

46

The Power of Stories

Rachel Davies
Developer
Connextra

Studio 312, 53-79 Highgate Road
London NW5 1TL, UK

+44 20 7692 9898
rachel@connextra.com

ABSTRACT
This paper explores the differences between Use Cases
and Stories in Extreme Programming (XP) in incremental
software development. The objective of this comparison
is to dispel misconceptions about the definition of Use
Cases and XP Stories. Better understanding of those
differences will lead to their more effective use in the
context of incremental development.

In classic software development processes, software
requirements are specified “upfront” as documents
feeding into a linear “waterfall” of development activity.
Both Use Cases and XP Stories provide a means to
separate out independent functional requirements, which
is an essential step to developing software incrementally.

It appears that Use Cases and XP Stories have a common
purpose, to describe functional requirements. For this
reason, it may appear that the chief difference between
these methods of requirements capture is the level of
detail (or precision) in their respective textual
descriptions. On this basis of comparison, an XP Story
written on an index card might be considered to be a
“light-weight" or “cut-down” description of a Use Case
scenario, with fewer words and less formal constraints.

However, the purpose of the XP Story is not to document
requirements but to enable incremental software
development to proceed in an environment where
requirements change is expected. This paper asserts that
the key differentiating factor between Use Cases and XP
Stories is the way that their scope is determined and not
the level of detail in their description.

In XP, Stories are by defin ition time -bounded (in
estimated development time) to enable their complete
implementation in a single iteration. In contrast, the scope
of a Use Case depends on applying an abstract definition,
concerning system interaction with external actors, to the
development domain. The definition that is used to
identify Use Cases is independent of any time
considerations, such as estimated development time or
development iteration planning.

This paper suggests that it is the “time-boxed” aspect of
XP Stories that makes the activity of writing them, in the

context of the Planning Game, such a powerful driver in
the planning of software development iterations.

Keywords
Use case, story, requirements, RUP, XP.

1 REQUIREMENTS
Customer requirements specify system behaviour (or
capabilities) prior to the procurement of a system that
provides this required behaviour. A system
implementation can be shown to meet requirements by
functional tests. Both Use Cases and XP Stories provide a
means to capture functional requirements for subsequent
software development.

The Rational Unified Process (RUP) supports iterative
software development for the same reasons as XP, to
reduce risk and gain benefit from early user feedback.
However, both these development methods process
requirements very differently.

2 DEFINITIONS
Use Case Definition
Use Cases were introduced by Ivar Jacobson [3] in the
Objectory process. A definition of a Use Case is part of
the standard definition of Unified Modeling Language
(UML): “A use case describes the interactions between
the users and the entity as well as the responses
performed by the entity, as these responses are perceived
from the outside of the entity. A use case also includes
possible variants of this sequence (e.g., alternative
sequences, exceptional behavior, error handling, etc.).”
where the term “entity” refers to the system [6].

A Use Case is an abstraction, a generalization of specific
instances of system interactions. Additionally in UML,
relationships between Use Cases may be expressed using
three types of association with other Use Cases:
generalization, includes and extends.

The Objectory, OMT and Booch methods have since
fused in the evolution of the Rational Unified Process
[4,5]. However, Use Cases remain at the heart of RUP.
Central to RUP is the production of models of the system
prior to code (although not to the exclusion of some
software prototyping). Use Cases break down functional
requirements into a suitable form for analysis and design

47

models to be developed. By focusing on individual event
sequences, a designer may populate an object model. The
objective of producing models is to ensure the
consistency and completeness of a set of requirements
and to provide documentation that can be used to
understand what the system is meant to do.

Scope
The scope of an individual Use Case is determined by
whether the description meets the definition of a Use
Case and is complete with respect to variations of the
sequence of interactions with the system.

Form
The formal definition of Use Cases as an abstraction
increases the technical jargon and mechanisms of
representation, such as Use Case templates and several
types of UML diagrams that the customer needs to
understand to write or agree to Use Cases.

Ownership
In RUP, Stakeholders for the system under development
are identified; examples are an end user, a purchaser, a
system administrator, etc. Requirements are elicited from
these stakeholders but the processing of those
requirements is done by the project team and not by the
customer. Typically, a set of requirements is prioritized
by an Architect, and iteration plans are maintained by a
Project Manager.

Limitations
RUP makes it clear that Use Cases capture only
functional requirements; “non-functional” requirements
relating to factors such as performance, reliability, etc are
captured in other RUP artifacts. “Supplementary
Specifications are an important complement to the Use-
Case Model, because together they capture all software
requirements (functional and non-functional) that need to
be described to serve as a complete Software
Requirements Specification.”[5].

Story Definition
In his first book on Extreme Programming, Kent Beck
defines a Story as: “One thing the customer wants the
system to do. Stories should be estimable at between one
to five ideal programming weeks. Stories should be
testable.”[1]. Further to this definition “Stories need to be
of a size that you can build a few of them in each
iteration”[2].

