Organization-Oriented Programming in Multi-Agent Systems

Andreas Schmidt Jensen

DTU Informatics

November 29, 2012

Algolog Multi-Agent Programming Seminar 2012

Andreas Schmidt Jensen

AMAPS2012

Outline

- Agent- and Organization-Centered MAS
- 2 Conflicting decision influences
- 3 A Logic for Qualitative Decision Theory
- 4 Modelling influences and consequences
 - 5 A prototype
 - 6 Conclusion

• Agents are free to communicate with any other agent.

- Agents are free to communicate with any other agent.
- All of the agent's services are available to every other agent.

- Agents are free to communicate with any other agent.
- All of the agent's services are available to every other agent.
- The agent itself is responsible for constraining its accessibility from other agents.

- Agents are free to communicate with any other agent.
- All of the agent's services are available to every other agent.
- The agent itself is responsible for constraining its accessibility from other agents.
- The agent should itself define its relation and contracts with other agents.

- Agents are free to communicate with any other agent.
- All of the agent's services are available to every other agent.
- The agent itself is responsible for constraining its accessibility from other agents.
- The agent should itself define its relation and contracts with other agents.
- Agents are supposed to be autonomous and no constraints are put on the way they interact.

Principle 1: The organizational level describes the "what" and not the "how".


- Principle 1: The organizational level describes the "what" and not the "how".
- Principle 2: The organization provides only descriptions of *expected* behavior. There are no agent description and therefore no mental issues at the organizational level.

- Principle 1: The organizational level describes the "what" and not the "how".
- Principle 2: The organization provides only descriptions of *expected* behavior. There are no agent description and therefore no mental issues at the organizational level.
- Principle 3: An organization provides a way for partitioning a system, each partition constitutes a context of interaction for agents.

- Principle 1: The organizational level describes the "what" and not the "how".
- Principle 2: The organization provides only descriptions of *expected* behavior. There are no agent description and therefore no mental issues at the organizational level.
- Principle 3: An organization provides a way for partitioning a system, each partition constitutes a context of interaction for agents.

- Principle 1: The organizational level describes the "what" and not the "how".
- Principle 2: The organization provides only descriptions of *expected* behavior. There are no agent description and therefore no mental issues at the organizational level.
- Principle 3: An organization provides a way for partitioning a system, each partition constitutes a context of interaction for agents.

Conflicting decision influences

Obligations
$$\longrightarrow$$
 Agent \longleftarrow Desires

An agent, Alice, has a desire to stay at home, but an obligation towards her employer to go to work. What should she do? She knows that she will get fired if she violates her obligation.

Conflicting decision influences

Obligations
$$\longrightarrow$$
 Agent \longleftarrow Desires

An agent, Alice, has a desire to stay at home, but an obligation towards her employer to go to work. What should she do? She knows that she will get fired if she violates her obligation.

Suggestion: A priori ordering.

- Desires before obligations \rightarrow Selfish agent
- Obligations before desires \rightarrow Social agent

Conflicting decision influences

Obligations
$$\longrightarrow$$
 Agent \longleftarrow Desires

An agent, Alice, has a desire to stay at home, but an obligation towards her employer to go to work. What should she do? She knows that she will get fired if she violates her obligation.

Consider the *consequences* of bringing about a state.

- work $\rightarrow \neg$ fired
- \neg work \rightarrow fired

If the agent prefers *not* getting fired, then clearly it should work.

Idea: Order possible worlds according to

• each agent's own preference

Idea: Order possible worlds according to

- each agent's own preference
 - An agent prefers sunny weather.

