Deciding Between Conflicting Influences

Andreas Schmidt Jensen ascje@dtu.dk

Department of Applied Mathematics and Computer Science Technical University of Denmark

May 7, 2013

1st International Workshop on Engineering Multi-Agent Systems

A 1		\sim		
1000	KO DC	S 61	0.000.00	oncon
АШО	neds.			 enser

Conflicts

Conflicts in decision making

Conflicts in decision making

The agent's influences:

- Eat breakfast (Desire)
- Go to work (Obligation)
- Take a vacation (Desire)

How can the agent choose between the conflicting influences?

Conflicts in decision making

Simple solution: A priori ordering.

- Desires before obligations \rightarrow Selfish agent
- Obligations before desires \rightarrow Social agent

Better: Consequences of being in different situations

- \neg work \rightarrow fired
- work $\rightarrow \neg$ fired

Rule-based preferences

Agent's preferences and expectations represented as simple if X then Y rules.

- If it rains, then I prefer to drive to work ightarrow (rains, drive)
- If I feel sick, then I normally stay at home ightarrow (sick, stay_home)
- If I go to work, then I prefer to leave early \rightarrow (*work*, *leave_early*)
- If I am late for work, then I normally do not leave early \rightarrow (*late*, \neg *leave_early*)

The approach

- A model satisfying the rules.
- Using rules of the form (X, Y) in the agent's decision process
 - Preference rules
 - Expectation rules
- Most preferred states
- Tolerable states

Semantics of the Rules

$$(arphi,\psi)\equiv$$
 if $arphi$ then (preferably/normally) ψ

- (a) φ is never true.
- (b) ψ is true in more favored φ -worlds.

We assume the agent's intention of the preference is that φ is sometimes true.

A running example

$$Alice = \{ (T, \neg snow), (snow, \neg work), \\ (T, \neg fired), (work, leave early) \}$$

$$Expectations = \{ (T, work), (snow, \neg fired and \neg work), \\ (\neg snow and \neg work, fired), \\ (T, \neg leave early), (work, \neg fired) \}$$

Applying the rules

An agent specifies a set of rules (φ, ψ) . Given worlds w_1 and w_2 :

• $w_1 \models \varphi \land \psi$,

•
$$w_2 \models \varphi \land \neg \psi$$
.

According to the agent, w_1 is preferred over w_2 , $w_1 \le w_2$.

Given rule (*snow*, \neg *work*), w_1 and w_2 are then:

•
$$w_1 \models snow \land \neg work$$

• $w_2 \models snow \land work$

Ordering the possible worlds

- Each world is mapped to a natural number, an o-value.
- An ordering ≤ orders the worlds in W in descending order according to their o-value.
- Initially o(w) = 0 for all worlds in W.

Example

Alice =
$$\{(snow, \neg work), (\top, \neg snow)\}$$

$$S\overline{W} \leq SW$$

Andreas Schmidt Jensen

Preserving applied rules

Proposition. Given an initial ordering \leq , a set of rules $\mathcal{R} = \{r_1, \ldots, r_n\}$ where each r_i is of the form (φ_i, ψ_i) , the result of successfully applying rules r_1 to r_i , $0 < i \leq n$ is an ordering which respects rules $\{r_1, \ldots, r_i\}$.

Minimizing locked worlds

Notice that $(snow, \neg work)$ was applied before $(\top, \neg snow)$.

The less propositions in a rule, the more general it is.

Each rule receives a value depending on its generality.

More specialized rules are applied first.

Making a decision

- The ordering respects the agent's rules
- How should the agent choose between influences?
 - Preferred worlds
 - Tolerable consequences

Qualitative Decision Theory

- The Logic for Qualitative Decision Theory (Boutilier) orders worlds according to preference and normality.
- $I(B \mid A) \equiv If A$ then ideally B
- $T(B \mid A) \equiv \neg I(\neg B \mid A)$
- $A \leq_P B \equiv A$ is at least as preferred as B
- $A \Rightarrow B \equiv If A$ then normally B

Expected consequence

- A consequence of an action must be something controllable.
 - The weather?
 - Taking the car to work?
 - Getting fired?
- An agent *i* has a set of controllable propositions C(i).
- The expected consequence(s) of bringing about φ is then:

 $EC_i(\varphi) = \{C_{\varphi} \mid (B(i) \land \varphi \Rightarrow C_{\varphi}) \text{ where } C_{\varphi} \in C(i)\}$

Making a decision

The best decision the agent *i* can make is then Dec(i), which is:

- The influence that is most preferred, or (if more than one)
- the influence(s) with most tolerable consequences.

The agent can always do something

Proposition. Given an agent *i*, a non-empty set of influences F(i) and the expected consequences $EC_i(\varphi)$ for all $\varphi \in F(i)$, the set of decisions, Dec(i) is always non-empty.

Back to Alice...

• The setup:

$$Alice = \{(\top, \overline{S}), (S, \overline{W}), (\top, \overline{F}), (W, E)\}$$

Expectations = $\{(\top, W), (S, \overline{FW}), (\overline{SW}, F), (\top, \overline{E}), (W, \overline{F})\}.$

Influences

- Doesn't want to work: ¬*work*
- Ought to go to work: work
- Alice's influences are then $F(a) = \{work, \neg work\}$.

"Social" or "Selfish"?

- In some cases the agent violates its obligation.
- In other cases it ignores its desire.

Conclusion & Future work

- Conflicts arise in the agent deliberation process
- Rules of preference and expectation are specified
- Model generation
- Conflicts resolved using expected consequences
- No labeling of 'social' or 'selfish' agents

Future work

- Optimizing model generation
- Using predicates in rules

Thank you for your attention