (69 downto 0);
-— shifted

variable di : bit_vector (14 downto
variable m : bit_vector (13 downto
variable : bit_vector (69 downto
variable qu : bit_vector (69 downto
variable qi : bit_vector (69 downto
variable qz : bit_vector (69 downto
variable zp : bit_vector (66 downto
variable zu : bit_vector (67 downto
variable wr : bit_vector (69 downto
begin

-— Initalization

Zero := conv_bit_vector(0, 70);

one := conv_bit_vector(1l, 70);

onehalf := left_shift(one, 70-13);

wait on d,x;

qu := zero;

q <= put_result(qu);

-—- 15 MSBs of d are taken to choose the scaling factor M

for i in 0 to 14 loop
di(i)
end loop;

1= d(38+1i) ;

—-— M is calculated
m := find_m(di);

-- Scaling of d and x, Mx =

zp =

m*d ;

for i in 0 to 66 loop

z(i+1)

end loop;

z(69)

’0

Zu = m*X;

:= zp(i) ;

'y z(68) :=

w is stored in carry-save format

075 z(0)

’o’;

60

for i in 0 to 67 loop

ruws(i) := zu(i) ;
end loop;
rws(69) := ’0’; rws(68) := ’0’;
TWC := zero;

—-—- 6 iterations

for i in 1 to 6 loop
-- 9 bits of the result are calculated every iteration
qi := right_shift((rws + rwc + onehalf),70-(9+3),i) ;

qu := qu + left_shift(qi,(6-1)*9);

—— the new residue is CS-format is calculated

qz := fit(two_complement(qi * z)) ;
ws := csa_sum(rws,rwc,qz) ;
wc := csa_carry(rws,rwc,qz) ;

wait for simulation_delay;

rws := left_shift(ws,9);
rwc := left_shift(wc,9);
end loop;

-- final rounding

-- if the residue is positive add 1 to the result

Wr := Ws t+ wWC ;

if (wr(69) = ’0’) then
qu := qu + 1 ;

end if;

q <= put_result(qu);

end process;

end radixb12;

A.1.2 pack.vhdl
PACKAGE divider IS

function csa_sum(a,b,c : bit_vector (69 downto 0))

return bit_vector ;

function csa_carry(a,b,c : bit_vector (69 downto 0))

return bit_vector ;

function left_shift(a : bit_vector (69 downto 0); n : integer)

return bit_vector ;

function right_shift(a : bit_vector (69 downto 0); n : integer;
m : integer)

return bit_vector ;

function two_complement(a : bit_vector ((69*2+1) downto 0))

return bit_vector ;

function fit(a : bit_vector ((69*2+1) downto 0))

return bit_vector ;

function find_m(a : bit_vector (14 downto 0))

return bit_vector ;

function put_result(a : bit_vector (69 downto 0))

return bit_vector ;
END divider;

PACKAGE BODY divider IS

-- sum calculated in Carry-Save form
function csa_sum(a,b,c : bit_vector (69 downto 0))
return bit_vector is
variable s: bit_vector (69 downto 0);
begin

for i in 0 to (69) loop

s(i) := a(i) XOR b(i) XOR c(i) ;
end loop;
return s;

end csa_sum;

63

—-- carry calculated in Carry-Save form

function csa_carry(a,b,c :

return bit_vector is

bit_vector (69 downto 0))

variable s: bit_vector (69 downto 0);

begin

s(0):= 0’ ;
for i in 0 to (69-1) loop

s(i+1) := (a(i) AND b(i)) OR (a(i) AND c(i))

end loop;

return s;

end csa_carry;

OR (c(i) AND b(i)) ;

—— left shift

function left_shift(a :

return bit_vector is

bit_vector (69 downto 0); n : integer)

variable s: bit_vector (69 downto 0);

begin

for i in 0 to (69-n) loop
s(69-1) := a(69-n-1i);

end loop;

for i in 0 to (n-1) loop
s(i) := ’07;

end loop;

return s;

end left_shift;

—-- right shift (if m=1 logical shift, otherwise arithmetic shift)

function right_shift(a :

m : integer)

return bit_vector is

bit_vector (69 downto 0); n : integer;

variable s: bit_vector (69 downto 0);

begin

for i in n to 69 loop
s(i-n) := a(i);
end loop;

for i in (69-n+1) to 69 loop
if (m =1) then

s(i) := ’07;
else

s(i) := a(69);
end if;

end loop;

64

return s;
end right_shift;
-— 2’s complement (double word)
function two_complement(a : bit_vector ((69*2+1) downto 0))
return bit_vector is
variable s: bit_vector ((69%2+1) downto 0);
begin
for i in 0 to (69%2+1) loop
s(i) := NOT a(i);
end loop;
s 1= s + 1;
return s;
end two_complement;
-- fit the result of a multiplication in a shortest variable
function fit(a : bit_vector ((69*2+1) downto 0))
return bit_vector is
variable s: bit_vector (69 downto 0);
begin
for i in 0 to 69 loop
s(i) := a(i+9);
end loop;
return s;
end fit;
-- calculates the scaling factor M from the divider d
function find_m(a : bit_vector (14 downto 0))
return bit_vector is
variable s: bit_vector (13 downto 0);
variable key: bit_vector (4 downto 0);
variable gammal, gamma2, agammal, p : bit_vector (14 downto 0);
variable double_m : bit_vector ((14*2+1) downto 0);
begin

for i in 0 to 4 loop
key(i) := a(i+9);
end loop;

case key is

- d(i) = 00 gammal = 3.878329 gamma2 = 3.938928
when '"00000" => gammal := '"111110000011011" ;

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

01
00001"

02
00010"

03
00011"

04
00100"

05
00101"

06
00110"

07
00111"

08
01000"

09
01001"

10
01010"

11

gamma?2

gammal

:= "111111000001011" ;

gammal :

gamma2 :

gammal
gammal

gamma?2
gammal
gammal

gamma?2

gammal

3.650217

3.441655

gamma?2

"111010011001110"

gamma?2

>

"111101001001000" ;

:= "110111000100010" ;

:= "111011010111100"

3.250471

gamma?2

>

:= "110100000000011" ;
:= "111001101100100" ;

gammal :

gamma2 :

gammal
gammal

gamma?2
gammal
gammal

gamma?2

gammal

3.074787

2.912970

gamma?2

gamma?2

'"110001001100100" ;
'"111000000111010" ;

:= "101110100110111" ;
:= "110110100111100" ;

2.763600

gamma?2

:= "101100001101111" ;
:= "110101001100110" ;

gammal :

gamma2 :

gammal
gammal

gamma?2

gammal

:= "100111111101010"

2.625431

2.497371

gamma?2

gamma?2

'"101010000000011" ;
"110011110110100"

>

>

:= "110010100100100" ;

gammal :

gamma2 :

gammal
gammal

gamma?2

gammal

2.378457

2.267839

gamma?2

gamma?2

'"100110000011100" ;
'"110001010110100"

>

:= "100100010010010" ;
:= "110000001100010" ;

2.164762

gamma?2

.821321

.71053b

.605991

.507178

.413637

.324956

.240766

.16073b

.084561

.011973

.942723

65

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

"01011"

= 12
"01100"

= 13
"01101"

= 14
"01110"

= 15
"01111"

= 16
'""10000"

= 17
'"10001"

= 18
'"10010"

= 19
"10011"

= 20
'"10100"

=21
"10101"

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

gammal

gammal :

gamma2 :

'"100010101000101" ;
"101111000101010" ;

2.068556 gamma?2

'"100001000110001" ;
'"101110000001100" ;