Idea: Order possible worlds according to

- each agent's own preference
 - An agent prefers sunny weather.
- which worlds are most normal (or expected)

Idea: Order possible worlds according to

- each agent's own preference
 - An agent prefers sunny weather.
- which worlds are most normal (or expected)
 - Normally it is not sunny when it is raining.

$$M = \langle W, Ag, \leq_P^1, \ldots, \leq_P^n, \leq_N, \pi \rangle$$

Propositional operators: \neg , \land

$$M = \langle W, Ag, \leq_P^1, \ldots, \leq_P^n, \leq_N, \pi \rangle$$

Propositional operators: \neg , \land Modal operators:

- $\Box_P^i \varphi$: φ is true in all agent *i*'s more preferred worlds.
- $\overleftarrow{\Box}_{P}^{i}\varphi$: φ is true in all agent *i*'s less preferred worlds.

$$M = \langle W, Ag, \leq_P^1, \ldots, \leq_P^n, \leq_N, \pi \rangle$$

Propositional operators: \neg , \land Modal operators:

- $\Box_P^i \varphi$: φ is true in all agent *i*'s more preferred worlds.
- $\overleftarrow{\Box}_{P}^{i}\varphi$: φ is true in all agent *i*'s less preferred worlds.
- $\Box_N \varphi$: φ is true in all more normal worlds.
- $\overleftarrow{\Box}_N \varphi$: φ is true in all less normal worlds.

$$M = \langle W, Ag, \leq_P^1, \ldots, \leq_P^n, \leq_N, \pi \rangle$$

Propositional operators: \neg , \land Modal operators:

- $\Box_P^i \varphi$: φ is true in all agent *i*'s more preferred worlds.
- $\overleftarrow{\Box}_{P}^{i}\varphi$: φ is true in all agent *i*'s less preferred worlds.
- $\Box_N \varphi$: φ is true in all more normal worlds.
- $\overleftarrow{\Box}_N \varphi$: φ is true in all less normal worlds.

Truth in all worlds: $\overleftrightarrow{\square}_{P}^{i}\varphi = \square_{P}^{i}\varphi \wedge \overleftarrow{\square}_{P}^{i}\varphi$, similar for normality.

$$M = \langle W, Ag, \leq_P^1, \ldots, \leq_P^n, \leq_N, \pi \rangle$$

Propositional operators: \neg , \land Modal operators:

- $\Box_P^i \varphi$: φ is true in all agent *i*'s more preferred worlds.
- $\overleftarrow{\Box}_{P}^{i}\varphi$: φ is true in all agent *i*'s less preferred worlds.
- $\Box_N \varphi$: φ is true in all more normal worlds.
- $\overleftarrow{\Box}_N \varphi$: φ is true in all less normal worlds.

Truth in all worlds: $\overleftrightarrow{\square}_{P}^{i}\varphi = \square_{P}^{i}\varphi \wedge \overleftarrow{\square}_{P}^{i}\varphi$, similar for normality.

 \diamond -operators are defined as usual (i.e. $\diamond_P^i \varphi = \neg \Box_P^i \neg \varphi$ etc).

$I(B \mid A) \equiv \stackrel{\bigtriangleup_P}{=} \neg A \lor \stackrel{\diamondsuit_P}{\Leftrightarrow} (A \land \Box_P^i(A \to B)) \quad \text{(Conditional preference)}$

$$\begin{split} I(B \mid A) &\equiv & \stackrel{\scriptsize}{\Box}_{P}^{i} \neg A \lor \stackrel{\scriptsize}{\bigtriangledown}_{P}^{i} (A \land \Box_{P}^{i} (A \to B)) & \text{(Conditional preference)} \\ A \leq_{P}^{i} B &\equiv & \stackrel{\scriptsize}{\Box}_{P}^{i} (B \to \diamondsuit_{P}^{i} A) & \text{(Relative preference)} \end{split}$$

$$\begin{split} I(B \mid A) &\equiv & \stackrel{i}{\Box}_{P}^{i} \neg A \lor \stackrel{i}{\bigtriangledown}_{P}^{i} (A \land \Box_{P}^{i} (A \to B)) & \text{(Conditional preference)} \\ A &\leq_{P}^{i} B &\equiv & \stackrel{i}{\Box}_{P}^{i} (B \to \diamondsuit_{P}^{i} A) & \text{(Relative preference)} \\ T(B \mid A) &\equiv & \neg I(\neg B \mid A) & \text{(Conditional tolerance)} \end{split}$$

$$I(B \mid A) \equiv \overleftrightarrow{\square}_{P}^{i} \neg A \lor \overleftrightarrow{\bigtriangledown}_{P}^{i} (A \land \square_{P}^{i} (A \to B))$$
 (Conditional preference)

$$A \leq_{P}^{i} B \equiv \overleftrightarrow{\square}_{P}^{i} (B \to \diamondsuit_{P}^{i} A)$$
 (Relative preference)

$$T(B \mid A) \equiv \neg I(\neg B \mid A)$$
 (Conditional tolerance)

$$A \Rightarrow B \equiv \overleftrightarrow{\square}_{N} \neg A \lor \overleftrightarrow{\bigtriangledown}_{N} (A \land \square_{N} (A \to B))$$
 (Normative conditional)

