Paraconsistent Computational Logic

Andreas Schmidt Jensen and Jørgen Villadsen

Algorithms and Logic Section, DTU Informatics, Denmark

8th Scandinavian Logic Symposium 20-21 August 2012, Roskilde University, Denmark

Abstract. In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study.

A Paraconsistent Logic

We consider the propositional fragment of a higher-order paraconsistent logic.

 $\Delta = \{ \bullet, \circ \},$ the two classical determinate truth values for truth and falsity, respectively.

 $\nabla = \{\mathsf{I}, \mathsf{II}, \mathsf{III}, \ldots\}$, a countably infinite set of indeterminate truth values.

The only designated truth value • yields the logical truths.

None of the indeterminate truth values imply the others and there is no specific ordering of the indeterminate truth values.

Definitions I

$$\llbracket \neg \varphi \rrbracket = \begin{cases} \bullet & \text{if } \llbracket \varphi \rrbracket = \circ & \top \Leftrightarrow \neg \bot \\ \circ & \text{if } \llbracket \varphi \rrbracket = \bullet & \bot \Leftrightarrow \neg \top \\ \llbracket \varphi \rrbracket & \text{otherwise} \end{cases}$$
$$\llbracket \varphi \land \psi \rrbracket = \begin{cases} \llbracket \varphi \rrbracket & \text{if } \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket & \varphi \Leftrightarrow \varphi \land \varphi \\ \llbracket \psi \rrbracket & \text{if } \llbracket \varphi \rrbracket = \bullet & \psi \Leftrightarrow \top \land \psi \\ \llbracket \varphi \rrbracket & \text{if } \llbracket \psi \rrbracket = \bullet & \varphi \Leftrightarrow \varphi \land \top \\ \llbracket \varphi \rrbracket & \text{if } \llbracket \psi \rrbracket = \bullet & \varphi \Leftrightarrow \varphi \land \top \end{cases}$$
$$\circ & \text{otherwise} \end{cases}$$

Abbreviations:

$$\bot \equiv \neg \top \qquad \varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

Definitions II

$$\llbracket \varphi \Leftrightarrow \psi \rrbracket = \begin{cases} \bullet & \text{if } \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket \\ \circ & \text{otherwise} \end{cases}$$

$$\llbracket \varphi \leftrightarrow \psi \rrbracket \ = \ \begin{cases} \bullet & \text{if } \llbracket \varphi \rrbracket = \llbracket \psi \rrbracket & \top \ \Leftrightarrow \ \varphi \leftrightarrow \varphi \\ \llbracket \psi \rrbracket & \text{if } \llbracket \varphi \rrbracket = \bullet & \psi \ \Leftrightarrow \ \top \leftrightarrow \psi \\ \llbracket \varphi \rrbracket & \text{if } \llbracket \psi \rrbracket = \bullet & \varphi \Leftrightarrow \varphi \leftrightarrow \top \\ \llbracket \varphi \rrbracket & \text{if } \llbracket \psi \rrbracket = \bullet & \varphi \Leftrightarrow \varphi \leftrightarrow \top \\ \llbracket \neg \psi \rrbracket & \text{if } \llbracket \varphi \rrbracket = \circ & \neg \psi \ \Leftrightarrow \ \bot \leftrightarrow \psi \\ \llbracket \neg \varphi \rrbracket & \text{if } \llbracket \psi \rrbracket = \circ & \neg \varphi \ \Leftrightarrow \ \varphi \leftrightarrow \bot \\ \circ & \text{otherwise} \end{cases}$$

Abbreviations:

$$\begin{split} \varphi \Rightarrow \psi \ \equiv \ \varphi \Leftrightarrow \varphi \land \psi & \varphi \land \psi & \varphi \land \psi \\ \Box \varphi \equiv \varphi = \top & \sim \varphi \equiv \neg \Box \varphi \end{split}$$

Truth Tables I

Although we have a countably infinite set of truth value we can investigate the logic by truth tables since the indeterminate truth values are not ordered with respect to truth content.

Truth Tables II

The required number of indeterminacies corresponds to the number of propositions in a given formula.

A larger number of indeterminacies weakens the logic.

For an atomic formula P, $\nabla = \{ i \}$ suffices, because $\llbracket P \rrbracket = i$ would not be different from $\llbracket P \rrbracket = i$ when we consider logical truths.

Indeterminate Truth Values II

Contraposition: $P \rightarrow Q \iff \neg Q \rightarrow \neg P$

The formula holds in a logic with a single indeterminacy. Counter-example for two indeterminacies:

$$P \rightarrow Q \leftrightarrow \neg Q \rightarrow \neg P$$

Having $\nabla = \{i, ii, iii\}$ does not weaken the logic further.

Case Study I

Consider an agent with a set of beliefs (0) and rules (1-2):

- 0. $P \land Q \land \neg R$ 1. $P \land Q \rightarrow R$
- 2. $R \rightarrow S$

$$(P \land Q \land \neg R) \land (P \land Q \to R) \Rightarrow \dots$$

$$\bullet \bullet \bullet \circ \circ \circ \bullet \bullet \circ \circ \circ$$

$$(P \land Q \land \neg R) \land (P \land Q \to R) \Rightarrow R$$

$$\bullet + + + \circ \circ + \bullet + + \circ \circ \circ$$

$$(P \land Q \land \neg R) \land \Box (P \land Q \to R) \Rightarrow R$$

$$\bullet + + + \circ \circ \circ \circ \circ \bullet + + + \circ \circ \circ$$

Case Study II

We let $\triangleright_{XYZ} P$ mean that P follows from the agents beliefs and rules X, Y and Z, where rules are boxed, so $\triangleright_{012} Q \land R$ considers the logical truth of the formula:

$$(\underbrace{P \land Q \land \neg R}_{0}) \land \Box(\underbrace{P \land Q \to R}_{1}) \land \Box(\underbrace{R \to S}_{2}) \Rightarrow Q \land R$$

In particular:

$$\not\models_{012} \neg P \quad \not\models_{012} \neg Q \quad \not\models_{012} \neg S \\ \triangleright_{012} R \quad \triangleright_{012} \neg R \quad \triangleright_{012} S$$

Conclusions

We have defined an infinite-valued paraconsistent logic using semantic clauses and motivated by key equalities.

Only a finite number of truth values need to be considered for a given formula.

The logic allows agents to reason using inconsistent beliefs and rules without entailing everything.

References

- [1] D. Batens, C. Mortensen, G. Priest and J. Van-Bengedem (editors). Frontiers in Paraconsistent Logic. Research Studies Press, 2000.
- [2] H. Decker, J. Villadsen and T. Waragai (editors). International Workshop on Paraconsistent Computational Logic. Volume 95 of Roskilde University, Computer Science, Technical Reports, 2002.
- [3] S. Gottwald. A Treatise on Many-Valued Logics. Research Studies Press, 2001.
- J. Villadsen. A Paraconsistent Higher Order Logic. Pages 38–51 in B. Buchberger and J. A. Campbell (editors), Springer Lecture Notes in Computer Science 3249, 2004.
- J. Villadsen. Supra-Logic: Using Transfinite Type Theory with Type Variables for Paraconsistency. Journal of Applied Non-Classical Logics, 15(1):45–58, 2005.
- [6] J. Villadsen. Infinite-Valued Propositional Type Theory for Semantics. Pages 277–297 in J.-Y. Béziau and A. Costa-Leite (editors), Dimensions of Logical Concepts, Unicamp Coleç. CLE 54, 2009.