Scope
A customer story is limited in XP by estimated
development time. Following XP principles, a developer
can only provide reliable estimates based on the
measurement of past velocity in the context of an
iteration. Stories which are too big to estimate must be
split into smaller Stories of no more functionality than
can be implemented in a single iteration. XP Stories are
thus limited in scope by time. Stories can be completed in
a single iteration, which ensures that feedback from their
early implementation is gained before further

requirements are costed.

Form
The definition of XP Stories does not specify a particular
form of expression beyond that it should be possible to
write them in natural language on an index card. This
liberates the customer from having to understand formal
definitions or special notation. The detail recorded on a
story card needs only to be the estimate and a title to
differentiate the story from others in the same iteration,
with some words or sketches to recall the discussion
between the customer and the developer.

Ownership
In XP, the customer owns the Stories. It is the customer
rather than a project manager who controls the content of
development iterations. There is only one means of
allocating requirements to an iteration, via the Planning
Game, which enables the on-site customer to prioritize
the Stories in a release plan.

Limitations
XP Stories are not limited by the same formal constraints
as Use Cases, and so Stories can be written to detail some
types of functional requirements that cannot be
categorized as Use Cases. As a general rule, if a
functional test can be expressed to verify that a system
conforms to a requirement, then it should be possible to
express the requirement using an XP Story.

3 COMPARISON OF RELATED ARTIFACTS
RUP uses the term “artifact” to refer to documentation,
models or software used or produced by a software
development process. The essence of Use Cases and XP
Stories may be understood better by a comparison of their
artifacts.

A requirement may be represented in several different
artifacts. A Use Case description can be identified as a
process artifact in RUP workflows. Similarly a Story card
can be identified as a process artifact of XP. However, a
requirement may also be represented in a process by other
equally important artifacts such as Functional Tests.

It should also be recognized that direct verbal
communication is an alternative to the capture of
information as artifacts. In XP, a greater emphasis is
placed on verbal rather than written communication. “A
user story is nothing more than agreement that the
customer and developers will talk together about a
feature”[2]. For example, an XP Story card will probably
not include notes on every aspect of the story discussed
between the customer and developer when it was
estimated. It does not need to do so, if the developer who
estimated the card can implement the engineering tasks
associated with this story, with the customer on-site and
available for any clarification required.

In RUP, Use Cases models and descriptions are usually
considered to be artifacts of documentation, to be kept
after software release to aid software maintenance. In XP,
Story cards are not preserved as software documentation.

48

Story cards should be disposed of following a software
release. Although Stories are written down on cards, these
cards act as tokens within a release plan rather than
descriptions of Stories; they represent customer
requirements rather than document them. XP Stories are
like bars on a Gantt chart, when the plan is complete the
Stories serve no further purpose. In XP, it is the job of
Acceptance Tests, not Story cards, to document and
preserve the accumulated set of requirements on the
system [2].

RUP provides an extensible process framework [5] so the
kinds of artifacts produced under workflows within a
RUP software development are mo re varied than using
XP (which is more strictly defined as a software
development process).

In a typical RUP development, the artifacts generated for
a set of Use Cases could be: a Use Case model (UML
diagrams and supporting textual descriptions), a design
model, software development plan, software components,
a test plan and test cases.

The artifacts produced in XP for each Story are as
follows: a Story card in a release plan, engineering tasks
in an iteration plan, source code with associated unit tests ,
acceptance tests and a software release.

4 ISSUES IN ITERATIVE DEVELOPMENT
Consistency
Use cases provide a mechanism to attack problems of
inconsistency. The objective of Use Case analysis is
primarily to expand initial requirements to a complete set
(without holes) including many alternate scenarios. This
ensures that development effort is not spent on
unnecessary implementation of ill-thought-out scenarios.

When using XP, gaps in requirements emerge by the
delivery of software to a customer that conforms to their
requests, made in the form of Stories. The delivered
software only meets those requirements discussed with
the customer. It is the responsibility of the customer to
take the time to ensure that the Stories they select for the
Planning Game are consistent with one another. It is
easier for the customer to do this where requirements are
written in their own terms. Any unplanned behaviour can
be addressed by writing new Stories and which may be
planned into future iterations.

Planning
Iteration plans are developed on the basis of development
estimates. Estimates are more reliable where metrics are
available to support them; they are most reliable when
comparing like with like. This is one reason why there is
a benefit to maintaining an iteration cycle with the same
iteration period. To enable the planning of iterations of
the same duration “You must define only enough work to
fill the iteration. You are scheduling by time and not
volume.”[5]. As an analysis tool, Use Cases expand
requirements; this tendency to expansion may stand in
opposition to the restriction of scope needed for a unit of

requirements to be used in planning incremental
development.