Abbreviations

$P \not\leq_P^i Q \equiv \neg (P \leq_P^i Q)$

(Not as preferred)

$$P \not\leq_{P}^{i} Q \equiv \neg (P \leq_{P}^{i} Q)$$
 (Not as preferred)
$$P <_{P}^{i} Q \equiv (P \leq_{P}^{i} Q \land Q \not\leq_{P}^{i} P)$$
 (Strictly preferred)

Abbreviations

Abbreviations

$$P \leq_{P}^{i} Q \equiv \neg (P \leq_{P}^{i} Q)$$
 (Not as preferred)

$$P <_{P}^{i} Q \equiv (P \leq_{P}^{i} Q \land Q \leq_{P}^{i} P)$$
 (Strictly preferred)

$$P \approx_{P}^{i} Q \equiv (P \leq_{P}^{i} Q \land Q \leq_{P}^{i} P)$$

$$\vee (P \leq_{P}^{i} Q \land Q \leq_{P}^{i} P)$$
 (Equally preferred)

Abbreviations

$$P \not\leq_{P}^{i} Q \equiv \neg (P \leq_{P}^{i} Q) \qquad (Not as preferred)$$

$$P <_{P}^{i} Q \equiv (P \leq_{P}^{i} Q \land Q \not\leq_{P}^{i} P) \qquad (Strictly preferred)$$

$$P \approx_{P}^{i} Q \equiv (P \leq_{P}^{i} Q \land Q \leq_{P}^{i} P) \qquad (Equally preferred)$$

$$A \leq_{T(C)}^{i} B \equiv (T(A \mid C) \land \neg T(B \mid C)) \lor \qquad ((T(A \mid C) \leftrightarrow T(B \mid C)) \land \qquad (A \leq_{P}^{i} B \lor A \approx_{P}^{i} B)) \qquad (Relative tolerance)$$

$$\mathcal{M}_{\mathcal{C}} = \langle \mathcal{M}, \mathcal{D}, \mathcal{O}, \mathcal{C}, \mathcal{B} \rangle,$$

$$\mathcal{M}_{C} = \langle M, D, O, C, B \rangle,$$

where

• *M* is an extended QDT-model as defined above,

$$\mathcal{M}_{C} = \langle M, D, O, C, B \rangle,$$

- *M* is an extended QDT-model as defined above,
- D is for each agent the set of desires,

$$\mathcal{M}_{C} = \langle M, D, O, C, B \rangle,$$

- *M* is an extended QDT-model as defined above,
- D is for each agent the set of desires,
- O is the set of obligations,

$$\mathcal{M}_{C} = \langle M, D, O, C, B \rangle,$$

- *M* is an extended QDT-model as defined above,
- D is for each agent the set of desires,
- O is the set of obligations,
- C is for each agent the set of controllable propositions,

$$\mathcal{M}_{C} = \langle M, D, O, C, B \rangle,$$

- M is an extended QDT-model as defined above,
- D is for each agent the set of desires,
- O is the set of obligations,
- C is for each agent the set of controllable propositions,
- *B* is the belief base for each agent.

Expected consequence

Define the set of potential consequences C'(i) for an agent *i* as follows:

• if
$$\varphi \in C(i)$$
 then $\varphi, \neg \varphi \in C'(i)$

The expected consequence(s) of bringing about φ is then:

$$\mathit{EC}_i(arphi) = \bigwedge \mathit{C}_arphi$$
 for all $\mathit{C}_arphi \in \{\mathit{C}_arphi \mid (\mathit{B}(i) \land arphi \Rightarrow \mathit{C}_arphi)$ where $\mathit{C}_arphi \in \mathit{C}'(i)\}$