1.978624 gamma?2

"011111101010000" ;
'"101101000000111" ;

1.894433 gamma?2

"011110010011111"

>

'"101100000010111" ;

1.815502 gamma?2

'"011101000011000" ;
'"101011000111100" ;

1.741404 gamma?2

"011011110111001" ;
'"101010001110101" ;

1.671751 gamma?2

"011010101111110" ;

'"101001011000000"

1.606196 gamma?2

>

'"011001101100101" ;
'"101000100011100" ;

1.544422 gamma?2

'"011000101101011" ;

'"100111110001001"

1.486144 gamma?2

"010111110001110"

>

>

'"100111000000101" ;

1.431105 gamma?2

'"010110111001011"
'"100110010010000"

>

>

.876586

.8133567

.752847

.694886

.639316

.585991

.534778

.485554

.438206

.392628

66

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

when

end case;

= 22
"10110"

= 23
"10111"

= 24
'"11000"

= 25
"11001"

= 26
'"11010"

= 27
"11011"

= 28
"11100"

= 29
"11101"

= 30
"11110"

= 31
"11111"

gammal

gammal :

gamma2 :

gammal
gammal

gamma?2

gammal

:= "010101010001101"
:= "100100111001110"

gammal :

gamma2 :

gammal
gammal

gamma?2
gammal
gammal

gamma?2

gammal

1.379067 gamma?2

1.329816 gamma?2

1.283158 gamma?2

1.238913 gamma?2

'"010110000100001" ;
'"100101100101000" ;

>

>

'"010100100001111" ;
'"100100001111111"

:= "010011110100101" ;
:= "100011100111100" ;

1.196917 gamma?2

:= "010011001001101" ;
:= "100011000000101" ;

gammal :

gamma2 :

gammal
gammal

gamma?2

gammal
gammal

gamma?2

gammal
gammal

gamma?2

gammal
gammal

gamma?2

others => null;

:= "010001111001111"

1.157021 gamma?2

1.119087 gamma?2

'"010010100000110" ;
'"100010011010111"

>

>

:= "100001110110100" ;

1.082989 gamma?2

:= "010001010100111" ;

:= "100001010011010"

:= "010000110001110"
:= "100000110001001"

:= "010000010000001"
:= "100000010000001"

1.048610 gamma?2

1.015842 gamma?2

>

>

>

>

>

.348723

.306400

.265575

.226171

.188114

.1513386

.115775

.081370

.048066

.015811

67

double_m := gammal*a ;

for i in 0 to 14 loop
agammal (i) := double_m(i+15);
end loop;

p := gamma2 - agammal ;

for i in 0 to 13 loop
s(i) := p(i);

end loop;

return s;

end find_m;
-- load the value of the final result to the output
function put_result(a : bit_vector (69 downto 0))
return bit_vector is
variable s: bit_vector (52 downto 0);
begin

for i in 0 to 52 loop

s(i) := a(i+1);
end loop;
return s;

end put_result;

END divider;

68

69
A.2 RTL Model

The block diagram of the VHDL rtl-model is shown in Figure 3.1. There are 13
blocks in the schematic. d_split is simply used to split a bus into two buses of

different widths. Four of these blocks are exploded in sub-blocks:

e Recoder is composed of 8 stages (Figure 3.10) of the same VHDL description

recl.

o MultAdd is decomposed as in Figure 3.4. The basic unit of the multiplier is
given in mp_pp2, while the basic component of the tree of adders (Figure 3.6),

an array of full-adders without ripple-carry, is given in csa_70b.

e Convert is as in Figure 3.11. The main block is the quotient block which
updates the three registers QP,QQ,QN by shifting or loading them.

e Cpa is a carry look-ahead adder. It is composed by the two sub-blocks
cpa_clalé a 16-bit carry look-ahead adder, and the cpa_gen, the group

carry generator.

The rest still maintains a VHDL behavioral description. We present here one sample
for a latch and for a multiplexer and the VHDL description of the blocks control

and gamma_Table.

A.2.1 radix512

entity RADIXb512 is
Port (CLOCK : In bit;
D : In bit_vector (52 downto 0);
RESET : In bit;
X : In bit_vector (53 downto 0);
Q : Out bit_vector (52 downto 0));
end RADIX512;

architecture SCHEMATIC of RADIX512 is

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal

RWC
M2

M1
RWS
P1

P2
D15
D5
MU1L1
L1MU3
MU3MA
s

MC
MAS
MAC
Qs

Q¢
MU2RS
MU2RC
YA

WS

WC
MGAMMA1
MGAMMA2
MX2S3
MX2S2
MX2S1
F

E
SIGN
ROUND
CL2
DIGIT
LD3
LD1
CL1
MX1H

LD2

component MUX3

bit;

: bit;

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

downto

: bit_vector (689 downto 0);
: bit_vector(7 downto 0);
: bit_vector(7 downto 0);
: bit_vector (689 downto 0);
: bit_vector(7 downto 0);
: bit_vector(7 downto 0);
: bit_vector(14 downto 0);
: bit_vector(4 downto 0);
: bit_vector(67
: bit_vector(67
: bit_vector(67
: bit_vector(14
: bit_vector(14
: bit_vector(14
: bit_vector(14
: bit_vector(13
: bit_vector(13
: bit_vector(15
: bit_vector(15
: bit_vector(67
: bit_vector(69
: bit_vector(69
: bit_vector(14
: bit_vector(13
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
: bit;
MX1L :

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

70

Port (A
SEL

end component;
component D_SPLIT
Port (D
D15
IN_D

end component;

component CONTROL

Port (CLOCK :
RESET :

CL1
CL2

DIGIT :

LD1
LD2
LD3

MX1H :
MX1L

MX2S1
MX2S2
MX2S3
ROUND

end component;

component CONVERT
Port (Al
A2

CLEAR :

CLK

DIGIT :

ROUND

SIGN :

Q

end component;

component LATCH1
Port (A

CLEAR :

In
In
In
Out

In
Out
Out

In

In

Out
Out
Out
Out
Out
Out
Out
Out
Out
Out
Out
Out

In
In
In
In
In
In
In
Out

In

In

bit_vector
bit_vector
bit;

bit_vector

bit_vector
bit_vector

bit_vector

bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit);

bit_vector
bit_vector
bit;
bit;
bit;
bit;
bit;

bit_vector

bit_vector
bit;

(14 downto
(87 downto

(87 downto

(52 downto
(14 downto

0);
0);

0));

0);
0);

(4 downto 0));

(13 downto
(13 downto

(52 downto

(87 downto

0);
0);

0));

0);

71

CLK

LOAD

Z
end component;
component MUX1

Port (A

B

C

SELD

SELZ

Z
end component;
component CPA

Port (ZC

yAS

SIGN :
Z

end component;

component LATCH3
Port (Al
A2

CLEAR :

CLK
LOAD
Q1
Q2
RWC
RWS

end component;

component RECODER
Port (G

H

Q1

Q2

M1

M2

P1

P2

end component;

In
In
Out

In
In
In
In
In
Out

In
In
Out
Out

In
In
In
In
In
Out
Out
Out
Out

In
In
In
In
Out
Out
Out
Out

bit;
bit;

bit_vector

bit_vector
bit_vector
bit_vector
bit;
bit;

bit_vector

bit_vector
bit_vector
bit;

bit_vector

bit_vector
bit_vector
bit;
bit;
bit;
bit_vector
bit_vector
bit_vector

bit_vector

bit;

bit;

