On Programming Organization-Aware Agents

Andreas Schmidt Jensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

November 20, 2013

12th Scandinavian Al conference Doctoral Symposium

- Background
- Motivation
- Aim & Approach
- Results
- 5 Ongoing & Future work

Intelligent agents

- Intelligent agents
 - Can act and sense in their environment
 - They are:
 - Proactive
 - Reactive
 - Autonomous
 - Social
 - Beliefs, Desires and Intentions (BDI)

- Intelligent agents
 - Can act and sense in their environment
 - They are:
 - Proactive
 - Reactive
 - Autonomous
 - Social
 - Beliefs, Desires and Intentions (BDI)
- Multi-agent systems

- Intelligent agents
 - Can act and sense in their environment
 - They are:
 - Proactive
 - Reactive
 - Autonomous
 - Social
 - Beliefs, Desires and Intentions (BDI)
- Multi-agent systems
 - Multiple agents
 - The whole is greater than the sum of its parts

• Open societies lets any agent participate

- Open societies lets any agent participate
- No control and no way to reach global objectives

- Open societies lets any agent participate
- No control and no way to reach global objectives
- Organizations

- Open societies lets any agent participate
- No control and no way to reach global objectives
- Organizations
 - Agent objectives meets system expectations
 - Structures the agents into roles and groups
 - Rights and norms
 - Improves coordination and cooperation
 - May prevent autonomy

- Open societies lets any agent participate
- No control and no way to reach global objectives
- Organizations
 - Agent objectives meets system expectations
 - Structures the agents into roles and groups
 - Rights and norms
 - Improves coordination and cooperation
 - May prevent autonomy
- How to respect (or deliberately ignore) organization?

- Open societies lets any agent participate
- No control and no way to reach global objectives
- Organizations
 - Agent objectives meets system expectations
 - Structures the agents into roles and groups
 - Rights and norms
 - Improves coordination and cooperation
 - May prevent autonomy
- How to respect (or deliberately ignore) organization?
 - Middleware
 - ullet Reasoning capabilities \Longrightarrow Organization-aware agents

Aim & Approach

- Main goal: Organization-Aware Agents
- Theoretical
 - ullet Organizational models: OperA $Moise^+$ ISLANDER
 - Specification and verification: Logic of Agent Organizations
- Practical
 - Agent frameworks: Jason GOAL Jadex

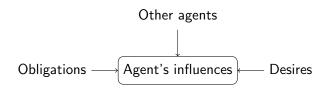
Results

Conflicts in decision making

 Deciding Between Conflicting Influences. Andreas Schmidt Jensen. In Engineering Multi-Agent Systems, volume 8245 of Lecture Notes in Computer Science. Springer, 2013 (to appear).

Formalizing organizational models

 Formalizing Theatrical Performances Using Multi-Agent Organizations. Andreas Schmidt Jensen, Johannes Spurkeland & Jørgen Villadsen. In Proceedings of the 12th Scandinavian AI Conference, 2013.


Organizational reasoning

 Dimensions of Organizational Coordination. Andreas Schmidt Jensen, Huib Aldewereld & Virginia Dignum. In Proceedings of the 25th Benelux Conference on Artificial Intelligence, p. 80-87, 2013.

Adding Organizational Reasoning to Agents

 AORTA: Adding Organizational Reasoning To Agents. Andreas Schmidt Jensen & Virginia Dignum. Submitted for the 13th International Conference on Autonomous Agents and Multiagent Systems.

Simple solution: A priori ordering.

Simple solution: A priori ordering.

- Desires before obligations → Selfish agent
- Obligations before desires → Social agent

Simple solution: A priori ordering.

- ullet Desires before obligations o Selfish agent
- Obligations before desires → Social agent

Better: Consequences of being in different situations

Simple solution: A priori ordering.

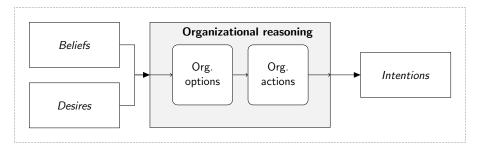
- Desires before obligations → Selfish agent
- ullet Obligations before desires o Social agent

Better: Consequences of being in different situations

- \neg work \rightarrow fired
- work $\rightarrow \neg$ fired

- Conflicts arise in the agent deliberation process
- Rules of preference and expectation are specified
- Model generation
- Conflicts resolved using expected consequences
 - In some cases the agent violates its obligation.
 - In other cases it ignores its desire.

Formalizing organizational models

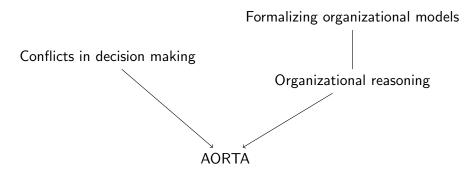

- Formal model required for agent reasoning
 - Models such as OperA and Moise⁺
- We have shown correspondence with certain improvisational theatrical performances (my talk tomorrow)
- Multi-agent programming languages based on variants of Prolog (Jason, GOAL)

Formalizing organizational models

Predicate	Description
role(r, O)	Role r with objectives O .
$dependency(r_1, r_2, o, t)$	Dependency between roles r_1 and r_2 for objective o and dependency type t .
scene(s, R, Res)	Scene script s with roles R and results Res .
rea(a, r, s)	Agent a enacts role r in scene s .

Formalizing organizational models

Organizational reasoning


Organizational reasoning in GOAL

Option consideration and organizational deliberation:

```
forall bel(rea(A,R,S), responsible(0,S,R), active(0))
do insert(option(A,0,S)).
if bel(option(__,injuredLocated,__)) then adopt(injuredLocated).
```

Delegation:

Same objective:

AORTA: Adding Organizational Reasoning to Agents

- Organizational formulas
 - org(objective(injuredFound, medic)) ∧ ¬bel(injuredFound)
- Actions
 - consider(ϕ), enact(α , ρ), . . .
- Reasoning rules
 - $\operatorname{org}(\operatorname{role}(r, Os) \land \forall o(o \in Os \rightarrow \operatorname{bel}(\operatorname{cap}(o))) \Rightarrow \operatorname{consider}(\operatorname{rea}(\alpha, r))$
- Transitions
 - $p \Longrightarrow_{a_{O} \in OR} \frac{\langle \Sigma, \kappa, \sigma, \gamma \rangle \models_{\mathscr{L}_{R}} \rho}{\langle \Sigma, \kappa, \sigma, \gamma \rangle \longrightarrow \langle \Sigma, \kappa, \sigma, \gamma' \rangle} \frac{\mathscr{T}_{O}(a_{O}, \kappa, \sigma, \gamma) = \gamma'}{\langle \Sigma, \kappa, \sigma, \gamma' \rangle}$

Ongoing & Future work

- AORTA
 - Prototype
 - Integration with existing tools (e.g. GOAL)
 - Verification
- Deciding between organizational and agent objectives
 - The multi-agent case
 - Allow for more expressive objectives and consequences
 - Integrate with AORTA
- Applications
 - Computer games (e.g. real-time strategy)
 - Theatrical improvisation

Thank you for your attention