Making a decision

The set of influences: $\mathcal{I}(i) = D(i) \cup O$

The set of best influences:

$$Dec(i) = \{A \mid A \in \mathcal{I}(i), \text{ and} \\ \text{for all } B \in \mathcal{I}(i), B \neq A, \text{ either} \\ A <_P^i B, \text{ or} \\ A \approx_P^i B \text{ and } EC(A) \leq_{\mathcal{T}(A \lor B)}^i EC(B) \}$$

Example

 $D(a) = \{\neg work\}$ $O = \{work\}$

Alice's preferences

- $I(\neg snow \mid \top)$
- $I(\neg work \mid snow)$

- $\top \Rightarrow work$
- snow $\Rightarrow \neg$ work

Example

 $D(a) = \{\neg work\}$ $O = \{work\}$

Alice's preferences

•
$$I(\neg snow \mid \top)$$

Expectation

• $\top \Rightarrow \textit{work}$

• snow
$$\Rightarrow \neg$$
 work

Alice's preferences

Alice's preferences

Alice's preferences

$$Dec(a) = \{work, \neg work\}$$

 $BB = \{snow\}$

Alice's preferences

 $BB = \{snow\}$

Alice's preferences

 $BB = \{snow\}$

Alice's preferences

$$Dec(a) = \{\neg work\}$$

Example — Revised

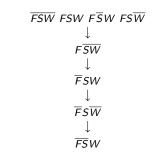
$$D(a) = \{\neg work\}, \ O = \{work\}$$

Alice's preferences

- $I(\neg snow \mid \top)$
- $I(\neg work \mid snow)$
- $I(\neg fired | \top)$

- $\top \Rightarrow \textit{work}$
- snow $\Rightarrow \neg$ work
- \neg work $\land \neg$ snow \Rightarrow fired

Example — Revised


$$D(a) = \{\neg work\}, \ O = \{work\}$$

Alice's preferences

- $I(\neg snow \mid \top)$
- $I(\neg work \mid snow)$
- $I(\neg fired | \top)$

- $\top \Rightarrow \textit{work}$
- snow $\Rightarrow \neg$ work
- \neg work $\land \neg$ snow \Rightarrow fired

 $FSW \ F\overline{SW} \ FS\overline{W} \ F\overline{SW} \ F\overline{SW}$ \downarrow $FS\overline{W}$ \downarrow $FS\overline{W}$ \downarrow $FS\overline{W} \ FS\overline{W}$

AMAPS2012

Alice's preferencesExpectationFSW FSW FSW FSW \downarrow FSW FSW FSW \downarrow \downarrow \downarrow FSWFSW \downarrow \downarrow FSWFSW

Alice's preferences

Alice's preferences

$$Dec(a) = \{work\}$$

"Social" or "Selfish"?

• In some cases the agent violates its obligation.

"Social" or "Selfish"?

- In some cases the agent violates its obligation.
- In other cases it ignores its desire.

"Social" or "Selfish"?

- In some cases the agent violates its obligation.
- In other cases it ignores its desire.
- E.g. leaving early does not have the consequence of getting fired.

A prototype in Prolog

```
?- decide([~s], Dec).
Dec = [w].
```

```
?- decide([s], Dec).
Dec = [~w].
```

A prototype in Prolog

```
?- decide([~s], Dec).
Dec = [w].
```

```
?- decide([s], Dec).
Dec = [~w].
```

Usable in the GOAL agent programming language.

```
main module {
    knowledge {
        #import "decision.pl"
    }
    ...
}
```

• Issues in agent-centered multi-agent systems

- Issues in agent-centered multi-agent systems
- Organizations to the rescue

- Issues in agent-centered multi-agent systems
- Organizations to the rescue
- New conflicts arise

- Issues in agent-centered multi-agent systems
- Organizations to the rescue
- New conflicts arise
- Resolved using expected consequences

- Issues in agent-centered multi-agent systems
- Organizations to the rescue
- New conflicts arise
- Resolved using expected consequences
- No labeling of 'social' or 'selfish' agents

- Issues in agent-centered multi-agent systems
- Organizations to the rescue
- New conflicts arise
- Resolved using expected consequences
- No labeling of 'social' or 'selfish' agents
- Prototype

Questions?