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector

bit_vector

(87 downto

(52
(53
(67

downto
downto

downto

(87 downto

(69
(69

downto
downto

(87 downto

(89 downto

(89 downto

(13
(13
(69
(69

downto
downto
downto

downto

(15
(15
(7 downto
(7 downto
(7 downto
(7 downto

downto

downto

72

0));

0);
0);
0);

0));

0);
0);

0));

0);
0);

0);
0);
0);
0));

0);
0);
0);
0);
0);
0));

component MULTADD
Port (GAMMA2
INZ

M1

M2

P1

P2

RWC

RWS

SCALE :

SEL
MC
s
WC
WS

end component;

component MUX2
Port (AC
AS
BC
BS

S1
S2
S3

YA
ZS

end component;

component LATCH2
Port (Al
A2

CLEAR :

CLK
LOAD
Z1
zZ2

end component;

In
In
In
In
In
In
In
In
In
In
Out
Out
Out
Out

In
In
In
In
In
In
In
In
Out
Out
Out
Out

In
In
In
In
In
Out
Out

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit;

bit;

bit_vector
bit_vector
bit_vector

bit_vector

bit_vector
bit_vector
bit_vector
bit_vector
bit_vector
bit;
bit;
bit;
bit;
bit;
bit_vector

bit_vector

bit_vector
bit_vector
bit;
bit;
bit;
bit_vector

bit_vector

(13 downto
(87 downto
(7 downto
(7 downto
(7 downto
(7 downto
(89
(89

downto

downto

(14 downto
(14
(69

(69

downto
downto

downto

(13
(13
(14
(14
(14

downto
downto
downto
downto

downto

(15
(15

downto

downto

(14
(14

downto

downto

(14
(14

downto

downto

0);
0);
0);
0);
0);
0);
0);
0);

0);
0);
0);
0));

0);
0);
0);
0);
0);

0);
0));

0);
0);

0);
0));

component GAMMA_TABLE
Port (IND : In
GAMMA1 : Out
GAMMA2 : Out

end component;

begin

I_16 : MUX3
Port Map (A(14 downto
C(67 downto
Z(67 downto
I_15 : D_SPLIT
Port Map (D(52 downto

bit_vector (4 downto 0);
bit_vector (14 downto 0);
bit_vector (13 downto 0));

0)=>MGAMMA1(14 downto 0),
0)=>L1MU3(867 downto 0), SEL=>MX2S3,
0)=>MU3MA (87 downto 0));

0)=>D(52 downto 0),

D15(14 downto 0)=>D15(14 downto 0),
IN_D(4 downto 0)=>D5(4 downto 0));

I_12 : CONTROL

Port Map (CLOCK=>CLOCK, RESET=>RESET, CL1=>CL1, CL2=>CL2,
DIGIT=>DIGIT, LD1=>LD1, LD2=>LD2, LD3=>LD3, MX1H=>MX1H,

MX1L=>MX1L,

MX2S1=>MX2S1, MX2S2=>MX2S2, MX2S3=>MX2S3,

ROUND=>ROUND);

I_1 : CONVERT

Port Map (A1(13 downto 0)=>QS(13 downto 0),
42(13 downto 0)=>QC(13 downto 0), CLEAR=>CL2,

CLK=>CLOCK,
Q(52 downto
I_2 : LATCH1
Port Map (A(87 downto
CLK=>CLOCK,
Z(87 downto
I_3 : MUX1

Port Map (A(52 downto
B(53 downto
C(87 downto
Z(87 downto
I_4 : CPA

DIGIT=>DIGIT, ROUND=>ROUND, SIGN=>SIGN,
0)=>Q(52 downto 0));

0)=>MU1L1(867 downto 0), CLEAR=>CL1,
LOAD=>LD1,
0)=>L1MU3(87 downto 0));

0)=>D(52 downto 0),

0)=>X(53 downto 0),

0)=>Z (87 downto 0), SELD=>MX1L, SELZ=>MXiH,
0)=>MU1L1(87 downto 0));

Port Map (ZC(69 downto 0)=>RWC(69 downto 0),
ZS(69 downto 0)=>RWS(69 downto 0), SIGN=>SIGN,

Z(67 downto
I_5 : LATCH3

0)=>Z(87 downto 0));

Port Map (A1(69 downto 0)=>WS(69 downto 0),
42(69 downto 0)=>WC(69 downto 0), CLEAR=>CL1,

CLK=>CLOCK, LOAD=>LD3, Q1(13 downto 0)=>QS(13 downto 0),

74

Q2(13 downto 0)=>QC(13 downto 0),
RWC(69 downto 0)=>RWC(69 downto 0),
RWS(69 downto 0)=>RWS(69 downto 0));
I_6 : RECODER
Port Map (G=>F, H=>E, Q1(15 downto 0)=>MU2RS(15 downto 0),
Q2(15 downto 0)=>MU2RC(15 downto 0),
M1(7 downto 0)=>M1(7 downto 0),
M2(7 downto 0)=>M2(7 downto 0),
P1(7 downto 0)=>P1(7 downto 0),
P2(7 downto 0)=>P2(7 downto 0));
I_7 : MULTADD
Port Map (GAMMA2(13 downto 0)=>MGAMMA2(13 downto 0),
INZ(67 downto 0)=>MU3MA(87 downto 0),
M1(7 downto 0)=>M1(7 downto 0),
M2(7 downto 0)=>M2(7 downto 0),
P1(7 downto 0)=>P1(7 downto 0),
P2(7 downto 0)=>P2(7 downto 0),
RWC(69 downto 0)=>RWC(69 downto 0),
RWS(69 downto 0)=>RWS(69 downto 0), SCALE=>MX2S3,
SEL=>MX2S1, MC(14 downto 0)=>MAC(14 downto 0),
MS(14 downto 0)=>MAS(14 downto 0),
WC(69 downto 0)=>WC(69 downto 0),
WS(69 downto 0)=>WS(69 downto 0));
I_8 : MUX2
Port Map (AC(13 downto 0)=>QC(13 downto 0),
4S(13 downto 0)=>QS(13 downto 0),
BC(14 downto 0)=>MC(14 downto 0),
BS(14 downto 0)=>MS(14 downto 0),
C(14 downto 0)=>D15(14 downto 0), S1=>MX2S1, S2=>MX2S2,
S3=>MX2S3, E=>E, F=>F,
ZC(15 downto 0)=>MU2RC(15 downto 0),
ZS(15 downto 0)=>MU2RS(15 downto 0));
I_9 : LATCH2
Port Map (A1(14 downto 0)=>MAC(14 downto 0),
42(14 downto 0)=>MAS(14 downto 0), CLEAR=>CL1,
CLK=>CLOCK, LOAD=>LD2, Z1(14 downto 0)=>MC(14 downto 0),
Z2(14 downto 0)=>MS(14 downto 0));
I_11 : GAMMA_TABLE
Port Map (IN_D(4 downto 0)=>D5(4 downto 0),
GAMMA1(14 downto 0)=>MGAMMA1(14 downto 0),
GAMMA2(13 downto 0)=>MGAMMA2(13 downto 0));

end SCHEMATIC;

A.2.2 d_split

entity D_SPLIT is

Port (D
D15
IN.D :
end D_SPLIT;

In

: Out

Out

bit_vector (52 downto 0);
bit_vector (14 downto 0);
bit_vector (4 downto 0));

architecture BEHAVIORAL of D_SPLIT is

begin

process(D)

variable j : integer ;

begin

for j in 0 to 14 loop

D15(j) <= D(j+38);

end loop;

for j in 0 to 4 loop
IN_D(j) <= D(j+47);

end loop;
end process;

end BEHAVIORAL;