When planning iterations, units of work need to be
identified and development estimates applied to them. A
Use Case provides a unit of requirements. But is the Use
Case a suitable unit of requirements to base development
plans on? This depends on two factors: the complexity of
Use Cases identifiable in the development domain, and
the iteration period to be adopted.

Although it is possible for a software development to
have requirements that can be broken down into Use
Cases of a size that allows their complete implementation
in single iterations. Where Use Cases are more complex,
this may not be possible and only some scenarios of a
Use Case can be implemented in an iteration. Also,
particularly in early iterations of a development, it is
common practice in incremental development to exclude
non-essential steps in scenarios, such as error reporting,
performance measurement, time -outs, security checks,
recovery or rollback action. So an iteration plan may be
adopted where the work units exclude some scenarios or
steps in scenarios of a Use Case.

In planning iterations, it is important to be able to
distinguish what requirements have been implemented
and what requirements remain. Ideally, an iteration plan
should reference units of requirements that can be
completely implemented in that iteration. If Use Cases
are too large to be implemented in a single iteration,
partial implementation in successive iterations may be
necessary. Where this is done, additional work will be
needed to keep track of those parts of a Use Case that
have been implemented. If it does become necessary to
track requirements at the level of steps in a Use Case
scenario (and maintain correlation with requirements
documented in supplementary specifications) then this
can become difficult to manage in subsequent iterations,
especially where requirements change between iterations.

An alternative approach is to increase the duration of
iterations, to allow whole Use Cases to be completed.
However, this increases the time that development
proceeds without the feedback derived from the
completion of the iteration. This practice of adapting the
iteration length may also weaken the accuracy of
estimates, where they are based on measurements taken
within iterations of irregular length, as it becomes harder
to compare like with like.

In contrast, XP Stories by definition must allow
completion in a single iteration; this frees project
management from the extra work of tracking
requirements. Iteration completion is determined by
functional test passes. At the start of each iteration, the
customer is expected to introduce new requirements; this
is the norm not the exception.

Change Management
Where face-to-face verbal communication is easy, fewer

49

process artifacts may be needed. However, large teams or
distributed teams make such direct communication
difficult, so more artifacts need to be produced. In these
circumstances, such artifacts are likely to be subject to
change management procedures, so that they are stored
safely and kept up to date. For this reason, duplication of
information across artifacts should be avoided to prevent
artifacts going out of phase and to control the overhead of
the extra work needed to keep them aligned.

XP avoids the problem of keeping requirements aligned
across artifacts by increasing direct communication and
avoiding duplication.

RUP provides change management mechanisms and
recommends the use of tools to support the automation of
such process workflows.

5 CONCLUSIONS
This paper does not suggest that Use Cases are better than
XP Stories, or vice versa. It attempts to understand the
forces which should influence an informed decision to
select them for the capture of requirements in incremental
software development.

Due to the need for direct communication, XP is only
viable for small co-located teams with access to an on-
site customer. Large distributed teams may need to rely
on more documentation and adopt RUP or other less agile
processes.

In XP, Stories provide a time-boxed unit of requirements
with the advantage that, on the completion of an iteration,
requirements can be completely implemented. The
practice of rejecting Stories with large estimates and
splitting them into other Stories (rather than another unit
of requirements) allows a fixed iteration length to be
adopted, supporting future development estimates.

A development project may also have small enough Use
Cases for them to be completed in a single iteration. But

in some developments, Use Cases can only be identified
which are larger than can be implemented within an
iteration period, that can only be split into “subunits” of
Use Cases, such as scenarios or steps within those
scenarios, but not into other smaller Use Cases. In such
developments, it may be necessary either to track the
implementation of partial Use Cases or adopt irregular
iteration periods. The former adds to management
overhead costs and the latter reduces the benefit of early
feedback and accurate measurements on which to base
future estimates.

6 INFORMATION AND QUES TIONS
For more information, contact rachel@connextra.com

ACKNOWLEDGEMENTS
This paper draws on experience gained by the author in
emp loyment with Marconi and CMG using Use Cases for
requirements capture in incremental development cycles
and in her current role at Connextra using XP Stories.

REFERENCES
1. Beck, K. Extreme Programming Explained, Addison

Wesley, 2000.

2. Beck, K., Fowler, M., Planning Extreme
Programming, Addison Wesley, 2000.

3. Jacobson, I. et al, Object-oriented Software
Engineering, Addison Wesley, 1992.

4. Jacobson, I., Booch, G. and Rumbaugh, J. The
Unified Software Development Process, Addison
Wesley, 1998.

5. Krutchen, P. The Rational Unified Process An
Introduction, Addison Wesley, 2000.

6. Object Management Group, Unified Modeling
Language Specification , v1.3, 2000.