A.2.3 recl

entity REC1 is
Port (co
c1

S0
S1

HN :
: Out
: Out
: Out
: Out
TN :

M1
M2
P1
P2

end REC1;

In
In
In
In
In
In
Out

Out

bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit);

76

architecture BEHAVIORAL of REC1 is

begin

process(C0,C1,S0,S1,T,H)
variable w00,w01,w02,w10,wll,nt : bit;

variable vp1l,v00,vml,vm2 :

begin

w02 :=
w0l :=
w00 :=
will :=
wl0 :=
nt :=
TN <=
vpl :=
v00 :=
vml :=
vm2 =

HN <=

P2 <=
M2 <=

if (H

else

M1 <=
P1 <=

end if;

end process;

end BEHAVIORAL;

SO AND CO ;
SO0 X0R CO ;
NOT(SO OR CO) ;

S1 X0R C1 ;
NOT(S1 XOR C1)

NOT

T

S1 AND C1 ;

(T
(nt
(T
(nt
(T
(nt
(T
(nt

AND
AND
AND
AND
AND
AND
AND
AND

wil
w01
wil
w00
wi0
wil
wi0
w00

(T AND wO1)

(NOT H) AND
H AND vpl ;

= 11?
M1 <=
P1 <=

vpl ;

vml ;

AND
AND
AND
AND
AND
AND
AND
AND

w02)
wi0)
w01)
wi0)
w02)
w01)
w01)
wil)

bit;

OR (T AND
;R (nt AND
;R (T AND
;R (nt AND

>

OR wil OR w02;

vm2

) then
v00 ;

vm2 ;

>

w00 AND

w02 AND

w00 AND

w02 AND

wi0) OR

wil) OR

wil) OR

wi0) OR

77

A.2.4 mp_pp2

entity MP_PP2 is
Port (M1 : In bit_vector (5 downto 0);
M2 : In bit_vector (5 downto 0);
P1 : In bit_vector (5 downto 0);
P2 : In bit_vector (5 downto 0);
PM1 : In bit;
PM2 : In bit;
Z : In bit_vector (68 downto 0);
NM1 : Out bit;
NM2 : Out bit;
T2 : Out bit_vector (67 downto 0));
end MP_PP2;

architecture BEHAVIORAL of MP_PP2 is

—-- This block generates one of the partial products multipling
-- Z by (M1,M2,0,P1,P2). The signals M1,M2,P1,P2 are given in
-- bus format because they are driven by a tree of buffers

—— [i.e. M1(0) = M1(1) = = M1(5) 1]

begin

process (M1, M2, P1, P2, Z, PM1, PM2)
variable pd : bit;

begin

t2(0) <= PM1 ;
t2(1) <= PM2 ;
t2(2) <= (M1(0) AND NOT(Z(0))) OR (P1(0) AND Z(0));
pd := Z(0);
for i in 1 to 5 loop
t2(i+2) <= (M2(0) AND NOT(pd)) OR (M1(O) AND NOT(Z(i))) OR
(P1(0) AND Z(i)) OR (P2(0) AND pd) ;
pd := Z(1);
end loop;
for i in 6 to 17 loop
t2(i+2) <= (M2(1) AND NOT(pd)) OR (Mi(1) AND NOT(Z(i))) OR
(P1(1) AND Z(i)) OR (P2(1) AND pd) ;
pd := Z(1);
end loop;

78

for

end

for

end

for

end

for

end

NM1
NM2

i in 18 to
t2(i+2) <=
pd := Z(1);
loop;

i in 30 to
t2(i+2) <=
pd := Z(1);
loop;

i in 42 to
t2(i+2) <=
pd := Z(1);
loop;

i in 54 to
t2(i+2) <=
pd := Z(1);
loop;

<= M1(0) ;
<= M2(0) ;

end process;

end BEHAVIORAL;

29 loop
(m2(2)
(P1(2)

41 loop
(M2(3)
(P1(3)

53 loop
(M2(4)
(P1(4)

65 loop
(m2(s)
(P1(5)

AND
AND

AND
AND

AND
AND

AND
AND

NOT(pd))
z(i))

NOT(pd))
z(i))

NOT(pd))
z(i))

NOT(pd))
z(i))

M1(2)
P2(2)

M1(3)
P2(3)

M1(4)
P2(4)

M1(5)
P2(5)

AND
AND

AND
AND

AND
AND

AND
AND

NOT(Z(i))) OR
pd) ;

NOT(Z(i))) OR
pd) ;

NOT(Z(i))) OR
pd) ;

NOT(Z(i))) OR
pd) ;

79

A.2.5

entity CSA_70B is
Port (

end CSA_70B;

csa_70b

nun 0 U W =

In
In

In

: Out
: Out

bit_vector
bit_vector
bit_vector
bit_vector

bit_vector

architecture BEHAVIORAL of CSA_70B is

begin

process(4,B,D)

begin

for i in 0 to 69 loop

S(i) <= A(i) XOR B(i) XOR D(i)

end loop;

for i in 0 to 68 loop
C(i+1) <= (A(i) AND B(i)) OR (A(i) AND D(i)) OR (D(i)

end loop;

c(0) <=0’

end process;

end BEHAVIORAL;

>

>

(89 downto 0);
(89 downto 0);
(89 downto 0);
(89 downto 0);
(69 downto 0));

AND B(i))

80

>

A.2.6 quotient

entity QUOTIENT is

81

Port (CLEAR : In bit;
CLK : In bit;
DETO : In bit;
DET512 : In bit;
DIGIT : In bit;
QK : In bit_vector (8 downto 0);
QM : In bit_vector (8 downto 0);
Qo In bit_vector (8 downto 0);
QOLSIG : In bit;
QSIG : In bit;
QN : InOut bit_vector (53 downto 0);
QP InOut bit_vector (53 downto 0);
QQ InOut bit_vector (53 downto 0);
QI : Out bit_vector (8 downto 0));

end QUOTIENT;

architecture BEHAVIORAL of QUOTIENT is
begin
process(clear,clk)

begin

if (clear = ’1’) then
for i in 0 to 53 loop

qq(i) <= ’0’;

qn(i) <= ’0’;

qp(i) <= ’0’;
end loop;

gi <= '000000000" ;

elsif ((clk = ’1’) AND (clk’EVENT)) then
if (digit = ’1’) then
qi <= gk ;
if (detO = 1’) then
for i in 53 downto 9 loop
qq(i) <= qq(i-9);
qn(i) <= qn(i-9);
end loop;
elsif (gsig = ’0’) then
for i in 53 downto 9 loop

qq(i) <= qq(i-9);

qn(i) <= qq(i-9);
end loop;
elsif (gsig = ’1’) then
for i in 53 downto 9 loop
qq(i) <= qn(i-9);
qn(i) <= qn(i-9);
end loop;
end if;
for i in 0 to 8 loop
qq(i) <= gk(i);
qn(i) <= qm(i);
end loop;
if (detb12 = 1’) then
for i in 53 downto 9 loop
qp(i) <= qp(i-9);
end loop;
elsif (qolsig = ’0’) then
for i in 53 downto 9 loop
qp(i) <= qq(i-9);
end loop;
elsif (qolsig = ’1’) then
for i in 53 downto 9 loop
qp(i) <= qn(i-9);
end loop;
end if;
for i in 0 to 8 loop
qp(i) <= gqo(i);
end loop;

end if;

end if;

end process;

end BEHAVIORAL;

82

A.2.7 cpa_clal6

entity CPA_CLA16
Port (

end CPA_CLA16;

is
CIN :
INC
INS
GGG :
PPP
SUM :

In
In
In
Out

: Out

Out

bit;

bit_vector (15 downto 0);
bit_vector (15 downto 0);

bit;
bit;

bit_vector (15 downto 0));

architecture BEHAVIORAL of CPA_CLA16 is

begin

process(INS,INC,CIN)

variable
variable
variable
variable
variable
variable
variable
variable

begin

cc(0) := CIN;

g0,p0 :
: bit_vector

gl,pl

£2,p2 :
g3,p3 :
g8,PP :

C

cC

i’j’k’

1:

for k in 0 to 3 loop

j o= k*4 ;

go(k) :=
gli(k) :=
g2(k) :=
g3(k) :=

pp(k) :=
end loop;

-- 2nd level carry generation
cc(1) := gg(0) OR (cc(0) AND pp(0));

>

bit_vector

bit_vector
bit_vector

bit_vector

integer;

INS(O+j) AND INC(0+j);
INS(1+j) AND INC(1+j);
INS(2+j) AND INC(2+j);
INS(3+j) AND INC(3+j);

(3 downto
(3 downto
(3 downto
(3 downto
(3 downto
: bit_vector (4 downto 0) ;
: bit_vector (4 downto 0) ;

po(k)
pl(k)
p2(k)
p3(k)

2nd level

g3(k) OR (g2(k) AND p3(k)) OR
OR (gO(k) AND pi(k) AND
pO(k) AND pi(k) AND p2(k) AND

0) ;
0) ;
0) ;
0) ;
0) ;

INS(0+j) OR INC(O+j);
INS(1+j) OR INC(1+j);
INS(2+j) OR INC(2+j);
INS(3+j) OR INC(3+j);

(g1(k) AND p2(k) AND p3(k))
p2(k) AND p3(k)) ;
p3(k) ;

cc(2) := gg(1) OR (gg(0) AND pp(1)) OR (cc(0) AND pp(0) AND pp(1));

83

84

cc(3) := gg(2) OR (gg(1) AND pp(2)) OR (gg(0) AND pp(1) AND pp(2))
OR (cc(0) AND pp(0) AND pp(1) AND pp(2));

—-— outgoing group-carry generator ———-———-—————————————————————————
GGG <= gg(3) OR (gg(2) AND pp(3))

OR (gg(1) AND pp(2) AND pp(3))

OR (gg(0) AND pp(1) AND pp(2) AND pp(3));
-- outgoing group-carry propagation —-——--————-——————————————————
PPP <= pp(0) AND pp(1) AND pp(2) AND pp(3) ;

for k in 0 to 3 loop
-- 1st level carry generation ————————-———————————————————————
c(0) := cc(k);

c(1) := g0(k) OR (c(0) AND pO(k));

c(2) := gi(k) OR (g0(k) AND pi(k)) OR (c(0) AND pO(k) AND pi(k));

c(3) := g2(k) OR (gi(k) AND p2(k)) OR (g0(k) AND pi(k) AND p2(k))
OR (c(0) AND pO(k) AND pi(k) AND p2(k));

j = kx4

for i in 0 to 3 loop
SUM(i+j) <= INS(i+j) XOR INC(i+j) XOR c(i) ;
end loop;
end loop;

end process;

end BEHAVIORAL;

A.2.8 cpa_gen

entity CPA_GEN is
Port (

end CPA_GEN;

co
GO
G1
G2
G3
PO
P1
P2
P3
C1
c2
C3

c4 .

In
In
In
In
In
In
In
In
In
: Ou
: Ou
: Ou
Ou

bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
t bit;
t bit;
t bit;
t bit);

architecture BEHAVIORAL of CPA_GEN is

begin
C1 <= GO OR
C2 <= G1 OR
OR
C3 <= G2 OR
OR
OR
C4 <= G3 OR
OR
OR
OR

end BEHAVIORAL;

(co

(Go
(co

(G1
(Go
(co

(G2
(G1
(Go
(co

AND

AND
AND

AND
AND
AND

AND
AND
AND
AND

PO);

P1)
PO AND P1);

P2)
P1 AND P2)
PO AND P1 AND P2);

P3)

P2 AND P3)

P1 AND P2 AND P3)

PO AND P1 AND P2 AND P3);

85

A.2.9 latchl

entity LATCH1 is
Port (4 : In bit_vector (67 downto 0);
CLEAR : In bit;
CLK : In bit;
LOAD : In bit;
Z : Out bit_vector (67 downto 0));
end LATCH1,;
architecture BEHAVIORAL of LATCH1 is
begin
process(clear,clk)
begin
if (clear = ’1’) then
for i in 0 to 67 loop
Z(i) <= ’07;
end loop;
elsif ((clk’EVENT) AND (clk = ’1’)) then
if (load = ’1’) then
Z <= A;
end if;
end if;

end process;

end BEHAVIORAL;

A.2.10 mux2

entity MUX2 is
Port (AC : In bit_vector (13 downto 0);
AS : In bit_vector (13 downto 0);
BC : In bit_vector (14 downto 0);
BS : In bit_vector (14 downto 0);
C : In bit_vector (14 downto 0);
S1 : In bit;
S2 : In bit;
S3 : In bit;
E : Out bit;
F : Out bit;
ZC : Out bit_vector (15 downto 0);
ZS : Out bit_vector (15 downto 0));
end MUX2;

architecture BEHAVIORAL of MUX2 is

begin

process (C, AS, AC, BS, BC, S1, S2, S3)
begin

-- 81 =1 -> g goes into the recoder

-- 52 =1 -> M goes into the recoder

-- 83 = 1 -> D15 goes into the recoder

for i in 0 to 11 loop
ZS(i) <= (AS(i+2) and S1) or (BS(i) and S2) or (C(i) and S3);
ZC(i) <= (AC(i+2) and S1) or (BC(i) and S2);

end loop;

for i in 12 to 14 loop
ZS(i) <= (AS(13) and S1) or (BS(i) and S2) or (C(i) and S3);
ZC(i) <= (AC(13) and S1) or (BC(i) and S2);

end loop;

ZS(15) <= (AS(13) and S1) or (BS(14) and S2) ;
ZC(15) <= (AC(13) and S1) or (BC(14) and S2) ;

—-— e & f calculation
E <= (AS(1) OR AC(1)) AND S1;
F <= (AS(0) AND AC(0) AND (NOT (AS(1) XOR AC(1)))) AND S1i;

end process;

end BEHAVIORAL;

88

A.2.11 control

entity CONTROL is
Port (CLOCK :
RESET :
CL1
CL2
DIGIT :
LD1
LD2
LD3
MX1H :
MX1L :
MX2S1
MX232
MX233
ROUND
end CONTROL;

In

In

Out
Out
Out
Out
Out
Out
Out
Out
Out
Out
Out
Out

bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;

bit);

architecture BEHAVIORAL of CONTROL is

begin

process(reset,clock)

variable state : integer range 0 to 9;

begin

if (reset = 1’

CL1 <= ’17;
CL2 <= ’17;
LD1 <= ’0’;
LD2 <= ’0’;
LD3 <= ’0’;
DIGIT <= 0’
ROUND <= ’1?
MX1L <= ’0’ ;
MX1H <= ’0’ ;
MX2S1 <= ’0?
MX2S2 <= 0’
MX2S3 <= ’1?
state := 9;

>

>

>

>

) then

elsif ((clock’EVENT) AND

(clock = ’1°

)) then

89

if(9 =

elsif(O

elsif(1

elsif(2

elsif(3

elsif(4

state) then

MX2S1 <= 0’ ;
MX2S2 <= 0’ ;
MX283 <= 1’ ;
MX1L <= ’0’ ;
MX1H <= ’0’ ;
LD3 <= ’0’ ;
ROUND <= 0’ ;
DIGIT <= ’0’ ;
CL1 <= ’0’;
LD1 <= 1’ ;
LD2 <= 1’ ;
CL2 <= ’17;
state := 0 ;

state) then

MX2S1 <= 0’ ;
MX2S82 <= 1’ ;
MX2S3 <= 0’ ;
MX1L <= 17 ;
CL2 <= ’0’;
LD2 <= ’0’ ;
LD3 <= 1’ ;
state := 1 ;

state) then
MX1H <= 1’ ;
state := 2 ;

= state) then

MX2S1 <= 1’ ;
MX2S2 <= 0’ ;
MX2S3 <= 0’ ;
LD1 <= ’0’ ;
DIGIT <= ’1’ ;
state := 3 ;

= state) then
state := 4 ;

= state) then
state := b ;

90

elsif(5 = state) then
state := 6 ;

elsif(6 = state) then
state := 7 ;

elsif(7 = state) then
state := 8 ;

elsif(8 = state) then
ROUND <= ’1° ;
state := 9 ;
end if;

end if;

end process;

end BEHAVIORAL;

A.2.12 gamma table

entity GAMMA_TABLE is

Port (

G
G

IN_D :
: Ou
AMMA2

AMMA1

end GAMMA_TABLE;

In

Ou

bit_vector (4 downto 0);
t bit_vector (14 downto 0);

t bit_vector (13 downto 0));

architecture BEHAVIORAL of GAMMA_TABLE is

begin

process(IN_D)

begin

case IN_D is

- d(i)

when

- d(i)

when

- d(i)

when

- d(i)

when

- d(i)

when

- d(i)

when

- d(i)

when

- d(i)

00
00000"

01
00001"

02
00010"

03
00011"

04
00100"

05
00101"

06
00110"

07

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal
gammal
gamma?2

gammal

gammal

A AN A AN A AN A AN A AN A AN AN

3.878329

gamma?2

= '"00000111110101" ;

= '"000001111100101"

3.650217

gamma?2

= '"00010110111000" ;
= '"000101100110010" ;

3.441655

gamma?2

= '"00100101000100" ;
= '"001000111011110" ;

3.250471

gamma?2

= '"00110010011100" ;

= "001011111111101"

3.074787

gamma?2

= '"00111111000110" ;

= "001110110011100"

2.912970

gamma?2

= "01001011000100" ;

= "010001011001001"

2.763600

gamma?2

= "01010110011010" ;
= '"010011110010001" ;

2.625431

gamma?2

>

>

>

>

.938928

.821321

.71053b

.605991

.507178

.413637

.324956

.240766

92

when "00111" => gamma2 <= "01100001001100" ;
gammal <= "010101111111101" ;

d(i) = 08 gammal = 2.497371 gamma2 = 3.160735
when '"01000" => gamma2 <= "01101011011100" ;

gammal <= "011000000010110" ;
d(i) = 09 gammal = 2.378457 gamma2 = 3.084561
when "01001" => gamma2 <= "01110101001100" ;

gammal <= "011001111100100" ;
d(i) = 10 gammal = 2.267839 gamma2 = 3.011973
when "01010" => gamma2 <= "01111110011110" ;

gammal <= "011011101101110" ;
d(i) = 11 gammal = 2.164762 gamma2 = 2.942723
when "01011" => gamma2 <= "10000111010110" ;

gammal <= "011101010111011" ;
d(i) = 12 gammal = 2.068556 gamma2 = 2.876586
when '"01100" => gamma2 <= "10001111110100" ;

gammal <= "011110111001111" ;
d(i) = 13 gammal = 1.978624 gamma2 = 2.813357
when "01101" => gamma2 <= "10010111111001" ;

gammal <= "100000010110000" ;
d(i) = 14 gammal = 1.894433 gamma2 = 2.752847
when "01110" => gamma2 <= "10011111101001" ;

gammal <= "100001101100001" ;
d(i) = 15 gammal = 1.815502 gamma2 = 2.694886
when "01111" => gamma2 <= "10100111000100" ;

gammal <= "100010111101000" ;
d(i) = 16 gammal = 1.741404 gamma2 = 2.639316
when '"10000" => gamma2 <= '"10101110001011" ;

gammal <= "100100001000111" ;
d(i) = 17 gammal = 1.671751 gamma2 = 2.585991

when '"10001" => gamma2 <= '"10110101000000" ;
gammal <= "100101010000010" ;

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

d(i)

when

= 18
'"10010"

= 19
"10011"

= 20
'"10100"

=21
"10101"

= 22
"10110"

= 23
"10111"

= 24
'"11000"

= 25
"11001"

= 26
'"11010"

= 27
"11011"

= 28
"11100"

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

gammal
gamma?2

gammal

1.606196

A A

1.544422

A A

1.486144

A A

1.431105

A A

1.379067

AN

1.329816

A A

1.283158

A A

1.238913

A A

1.196917

A A

1.157021

A A

= 1.119087

gamma?2
= '"10111011100100" ;
= '100110010011011"

gamma?2
= '"11000001110111"

>

= '"100111010010101"

gamma?2
= '"11000111111011"

>

gamma?2
= '"11001101110000" ;
= '"101001000110101" ;

gamma?2
= '"11010011011000"

>

= "101001111011111"

gamma?2
= '"11011000110010"

>

gamma?2
= '"11011110000001"

>

gamma?2
= '"11100011000100" ;
= '"101100001011011" ;

gamma?2
= '"11100111111011"

>

= '"101100110110011"

gamma?2
= '"11101100101001"

>

= "101101011111010"

gamma?2
<= "11110001001100"

>

>

>

= '"101000001110010" ;

>

= '"101010101110011" ;

= '"101011011110001" ;

>

>

<= "101110000110001" ;

.534778

.485554

.438206

.392628

.348723

.306400

.265575

.226171

.188114

.1513386

.115775

94

- d(i)

when

- d(i)

when

- d(i)

when

= 29 gammal
"11101" => gamma2

gammal
= 30 gammal
"11110" => gamma2

gammal
=31 gammal
"11111" => gamma2

gammal

when others => null,;

end case;

end process;

end BEHAVIORAL;

1.082989 gamma?2
"11110101100110" ;

1.048610 gamma?2
= '"11111001110111" ;

A A

1.015842 gamma?2
<= "11111101111111" ;

<= "101111101111111" ;

"101110101011001" ;

= '"101111001110010" ;

2.081370

2.048066

2.015811

95

Appendix B
Random Generated Test Vectors

= 0.51596440422160760874703555600717663764953613281250000

d = 0.96663469028036796970582145149819552898406982421875000
q = 0.53377393694815000735331977921305224299430847167968750

0.38042972662040486220291768404422327876091003417968750
d = 0.54523278798220342622471434879116714000701904296875000
0.69773816800031152052241623096051625907421112060546875

= 0.41207690544523156717104939161799848079681396484375000

d = 0.53373317002958298171932938203099183738231658935546875
gq = 0.77206538507320343622808422878733836114406585693359375

= 0.67278208801186734078214612964075058698654174804687500

d = 0.98946487646990677333747044031042605638504028320312500
q = 0.67994539676045695486550357600208371877670288085937500

0.74389756854805044739009645127225667238235473632812500
d = 0.89899053466459299954749440075829625129699707031250000
0.82748097990330160556027294660452753305435180664062500

= 0.53001148348209059513180818612454459071159362792968750

d = 0.89795886464321927888931895722635090351104736328125000
q = 0.59024027085325003749716188394813798367977142333984375

= 0.40529276787084189681564794227597303688526153564453125

d = 0.60344303008329269744081102544441819190979003906250000
q = 0.67163385384515872367217070859624072909355163574218750

0.85589960606577786261794926758739165961742401123046875
d = 0.86642163636461910769526184594724327325820922851562500
0.98785576230183935741990808310220018029212951660156250

= 0.82158869985565019522510965543915517628192901611328125

d = 0.93581322717285397860820239657186903059482574462890625
q = 0.87794089247671491804680954373907297849655151367187500

96

10

11

12

13

14

15

16

17

18

0.32417555983372758898752863387926481664180755615234375
0.63129313505780570991987588058691471815109252929687500
0.51351035173864789662445673457114025950431823730468750
0.29936971412942264825218785517790820449590682983398438
0.54238456443063198797460700006922706961631774902343750
0.55195102103188709019576663195039145648479461669921875
0.37215459317534910210767407079401891678571701049804688
0.61897130944718203870991146686719730496406555175781250
0.60124691967989474239431046953541226685047149658203125
0.38590464747320146754461234195332508534193038940429688
0.76446899551175018228121871288749389350414276123046875
0.50480091375696600763944843492936342954635620117187500
0.42511243637423612451442522797151468694210052490234375
0.69372030449738741886278603487880900502204895019531250
0.61280091359332145017901893879752606153488159179687500
0.48165480349289940820156630252313334494829177856445312
0.75090731785209263726699191465741023421287536621093750
0.64143042961764251685963245108723640441894531250000000
0.89020625589890700624096098181325942277908325195312500
0.97927401144023706880403778995969332754611968994140625
0.90904715687253212497154208904248662292957305908203125
0.35877100406623030348640668307780288159847259521484375
0.65106570890688608699292672099545598030090332031250000
0.55105191251524032747255432695965282618999481201171875
0.52450679918960985137488250984461046755313873291015625
0.54169581879009298663874005796969868242740631103515625
0.96826813313996817900175528848194517195224761962890625
0.68479887916929960134382326941704377532005310058593750
0.69728888743430794683320073090726509690284729003906250
0.982087756609795303752719064505072310566690216064453125

97

.53116069525999987099851296079577878117561340332031250
.92869644795018080341009181211120449006557464599609375
.57194220612383950275159349985187873244285583496093750
0.29813971104945041767919633457495365291833877563476562
0.56117217897492088773958585079526528716087341308593750
0.53128027763966267915662911036633886396884918212890625
0.82665531259340019332171323185320943593978881835937500
0.90686495807341527264355818260810337960720062255859375
0.91155282297993289741810940540744923055171966552734375
0.66461520929104422883426650514593347907066345214843750
0.68255491865917805593966249944060109555721282958984375
0.97371682647401491816907537213410250842571258544921875
0.77328659420520373668495039964909665286540985107421875
0.98620390914669442405937616058508865535259246826171875
0.78410416652503855949873923236737027764320373535156250
0.61836814583203203454786489601247012615203857421875000
0.92163771410548955831387729631387628614902496337890625
0.67094492376779446551893215655582025647163391113281250
0.61749704420450002295694957865634933114051818847656250
0.71710757432370797470611023527453653514385223388671875
0.86109402035928994667557390130241401493549346923828125
0.48201113938447603946002573138684965670108795166015625
0.86180623055519822717229772024438716471195220947265625
0.55930338200728924036297939892392605543136596679687500
0.41803944200186032853494566552399192005395889282226562
0.73583157371535512503157860919600352644920349121093750
0.56811838052979812818676919050631113350391387939453125
0.62627522606694840945351643313188105821609497070312500
0.68630375651936215142256969556910917162895202636718750
0.91253358315150034929530420413357205688953399658203125

98

.46477593910637121643603109077957924455404281616210938
.58958483305274733687895150069380179047584533691406250
.78831054167363556750558473140699788928031921386718750
0.468605537302142716171715661956638470292091369628906250
0.81975813411164943911302316337241791188716888427734375
0.57163877710095345463514604489319026470184326171875000
0.56885884426015376202911966174724511802196502685546875
0.65475308250391539566237497638212516903877258300781250
0.86881430490516553533097976469434797763824462890625000
0.48541192162568302936875852537923492491245269775390625
0.59336564368259425705787180049810558557510375976562500
0.81806543198739978262068461845046840608119964599609375
0.34822445076341945746634110037120990455150604248046875
0.65562272242066577110364278269116766750812530517578125
0.53113542111188294381207697369973175227642059326171875
0.39532726567486642377247108015581034123897552490234375
0.72760959701966942958506479044444859027862548828125000
0.54332332516523906829064571866183541715145111083984375
0.58431917013801593085986496589612215757369995117187500
0.88693395344863368290333482946152798831462860107421875
0.65880798436684995245116169826360419392585754394531250
0.78878177599459031732465064123971387743949890136718750
0.91097448296424676783544782665558159351348876953125000
0.86586593888771723470654251286759972572326660156250000
0.79379891152204895554689301206963136792182922363281250
0.95339698551846530083508923780755139887332916259765625
0.83260060979778993672795195379876531660556793212890625
0.29676470069529703454946911733713932335376739501953125
0.56708550572725269223184341171872802078723907470703125
0.52331561589590325223042555080610327422618865966796875

99

.46980044733257986244723269919632002711296081542968750
.71189754745545674730067275959299877285957336425781250
.65992704850830397056427045754389837384223937988281250
0.49436161003278644709979516846942715346813201904296875
0.55709793863682910419754534814273938536643981933593750
0.88738725410193930454028077292605303227901458740234375
0.92900512177916483302908545738318935036659240722656250
0.95274549860169432946577217080630362033843994140625000
0.975082142232766013734135412960313260565526733398437500
0.45945208471242898751185634864668827503919601440429688
0.76508400578288549009897678843117319047451019287109375
0.60052501586709639003203164975275285542011260986328125
0.34428853615852472724867539000115357339382171630859375
0.54517939549180649549953159294091165065765380859375000
0.63151421166227661441183727220050059258937835693359375
0.47569388126753919809885928771109320223331451416015625
0.61812895052979177634711049904581159353256225585937500
0.76957062253729902057131084802676923573017120361328125
0.63476422854455383237848309363471344113349914550781250
0.88859883690653318488728018564870581030845642089843750
0.71434285324337098987967920038499869406223297119140625
0.46894354232072066324121806246694177389144897460937500
0.70362307303753823806147238428820855915546417236328125
0.66646981926884962810220258688786998391151428222656250
0.54335191941044846952735269951517693698406219482421875
0.90871092789280738521995317569235339760780334472656250
0.59793703666623332360074982716469094157218933105468750
0.39849435847648156938660690684628207236528396606445312
0.73980082117011813913620699167950078845024108886718750
0.53865087341508544049872853065608069300651550292968750

100

.56433365008064251266972632947727106511592864990234375
.58764324830269587529585351148853078484535217285156250
.96033375982897950517980234508286230266094207763671875
0.48370520921130905067641947425727266818284988403320312
0.64865282045148908718346092427964322268962860107421875
0.74570740149504055604978702831431291997432708740234375
0.48728860099208010092652898492815438657999038696289062
0.75619219441720852969979205226991325616836547851562500
0.64439781921794325736385644631809554994106292724609375
0.55962730341573585501890875093522481620311737060546875
0.76837611327337851374608135301969014108180999755859375
0.72832470159913409446517107426188886165618896484375000
0.35479458985142153792935459932778030633926391601562500
0.65315670503916067879401907703140750527381896972656250
0.54319979740566159964743064847425557672977447509765625
0.41773080961673092481589719682233408093452453613281250
0.64919007436800280075317459704820066690444946289062500
0.64346456624956682723848189198179170489311218261718750
0.43252712624730871304734591831220313906669616699218750
0.82418483906620410017751510167727246880531311035156250
0.52479383961655867718576473635039292275905609130859375
0.70628801323766254860458957409719005227088928222656250
0.79405937427378225912377729400759562849998474121093750
0.88946498979828525488500190476770512759685516357421875
0.38846516883394921482164363624178804457187652587890625
0.62519218266252063465060473390622064471244812011718750
0.62135320883185629625700130418408662080764770507812500
0.55914338005666786024505654495442286133766174316406250
0.96550741021777852779450768139213323593139648437500000
0.57911868323263127056321764030144549906253814697265625

101

.33518578907716356507506816342356614768505096435546875
.51053114235891550176660302895470522344112396240234375
.65654327673025669742656873495434410870075225830078125
0.58363636051473966048774855153169482946395874023437500
0.80513580693171160618248904938809573650360107421875000
0.72489182010040864589939246798167005181312561035156250
0.44956498974913960964272519049700349569320678710937500
0.52152344515618098697018467646557837724685668945312500
0.86202258771800388537087656004587188363075256347656250
0.50875887996924995526626389619195833802223205566406250
0.94248189914155844348897517193108797073364257812500000
0.53980758721482424711268777173245325684547424316406250
0.46511718664090950792200374053209088742733001708984375
0.80574759715504362667104487627511844038963317871093750
0.57724923820208517977192741454928182065486907958984375
0.68228272031167647160287970109493471682071685791015625
0.99456802359529217216760343944770283997058868408203125
0.68600910558663785732136375372647307813167572021484375
0.44669542284528512832153523959277663379907608032226562
0.64969313873429457295571864960948005318641662597656250
0.68754831506381419714557523548137396574020385742187500
0.64322084404678125935106436372734606266021728515625000
0.86796804744189981484225882013561204075813293457031250
0.74106511863253499150516745430650189518928527832031250
0.45294266657575155132775535093969665467739105224609375
0.70284814746251711436997311466257087886333465576171875
0.64443887091543761158618508488871157169342041015625000
0.31817208035763916429417008657765109091997146606445312
0.61547451285434628953652236305060796439647674560546875
0.51695411217285525129483403361518867313861846923828125

102

.85600485273450832579555935808457434177398681640625000
.97180578018157082187400419570622034370899200439453125
.88083943334291914251110711120418272912502288818359375
0.38233229372758992248293452576035633683204650878906250
0.72105910522912586291255365722463466227054595947265625
0.53023710671554291629092858784133568406105041503906250
0.79599061924777492205151929738349281251430511474609375
0.97095260069284239357045862561790272593498229980468750
0.81980378720833546601900347373293712735176086425781250
0.51511847950290823305863341374788433313369750976562500
0.57292095691567324067250410735141485929489135742187500
0.89910915857582640597911449731327593326568603515625000
0.29807239167768151411053167976206168532371520996093750
0.57426185955957598228138749618665315210819244384765625
0.51905308826583917980457272278727032244205474853515625
0.53842836690062112481314215983729809522628784179687500
0.76651636174252091304737177779315970838069915771484375
0.70243558229678548787688896481995470821857452392578125
0.58479300215132212770186015404760837554931640625000000
0.62206472764819142895476034027524292469024658203125000
0.94008384684053603042030999858980067074298858642578125
0.57165216867423251922986082718125544488430023193359375
0.98392298188243199064118016394786536693572998046875000
0.58099280045329670940645883092656731605529785156250000
0.32179408651860152978940732282353565096855163574218750
0.58041104887631300712769188976380974054336547851562500
0.55442446717994275928731440217234194278717041015625000
0.46320244051199521706507766793947666883468627929687500
0.57382254631902207542282212671125307679176330566406250
0.80722244792116171208107289203326217830181121826171875

103

.44307932313209369423745442873041611164808273315429688
.60868760133566690573303503697388805449008941650390625
.72792565867914427180096481606597080826759338378906250
0.56839056968148360393655593725270591676235198974609375
0.77954949172192700146410970774013549089431762695312500
0.72912698387626440066355826274957507848739624023437500
0.37919037015139606117131165774480905383825302124023438
0.71161141396109539591918746737064793705940246582031250
0.53286156280248597738591342931613326072692871093750000
0.64751753916382681630636852787574753165245056152343750
0.66426607345429533602043647988466545939445495605468750
0.97478640719467524178298845072276890277862548828125000
0.457229780828221576971515106546973440796136856079101562
0.78386170011193567752627586742164567112922668457031250
0.58330414761038718030050631568883545696735382080078125
0.38987029327073613460541423592076171189546585083007812
0.77046441415812094710702240263344720005989074707031250
0.50601985777207325600812737320666201412677764892578125
0.37783374014675324970014003156393300741910934448242188
0.54440517376382147052282789445598609745502471923828125
0.69403039933391286187003288432606495916843414306640625
0.49576175981003872683672284438216593116521835327148438
0.55165809930845077779792973160510882735252380371093750
0.89867575665347299018748117305221967399120330810546875
0.257678887228331932046643260036944411695003509052148438
0.50664199889015493205590701109031215310096740722656250
0.50860151308577028483881576903513632714748382568359375
0.31228952822847733106215173393138684332370758056640625
0.61150255804485764699052197101991623640060424804687500
0.51069210442381973713565912476042285561561584472656250

104

.58090385868256166901346659869886934757232666015625000
.66300742359040643059131525660632178187370300292968750
.87616493875253076417664033215260133147239685058593750
0.43900945989368922450779564314871095120906829833984375
0.66569686106671432934689391913707368075847625732421875
0.65947353152637577800021517759887501597404479980468750
0.78507215147142861422224768830346874892711639404296875
0.94967108869444161189932174238492734730243682861328125
0.82667795283807676831600019795587286353111267089843750
0.64961984294914631998807408308493904769420623779296875
0.92866032474146242847723442537244409322738647460937500
0.699523631668015344331479354877956211566692504882812500
0.53008213733792408639544646575814113020896911621093750
0.57602472397313675411822941896389238536357879638671875
0.92024198836757709063505217272904701530933380126953125
0.50248287082765386024618692317744717001914978027343750
0.91624078383494200750192248960956931114196777343750000
0.54841792648052944958436683009495027363300323486328125
0.34235616277081715175256704242201521992683410644531250
0.57087344074196810783661248933640308678150177001953125
0.59970588634471155842220468912273645401000976562500000
0.69579027555686900896603219734970480203628540039062500
0.94309306607725706950162702923989854753017425537109375
0.73777477598363627731004044107976369559764862060546875
0.78248485493589414740966958561330102384090423583984375
0.84330781495352635790396789161604829132556915283203125
0.92787573061802575136169934921781532466411590576171875
0.60735913929872176186819388021831400692462921142578125
0.69694441635950676872113263016217388212680816650390625
0.87145994004983318159673899572226218879222869873046875

105

0.62716951506546214645254622155334800481796264648437500
0.88709972607302467473289198096608743071556091308593750
0.70698873715336318923618819098919630050659179687500000

106

